1
|
Fan J, Zhang D, Jiang Y, Yu L, Han B, Qian Z. The effects of PPARγ inhibitor on bones and bone marrow fat in aged glucocorticoid-treated female rats. Exp Gerontol 2023; 181:112281. [PMID: 37659742 DOI: 10.1016/j.exger.2023.112281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Progressive bone marrow (BM) fat accumulation is a common bone loss characteristic in older populations and glucocorticoid (GC)-induced skeletal destruction that is inversely associated with bone synthesis and directly associated with increased peroxisomal proliferator-activated receptor gamma (PPARγ) expression. PPARγ inhibition is an efficient therapeutic strategy for aged- and GC-related skeletal disorders. This study aimed to evaluate the effect of PPARγ inhibition on aged GC-treated female rats. It was hypothesised that bisphenol A diglycidyl ether (BADGE) could inhibit marrow adiposity and improve osteogenesis by inhibiting PPARγ, thereby preventing GC-induced osteoporosis (GIO). Female Sprague-Dawley rats (n = 32, age = 18 months) were randomly allocated to one of the following groups: (1) control, (2) BADGE (30 mg/kg/day, intraperitoneal), (3) methylprednisolone (MP; 30 mg/kg/day, subcutaneous), and (4) MP + BADGE. After eight weeks of treatment, bone density (BD) and trabecular bone microarchitectures were quantified by micro-computed tomography (CT), and BM adipocytes were quantified by histopathology. Additionally, mRNA and protein expression of adipogenic and osteogenic markers were quantified by reverse transcription-quantitative polymerase chain reaction. Furthermore, serum bone turnover biomarker levels were quantified by enzyme-linked immunosorbent assay. MP treatment led to marrow adipogenesis and bone deterioration. However, rats treated with MP + BADGE showed lower marrow adipogenesis, as indicated by smaller marrow adipocyte diameter, decreased density and area percentages, reduced expression of marrow adipogenic genes and proteins, improved BD and trabecular microarchitectures, increased expression of osteogenic genes and proteins, and higher levels of serum bone formation markers. These results were consistent with the differences observed between control and BADGE mono-treated rats. In conclusion, BADGE treatment attenuates BM adiposity and improves bone formation in aged GC-treated female rats by inhibiting PPARγ. Therefore, PPARγ might be a potential target for treating GIO in older populations.
Collapse
Affiliation(s)
- Jingzheng Fan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yuyan Jiang
- Department of Nuclear medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lechang Yu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bin Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| |
Collapse
|
2
|
Wawrzyniak N, Gramza-Michałowska A, Kurzawa P, Kołodziejski P, Suliburska J. Calcium carbonate-enriched pumpkin affects calcium status in ovariectomized rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1402-1413. [PMID: 36936115 PMCID: PMC10020404 DOI: 10.1007/s13197-023-05686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Calcium carbonate (CaCO3)-enriched pumpkin may serve as a good source of calcium for patients diagnosed with osteoporosis. In this study, we aimed to determine the effect of CaCO3-enriched pumpkin on Ca status in ovariectomized rats. The study included 40 female Wistar rats divided into five groups (n = 8). One group was fed with a standard diet (control group), while the other four groups were ovariectomized and received a standard diet (control ovariectomized group), or a diet containing CaCO3-enriched pumpkin, alendronate, or both. The nutritional intervention lasted 12 weeks, and then the rats were euthanized. Tissue and blood samples were collected and assessed for the levels of total Ca, estradiol, parathyroid hormone, and procollagen type I N propeptide. In addition, a histological analysis was performed on femurs. The results of the study suggest that CaCO3-enriched pumpkin can increase Ca content in femurs and improve bone recovery in ovariectomized rats. Furthermore, enriched pumpkin contributes to Ca accumulation in the kidneys, and this effect is more pronounced in combination with alendronate.
