1
|
Citterio-Quentin A, El Mahmoudi A, Perret T, Conway A, Ryan A, Beringer A, Lachaux A, Boulieu R. Red Blood cell IMPDH activity in adults and children with or without azathioprine: Relationship between thiopurine metabolites, ITPA and TPMT activities. Basic Clin Pharmacol Toxicol 2018; 124:600-606. [PMID: 30451390 DOI: 10.1111/bcpt.13176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/11/2018] [Indexed: 01/11/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is considered as the limiting enzyme of thiopurine metabolism for the formation of 6-thioguanine nucleotides (6-TGN). No data are available on the influence of RBC IMPDH activity on the metabolism of thiopurine drugs in individuals with IBD. The aims of this study were as follows: (a) to carry out a phenotypic study of RBC IMPDH activity in adults and children treated or not with azathioprine (AZA) for autoimmune diseases, and (b) to investigate the relationship between the activities of IMPDH, thiopurine metabolites, inosine triphosphatase (ITPA) and thiopurine methyltransferase (TPMT). IMPDH activity was determined in 97 adults and 67 children treated or not with AZA. 6-Thioguanine nucleotides (6-TGN), 6-methylmercaptopurine nucleotide (6-MeMPN) levels, and ITPA as well as TPMT activities were measured in RBCs by HPLC. Using the Gaussian mixture model, distribution of IMPDH activity was evaluated. Influence of age, sex and AZA treatment on IMPDH activity was also assessed. A bimodal distribution in IMPDH activity was found with 87% of patients exhibiting normal activity and 13% of patients with high activity. No influence of age, sex and AZA therapy was found. There is no relationship between TPMT, ITPA and IMPDH activities. A negative correlation between IMPDH activity and 6-MeMPN was shown in adults and children (rs = -0.335 P = 0.014 and rs = -0.383 P = 0.012, respectively). Our results suggest that AZA-treated patients exhibiting lower IMPDH activity could have higher Me-6MPN levels with higher risk of hepatotoxicity. We demonstrated that RBC matrix could be an interesting alternative to lymphocyte matrix to monitor thiopurine metabolites and enzyme activity.
Collapse
Affiliation(s)
- Antony Citterio-Quentin
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Amal El Mahmoudi
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Thibault Perret
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Anthony Conway
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Aishling Ryan
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Audrey Beringer
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| | - Alain Lachaux
- Pediatric Gastroenterology Unit, Hôpital Femme Mère Enfant (HFME), Lyon, France
| | - Roselyne Boulieu
- Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multisites of University Hospital of Lyon, Pharmaco-Toxicology Unit, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
2
|
ITPA Activity in Adults and Children Treated With or Without Azathioprine: Relationship Between TPMT Activity, Thiopurine Metabolites, and Co-medications. Ther Drug Monit 2018. [PMID: 28650902 DOI: 10.1097/ftd.0000000000000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The implication of inosine triphosphate pyrophosphatase (ITPA) on thiopurine drug response variability has been investigated but little data are available on its role on thiopurine metabolites. The ability of ITPA to modify the thiopurine metabolite levels is currently used to optimize azathioprine (AZA) therapy in relation to thiopurine S-methyltransferase (TPMT) activity, the aim of this study is to investigate ITPA phenotype in a large population and to evaluate the relation between ITPA and TPMT activities and thiopurine metabolites. METHODS ITPA activity was determined in 183 adults and 138 children with or without AZA therapy. 6-thioguanine nucleotides (6-TGN), 6-methylmercaptopurine nucleotides (6-MeMPN) levels, and ITPA as well as TPMT activities were measured in red blood cells. Using the Gaussian mixture model, distribution of ITPA activity was evaluated. Intraindividual variability and influence of age, sex, AZA treatment and associated co-medications on ITPA activity were also assessed. RESULTS This retrospective study shows a quadrimodal distribution in ITPA activity. No influence of age, sex, AZA therapy, and co-medications was found. In adults, ITPA activity was not significantly associated with 6-TGN or 6-MeMPN concentrations, whereas a weak negative correlation was observed with 6-MeMPN levels in pediatric populations (rs = -0.261; P = 0.024). A weak positive correlation was observed between ITPA and TPMT activities in children (rs = 0.289; P = 0.001). CONCLUSIONS ITPA activity was poorly influenced by nongenetic parameters and has no influence on 6-TGN and 6-MeMPN concentrations in adults and only a weak correlation with 6-MeMPN and TPMT activity in children. These results demonstrate that ITPA is not a rate-limiting enzyme in the formation of 6-TGN but suggest that a decrease in ITPA activity in children may be a risk factor for accumulation of 6-MeMPN in cells.