Collapse
Affiliation(s)
- Natalia Wawrzyniak
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Paweł Kurzawa
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Oncological Pathology, Pozna University of Medical Sciences, Szamarzewskiego 84, 60-596 Poznan, Poland
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland
| |
Collapse
|
3
|
Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol 2022; 13:889404. [PMID: 35770087 PMCID: PMC9236302 DOI: 10.3389/fphar.2022.889404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
P. Notoginseng Saponins (PNS), the main active component of herbal medicine Panax notoginseng, has been widely used to treat cerebrovascular diseases. It has been acknowledged that PNS exerted protection on nerve injuries induced by ischemic stroke, however, the long-term impacts of PNS on the restoration of neurological defects and neuroregeneration after stroke have not been thoroughly studied and the underlying molecular mechanism of stimulating neurogenesis is difficult to precisely clarify, much more in-depth researches are badly needed. In the present study, cerebral ischemia injury was induced by microsphere embolism (ME) in rats. After 14 days, PNS administration relieved cerebral ischemia injury as evidenced by alleviating neurological deficits and reducing hippocampal pathological damage. What’s more, PNS stimulated hippocampal neurogenesis by promoting cell proliferation, migration and differentiation activity and modulated synaptic plasticity. Increased number of BrdU/Nestin, BrdU/DCX and NeuroD1-positive cells and upregulated synapse-related GAP43, SYP, and PSD95 expression were observed in the hippocampus. We hypothesized that upregulation of brain-derived neurotrophic factor (BDNF) expression and activation of Akt/mTOR/p70S6K signaling after ME could partially underlie the neuroprotective effects of PNS against cerebral ischemia injury. Our findings offer some new viewpoints into the beneficial roles of PNS against ischemic stroke.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianxun Liu,
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangrui Wang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Hu H, Chen Y, Huang F, Chen B, Zou Z, Tan B, Yi H, Liu C, Wan Y, Ling Z, Zou X. Panax notoginseng saponins attenuate intervertebral disc degeneration by reducing the end plate porosity in lumbar spinal instability mice. JOR Spine 2021; 4:e1182. [PMID: 35005448 PMCID: PMC8717113 DOI: 10.1002/jsp2.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
Although painkillers could alleviate some of the symptoms, there are no drugs that really cope with the intervertebral disc degeneration (IDD) at present, so it is urgent to find a cure that could prevent or reverse the progression of IDD. During the development of IDD, the cartilaginous end plates (EPs) become hypertrophic and porous by the increase of osteoclast activities, which hinder the penetration of nutrition. The compositional and structural degeneration of the EP may cause both nutritional as well as mechanical impairment to the nucleus pulposus (NP) so that developing drugs that target the degenerating EP may be another option in addition to targeting the NP. In the lumbar spine instability mouse model, we found increased porosity in the cartilaginous EP, accompanied by the decrease in total intervertebral disc volume. Panax notoginseng saponins (PNS), a traditional Chinese patent drug with anti-osteoclastogenesis effect, could alleviate IDD by inhibiting aberrant osteoclast activation in the porous EP. Further in vitro experiment validated that PNS inhibit the receptor activator of nuclear factor kappa-Β ligand-induced osteoclast differentiation, while the transcriptional activation of PAX6 may be involved in the mechanism, which had been defined as an inhibitory transcription factor in osteoclastogenesis. These findings may provide a novel therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Hao Hu
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Yan Chen
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Fangli Huang
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Bolin Chen
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Zhiyuan Zou
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Bizhi Tan
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Hualin Yi
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Chun Liu
- Precision Medicine InstituteSun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Yong Wan
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Zemin Ling
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| | - Xuenong Zou
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and TraumatologySun Yat‐sen University First Affiliated HospitalGuangzhouChina
| |
Collapse
|
5
|
Wei CC, Yue LF, You FT, Tao C. Panax notoginseng saponins alleviate osteoporosis and joint destruction in rabbits with antigen-induced arthritis. Exp Ther Med 2021; 22:1302. [PMID: 34630657 PMCID: PMC8461612 DOI: 10.3892/etm.2021.10737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Although a number of anti-rheumatic drugs and biologics may be used to alleviate the symptoms of rheumatoid arthritis (RA), these compounds have been associated with bone loss and joint destruction; thus, alternative treatment approaches are required. In the present study, various plant extracts were evaluated for their capacity to inhibit joint destruction, and Panax notoginseng saponins (PNS), obtained from the Traditional Chinese Medicine Panax notoginseng, was identified as such a compound. Therefore, a rabbit antigen-induced arthritis (AIA) model was generated by immunization with ovalbumin in Freund's complete adjuvant, followed by treatment with PNS for 3 months. The morphology of the quadriceps femoris muscle, cartilage chondrocytes and skeletal elements was histologically observed by transmission electron microscopy (TEM), as well as micro-computed tomography. The results revealed that PNS significantly reduced the histopathological alterations associated with arthritic muscular atrophy and inflammation. In addition, TEM demonstrated that PNS protected chondrocytes from RA-associated damage. Furthermore, the bone density and microarchitecture in rabbits treated with PNS were markedly improved compared with those of the model group. Collectively, these data indicated that treatment with PNS may relieve osteoporosis and prevent joint and bone destruction in AIA.
Collapse
Affiliation(s)
- Chen Chao Wei
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, P.R. China
| | - Li Fei Yue
- Department of Traumatology, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Fan Tian You
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, P.R. China
| | - Che Tao
- Department of Orthopaedics and Traumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of TCM, Shanghai 200071, P.R. China
| |
Collapse
|
6
|
Zhu P, Jiang W, He S, Zhang T, Liao F, Liu D, An X, Huang X, Zhou N. Panax notoginseng saponins promote endothelial progenitor cell angiogenesis via the Wnt/β-catenin pathway. BMC Complement Med Ther 2021; 21:53. [PMID: 33557814 PMCID: PMC7869233 DOI: 10.1186/s12906-021-03219-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Distraction osteogenesis (DO) is an effective treatment in craniomaxillofacial surgery. However, the issue of sufficient blood supply at the regeneration tissue has limited its wide application. Panax notoginseng saponins (PNS) is a Traditional Chinese Medicine that is commonly used to treat a range of angiogenic diseases. However, the mechanisms whereby PNS alters angiogenesis in endothelial progenitor cells (EPCs) have yet to be clarified. Methods EPCs were identified by immunofluorescence, confirmed by their uptake of fluorescently labeled Dil-ac-LDL and FITC-UEA-1. EPCs were treated with different concentrations of PNS, and the effects of PNS on cell proliferation were measured on the optimal concentration of PNS determined. The effects of PNS on angiogenesis and migration, angiogenic cytokines mRNA expression and the proteins of the Wnt pathway were investigated. Then knocked down β-catenin in EPCs and treated with the optimum concentrational PNS, their angiogenic potential was evaluated in tube formation and migration assays. In addition, the expression of cytokines associated with angiogenesis and Wnt/β-catenin was then assessed via WB and RT-qPCR. Results We were able to determine the optimal concentration of PNS in the promotion of cell proliferation, tube formation, and migration to be 6.25 mg/L. PNS treatment increased the mRNA levels of VEGF, bFGF, VE-Cadherin, WNT3a, LRP5, β-catenin, and TCF4. After knocked down β-catenin expression, we found that PNS could sufficient to partially reverse the suppression of EPC angiogenesis. Conclusions Overall, 6.25 mg/L PNS can promote EPC angiogenesis via Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Peiqi Zhu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Weidong Jiang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Shixi He
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Fengchun Liao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Di Liu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoning An
- Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xuanping Huang
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| | - Nuo Zhou
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| |
Collapse
|
7
|
Panax Notoginseng Saponins Prevent Bone Loss by Promoting Angiogenesis in an Osteoporotic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8412468. [PMID: 33415157 PMCID: PMC7752278 DOI: 10.1155/2020/8412468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
With the aging of the population and the extension of life expectancy, osteoporosis is becoming a global epidemic. Although there are several drugs used to treat osteoporosis in clinical practice, such as parathyroid hormone or bisphosphonates, they all have some serious side effects. Therefore, a safer drug is called for osteoporosis, especially for the prevention in the early stage of the disease, not only the treatment in the later stage. Panax notoginseng saponin (PNS), a traditional Chinese herb, has been used as anti-ischemic drug due to its function on improving vascular circulation. In order to verify whether Panax notoginseng saponins (PNS) could be used to prevent osteoporosis, ovariectomy (OVX) was induced in female C57BL/C6J mice, followed by orally administration with 40 mg/kg/d, 80 mg/kg/d, and 160 mg/kg/d of three different dosages of PNS for 9 weeks. Serum biochemical analysis, micro-CT, histological evaluation, and immunostaining of markers of osteogenesis and angiogenesis were performed in the sham, osteoporotic (OVX), and treatment (OVX+PNS) groups. Micro-CT and histological evaluation showed that compared to sham group, the bone mass of OVX group reduced significantly, while it was significantly restored in the moderate-dose PNS (40 mg/kg and 80 mg/kg) treatment groups. The expression of CD31 and osteocalcin (OCN) in the bone tissue of treatment group also increased, suggesting that PNS activated osteogenesis and angiogenesis, which subsequently increased the bone mass. These results confirmed the potential function of PNS on the prevention of osteoporosis. However, in the high dose of PNS (160 mg/kg) group, the antiosteoportic effect had been eliminated, which also suggested the importance of proper dose of PNS for the prevention and treatment of osteoporosis in postmenopausal women.