Collapse
|
3
|
Citterio-Quentin A, Moulsma M, Gustin MP, Lachaux A, Boulieu R. ITPA Activity in Children Treated by Azathioprine: Relationship to the Occurrence of Adverse Drug Reactions and Inflammatory Response. Basic Clin Pharmacol Toxicol 2018; 122:588-595. [PMID: 29327413 DOI: 10.1111/bcpt.12958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
Azathioprine (AZA), a thiopurine drug, is widely used in the treatment of children with immunological diseases such as inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH); however, interindividual variability in the occurrence of adverse drug reactions (ADRs) and drug response is observed. This study investigated (i) the relationships between inosine triphosphate pyrophosphatase (ITPA) activity, an enzyme involved in thiopurine metabolism, and the occurrence of ADRs in children with immunological disease on AZA therapy, and (ii) the relationship between ITPA activity and the inflammatory activity observed in children with IBD. ITPA and TPMT activities were determined in 106 children with immunological disease on AZA therapy. Markers of hepatotoxicity, myelotoxicity, pancreatitis and inflammation as well as clinical information were retrospectively collected during regular medical visits. No significant association was found between ITPA activity and hepatotoxicity or clinical ADRs such as cutaneous reactions, arthralgia, flulike symptoms and gastrointestinal disorders. Concerning myelotoxicity, a significant relation was observed between ITPA activity and RBC mean corpuscular volume (MCV; p=0.003). This observation may be related to the significant relationship found between high ITPA activity and the increase in γ-globulin level reflecting inflammation (p=0.005). In our study, ITPA activity was not associated with occurrence of ADRs, but a relationship between high ITPA activity and γ-globulin, a marker of inflammation, was found in children with IBD. Therefore, measurement of ITPA activity may help to identify children with IBD predisposed to residual inflammation on AZA therapy. Further prospective studies are needed to confirm this result.
Collapse
Affiliation(s)
- Antony Citterio-Quentin
- UMR CNRS 5305, Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, Lyon, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| | - Mustapha Moulsma
- Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| | - Marie-Paule Gustin
- Emerging pathogen Laboratory - Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Alain Lachaux
- Pediatric Gastroenterology Unit, Civil Hospices of Lyon, Hôpital Femme-Mère-Enfant (HFME), Lyon, France
| | - Roselyne Boulieu
- UMR CNRS 5305, Clinical Pharmacy, Pharmacokinetics and Drug Evaluation, Université de Lyon, Université Lyon 1, Lyon, France.,Edouard Herriot Hospital, Laboratory of Medical Biology Multi Sites of the University Hospital of Lyon, Pharmaco-Toxicology Unit, Civil Hospices of Lyon, Lyon, France
| |
Collapse
|
4
|
Beringer A, Citterio-Quentin A, Otero RO, Gustin C, Clarke R, Salvi JP, Boulieu R. Determination of inosine 5'-monophosphate dehydrogenase activity in red blood cells of thiopurine-treated patients using HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:194-199. [PMID: 28110955 DOI: 10.1016/j.jchromb.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
Thiopurine drugs are commonly used in immune diseases and to a lesser extent, in transplant rejection prophylaxis: however interindividual variability in drug response and in the occurrence of adverse events is observed. Genetic variation in thiopurine S-methyltransferase (TPMT) doesn't completely explain the occurrence of all adverse events and drug response variability. The potential implication of other enzymes involved in thiopurine metabolism, such as ITPA, has been investigated over the last decade but little data is available on inosine 5'-monophosphate dehydrogenase (IMPDH) in patients treated with thiopurine drugs. The authors reported a HPLC method to determine IMPDH activity in the red blood cells (RBCs) of thiopurine-treated patients. IMPDH activity was evaluated by enzymatic conversion of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP). The XMP formed was analyzed on a Luna® NH2 stationary phase, a weak anion exchange phase that exhibits both ionic and hydrophobic properties. XMP was eluted below 15min. Intra-assay and inter-assay precisions were below 9% for RBCs supplemented with 2, 40 and 80μmol/L of XMP. IMPDH activity was measured in adults without thiopurine treatment as well as in adult and paediatric patients treated with thiopurines. A wide interindividual variability in IMPDH activity in RBCs was observed. No difference in IMPDH activity was found between untreated subjects and adult and paediatric patients on thiopurine therapy (median value 11.8, 7.9 and 7.7nmol XPM/g Hb/h respectively). The method described is useful in the determination of IMPDH phenotype from patients on thiopurine therapy and in the investigation of the potential relationship between IMPDH activity in RBCs and the occurrence of adverse events and drug response variability.
Collapse
Affiliation(s)
- Audrey Beringer
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Antony Citterio-Quentin
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Rebeca Obenza Otero
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France
| | - Clémence Gustin
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France
| | - Rebecca Clarke
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; School of Pharmacy and Pharmaceuticals Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jean-Paul Salvi
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France
| | - Roselyne Boulieu
- Université de Lyon, Université Lyon 1, UMR CNRS 5305, Pharmacie Clinique, Pharmacocinétique et Evaluation du Médicament, Lyon, France; Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Laboratoire de Biologie Médicale Multi Sites du CHU de Lyon, unité de Pharmacocinétique Clinique, Lyon, France.
| |
Collapse
|
5
|
Determination of Inosine Triphosphate Pyrophosphatase in Red Blood Cells Using HPLC. Ther Drug Monit 2014; 36:689-91. [DOI: 10.1097/ftd.0000000000000075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Chen Z, Zhang X, Ying L, Dou D, Li Y, Bai Y, Liu J, Liu L, Feng H, Yu X, Leung SWS, Vanhoutte PM, Gao Y. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 2014; 307:H328-36. [PMID: 24906916 DOI: 10.1152/ajpheart.00132.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (Po2: 25-30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr(853), which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK.
Collapse
Affiliation(s)
- Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lei Ying
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou; Zhejiang, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yanhui Li
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Bai
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Juan Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Susan Wai-Sum Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China; and
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China; and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China;
| |
Collapse
|