Collapse
|
8
|
Kang IS, Agidigbi TS, Kwon YM, Kim DG, Kim RI, In G, Lee MH, Kim C. Effect of Co-Administration of Panax ginseng and Brassica oleracea on Postmenopausal Osteoporosis in Ovariectomized Mice. Nutrients 2020; 12:nu12082415. [PMID: 32806557 PMCID: PMC7468818 DOI: 10.3390/nu12082415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Postmenopausal osteoporosis is a common disorder resulting from increased osteoclastic activity. To determine the effect of Panax ginseng on postmenopausal osteoporosis, ovariectomized (OVX) mice were treated with 500 mg/kg/day P. ginseng extract (Pg) alone or in combination with hot water extract of Brassica oleracea (Bo) daily for 10 weeks, and the effect of the treatments on OVX-induced bone loss was examined. Bone weight, bone mineral density (BMD), osteoclast (OC) formation, OC marker expression, and biochemical parameters in blood were determined. OVX significantly increased body weight and decreased bone weight compared with those in the Sham group (p < 0.01). Pg or Bo alone did not affect OVX-induced bone loss, but a combination of Pg and Bo (Pg:Bo) recovered bone weight. The bones of OVX mice showed lower BMD than that of Sham mice, and the Pg:Bo = 3:1 restored the decreased BMD. Single treatment with Pg or Bo did not alter OC formation; however, the Pg:Bo = 3:1 inhibited OC formation. In addition, Pg and Bo lowered the OVX-induced elevation in blood glucose level. Thus, we suggest that Pg in combination with proper materials, such as Bo, might be a potential candidate treatment with minimal side effects protect against postmenopausal osteoporosis.
Collapse
Affiliation(s)
- In Soon Kang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Taiwo Samuel Agidigbi
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Young Min Kwon
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Dong-Gyu Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Rang Ie Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
| | - Gyo In
- Laboratory of Fundamental Research, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Korea; (G.I.); (M.-H.L.)
| | - Mi-Hyang Lee
- Laboratory of Fundamental Research, Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon 34128, Korea; (G.I.); (M.-H.L.)
| | - Chaekyun Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea; (I.S.K.); (T.S.A.); (Y.M.K.); (D.-G.K.); (R.I.K.)
- Correspondence: ; Tel.: +82-32-860-9874; Fax: +82-32-885-8302
| |
Collapse
|
9
|
Kim B, Lee SH, Song SJ, Kim WH, Song ES, Lee JC, Lee SJ, Han DW, Lee JH. Protective Effects of Melon Extracts on Bone Strength, Mineralization, and Metabolism in Rats with Ovariectomy-Induced Osteoporosis. Antioxidants (Basel) 2019; 8:antiox8080306. [PMID: 31416178 PMCID: PMC6720457 DOI: 10.3390/antiox8080306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
A polyphenolic extract from melon (Cucumis melo L.), as a potential source of natural antioxidants, has been reported to have a positive effect on osteoblast activity. In this study, the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization, and metabolism were examined in osteoporotic rat models. Osteoporosis was induced by ovariectomy (OVX) in female rats and then maintained for 8 weeks, along with the ingestion of phosphate-buffered saline (PBS, OVXP) or ECO-A (OVXE) for an additional 4 weeks. At a pre-determined timepoint, bone strengths, as well as bone mineral contents (BMC) and the density (BMD) of femurs and/or lumbar spines extracted from each animal, were measured by a mechanical test and dual-energy X-ray absorptiometry, respectively. Moreover, several biochemical markers for bone turnover were analyzed by respective colorimetric assay kits in addition to clinical analyses. The maximum load and stiffness of femurs from the OVXE group were found to be significantly higher than the other groups. Furthermore, the OVXE group showed significantly higher BMC, BMD, and bone volume than the OVX and OVXP groups, which were comparable to the non-OVX (sham) group. The levels of bone formation and resorption markers in the OVXE group were similar to the sham group, but significantly different from other groups. In conclusion, these results suggest that ECO-A can play potentially positive roles in the protection of bone loss in rats with OVX-induced osteoporosis.
Collapse
Affiliation(s)
- Bongju Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Sung-Ho Lee
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Won Hyeon Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Eun-Sung Song
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Jae-Chang Lee
- Bio-based Chemistry Research Center, Korea Research Institute of Chemical Technology, Ulsan 44429, Korea
| | - Sung-Jae Lee
- Department of Biomedical Engineering, Inje University, Gimhae 50834, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| | - Jong-Ho Lee
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
10
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
11
|
Magnetic Resonance Spectroscopy for Evaluating the Effect of Pulsed Electromagnetic Fields on Marrow Adiposity in Postmenopausal Women With Osteopenia. J Comput Assist Tomogr 2018; 42:792-797. [PMID: 29901507 DOI: 10.1097/rct.0000000000000757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Pulsed electromagnetic fields (PEMFs) could promote osteogenic differentiation and suppress adipogenic differentiation in bone mesenchymal stem cells ex vivo. However, data on the effect of PEMF on marrow adiposity in humans remain elusive. We aimed to determine the in vivo effect of PEMF on marrow adiposity in postmenopausal women using magnetic resonance spectroscopy. METHODS Sixty-one postmenopausal women with osteopenia, aged 53 to 85 years, were randomly assigned to receive either PEMF treatment or placebo. The session was performed 3 times per week for 6 months. All women received adequate dietary calcium and vitamin D. Bone mineral density (BMD) by dual-energy x-ray absorptiometry, vertebral marrow fat content by magnetic resonance spectroscopy, and serum biomarkers were evaluated before and after 6 months of treatment. RESULTS A total of 27 (87.1%) and 25 (83.3%) women completed the treatment schedule in the PEMF and placebo groups, respectively. After the 6-month treatment, lumbar spine and hip BMD increased by 1.46% to 2.04%, serum bone-specific alkaline phosphatase increased by 3.23%, and C-terminal telopeptides of type 1 collagen decreased by 9.12% in the PEMF group (P < 0.05), whereas the mean percentage changes in BMD and serum biomarkers were not significant in the placebo group. Pulsed electromagnetic field treatment significantly reduced marrow fat fraction by 4.81%. The treatment difference between the 2 groups was -4.43% (95% confidence interval, -3.70% to -5.65%; P = 0.009). CONCLUSIONS Pulsed electromagnetic field is an effective physiotherapy in postmenopausal women, and this effect may, at least in part, regulate the amount of fat within the bone marrow. Magnetic resonance spectroscopy may serve as a complementary imaging biomarker for monitoring response to therapy in osteoporosis.
Collapse
|
12
|
Association between insulin resistance and the magnetic resonance spectroscopy-determined marrow fat fraction in nondiabetic postmenopausal women. Menopause 2018; 25:676-682. [DOI: 10.1097/gme.0000000000001063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Longitudinal assessment of marrow fat content using three-point Dixon technique in osteoporotic rabbits. Menopause 2018; 23:1339-1344. [PMID: 27529463 DOI: 10.1097/gme.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In this longitudinal pilot study, we aimed to investigate the intra-, interobserver, and scan-rescan reproducibility of marrow fat fraction (FF) measurements using three-point Dixon imaging in osteoporotic rabbits: comparison with histopathology. METHODS Twenty female rabbits were randomly assigned to sham-operation and ovariectomy in combination with daily methylprednisolone hemisuccinate groups (n = 10 per group). Marrow FF by three-point Dixon technique and bone density by dual-energy x-ray absorptiometry were assessed at baseline, 6 and 12 weeks after operation. Intra-, inter-reader, and scan-rescan reliability of FF measurements were evaluated using intraclass correlation coefficient (ICC) and Bland-Altman 95% limit of agreement. Histomorphometry was performed to quantify marrow adipocyte parameters. RESULTS Intra- and inter-reader reproducibility of FF measurements was "substantial" (ICC = 0.984 and 0.978, respectively). Although the ICC for scan-rescan reliability was excellent (ICC = 0.962), increased measurement variability was observed using Bland-Altman plot. Relative to the sham-operated rabbits, the adipocytes mean diameter, density, and percent adipocytes area in the osteoporotic rabbits increased by 23.4%, 68.9%, and 117.0%, respectively. Marrow FF was positively correlated with the quantitative parameters of adipocytes, particularly with percent adipocyte area, but inversely associated with bone density. At the relatively early stage, the percentage of bone loss was similar to that of elevated fatty marrow in the osteoporotic rabbits; at the later stage, the change for the latter outweighed that of the former. CONCLUSIONS Results of three-point Dixon technique demonstrated a very reproducible manner within and between observers and acceptable scan-rescan performance in the assessment of marrow fat in rabbits.
Collapse
|
14
|
Duan L, Xiong X, Hu J, Liu Y, Li J, Wang J. Panax notoginseng Saponins for Treating Coronary Artery Disease: A Functional and Mechanistic Overview. Front Pharmacol 2017; 8:702. [PMID: 29089889 PMCID: PMC5651167 DOI: 10.3389/fphar.2017.00702] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
Coronary artery disease (CAD) is a major public health problem and the chief cause of morbidity and mortality worldwide. Panax notoginseng, a valuable herb in traditional Chinese medicine (TCM) with obvious efficacy and favorable safety, shows a great promise as a novel option for CAD and is increasingly recognized clinically. Firstly, this review introduced recent clinical trials on treatment with PNS either alone or in combination with conventional drugs as novel treatment strategies. Then we discussed the mechanisms of P. notoginseng and Panax notoginseng saponins (PNS), which can regulate signaling pathways associated with inflammation, lipid metabolism, the coagulation system, apoptosis, angiogenesis, atherosclerosis, and myocardial ischaemia.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
- Graduate School, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
15
|
Proton Magnetic Resonance Spectroscopy-Detected Changes of Marrow Fat Content in a Rabbit Model of Osteoporosis Treated With Epigallocatechin-3-Gallate. J Comput Assist Tomogr 2016; 41:231-235. [PMID: 27824667 DOI: 10.1097/rct.0000000000000517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to longitudinally evaluate the changes in marrow fat content of ovariectomized (OVX) rabbits treated with epigallocatechin-3-gallate (EGCG) using proton magnetic resonance spectroscopy (H-MRS). METHODS Thirty-six female New Zealand rabbits were equally divided into sham operation, OVX controls, and OVX treated with EGCG (intraperitoneally, 1.8 mg/kg) for 5 months. Marrow fat fraction by H-MRS and bone density by peripheral quantitative computed tomography were determined at 0, 3, and 5 months. Serum biomarkers and marrow adipocytes were determined at the end of experiment. RESULTS Estrogen deficiency increased marrow fat content in a time-dependent manner, with a variation of marrow fat fraction (FF) (+25.3%) at month 3 from baseline, and it was maintained until month 5 (+66.6%, all P < 0.001). In comparison with the sham-operated controls, adipocytes density, size, and percentage of adipocytes area in the OVX controls increased by 62.9%, 44.4%, and 178%, respectively (all P < 0.05). These OVX-induced pathological changes were partly reversed by EGCG treatment. In addition, EGCG treatment reduced bone turnover and increased bone density of OVX rabbits. CONCLUSIONS Epigallocatechin-3-gallate exhibits an anabolic effect on osteoporotic bone by concomitantly rescuing bone mass and mitigating marrow adiposity. H-MRS appears to be a useful tool for monitoring osteoporosis-related treatments.
Collapse
|
16
|
E LL, Xu WH, Feng L, Liu Y, Cai DQ, Wen N, Zheng WJ. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int J Mol Med 2016; 37:1475-86. [PMID: 27082697 PMCID: PMC4866970 DOI: 10.3892/ijmm.2016.2559] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3‑month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham‑operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERβ in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17β-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERβ. When the constructs were implanted into the backs of SCID mice for 12 weeks, the results of histological analysis indicated that the constructs derived from the OVX group rats had a few newly formed bones and osteoids; however, a great number of newly formed bones and osteoids were present in the ones from the sham-operated group and the OVX + E2 group rats. Our findings further indicate that estrogen deficiency impairs the osteogenic differentiation potential of PDLSCs, and that ER plays an important role in the bone regeneration ability of PDLSCs. Estrogen enhances the bone regeneration potential of PDLSCs derived from osteoporotic rats and seeded on nHAC/PLA. This study may provide insight into the clinical management of periodontal bone tissue repair in postmenopausal women with the use of estrogen-mediated PDLSCs seeded on nHAC/PLA.
Collapse
Affiliation(s)
- Ling-Ling E
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wen-Huan Xu
- Scientific Research Department, Medical Administrative Division, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Feng
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yi Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Dong-Qing Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ning Wen
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wen-Jie Zheng
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|