1
|
Yang S, Zhang J, Xu L, Guan Y, Fang C, Zheng S, Yang H, Liu H, Zhang Y. The endogenous hydrogen gas (H 2) drives women's health: a comment on "Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas". Front Endocrinol (Lausanne) 2025; 15:1504814. [PMID: 39974512 PMCID: PMC11835702 DOI: 10.3389/fendo.2024.1504814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025] Open
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Luyao Xu
- Department of Gynecology, The Second Clinical School of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yajie Guan
- Department of Spleen, Stomach, and Liver and Gallbladder Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Müller E, Schoberwalter T, Mader K, Seitz JM, Kopp A, Baranowsky A, Keller J. The Biological Effects of Magnesium-Based Implants on the Skeleton and Their Clinical Implications in Orthopedic Trauma Surgery. Biomater Res 2024; 28:0122. [PMID: 39717475 PMCID: PMC11665827 DOI: 10.34133/bmr.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Magnesium (Mg)-based implants have evolved as a promising innovation in orthopedic trauma surgery, with the potential to revolutionize the treatment of bone diseases, including osteoporotic fractures and bone defects. Available clinical studies mostly show excellent patient outcomes of resorbable Mg-based implants, without the need for subsequent implant removal. However, the occurrence of radiolucent zones around Mg-based implants seems to be a noticeable drawback for a more widespread clinical use. Mechanistically, both in vivo and in vitro studies demonstrated beneficial effects on the formation of new bone, a unique characteristic of Mg-based implants. In this regard, Mg has been shown to exert pleiotropic functions on osteogenic differentiation and migration of osteoblasts and their precursors. Additionally, collective evidence suggests that Mg-based implants promote angiogenesis in newly formed bone and exert immunomodulatory effects in the bone microenvironment. Likewise, Mg-based implants and their degradation products were shown to inhibit bone resorption by impairing osteoclastogenesis. The purpose of this review is to provide a state-of-the-art summary of the clinical and basic science evidence regarding the performance of currently used Mg-based implants. In addition to the status of in vivo and in vitro research and clinical applications, future challenges and perspectives of Mg-based orthopedic implants are discussed.
Collapse
Affiliation(s)
- Elena Müller
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Till Schoberwalter
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Konrad Mader
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Alexander Kopp
- Medical Magnesium GmbH, 52068 Aachen, Germany
- Meotec GmbH, 52068 Aachen, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery,
University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
3
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Exploring cytokines dynamics: Uncovering therapeutic concepts for metabolic disorders in postmenopausal women- diabetes, metabolic bone diseases, and non-alcohol fatty liver disease. Ageing Res Rev 2024; 101:102505. [PMID: 39307315 DOI: 10.1016/j.arr.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Menopause is an age-related change that persists for around one-third of a woman's life. Menopause increases the risk of metabolic illnesses such as diabetes, osteoporosis (OP), and nonalcoholic fatty liver disease (NAFLD). Immune mediators (pro-inflammatory cytokines), such as interleukin-1 (IL-1), IL-6, IL-17, transforming growth factor (TGF), and tumor necrosis factor (TNF), exacerbate the challenges of a woman undergoing menopause by causing inflammation and contributing to the development of these metabolic diseases in postmenopausal women. Furthermore, studies have shown that anti-inflammatory cytokines such as interleukin-1 receptor antagonists (IL-1Ra), IL-2, and IL-10 have a double-edged effect on diabetes and OP. Likewise, several interferon (IFN) members are double-edged swords in the OP. Therefore, addressing these immune mediators precisely may be an approach to improving the health of postmenopausal women. Hence, considering the significant changes in these cytokines, the present review focuses on the latest findings concerning the molecular mechanisms by which pro- and anti-inflammatory cytokines (interleukins) impact postmenopausal women with diabetes, OP, and NAFLD. Furthermore, we comprehensively discuss the therapeutic approaches that identify cytokines as therapeutic targets, such as hormonal therapy, physical activities, natural inhibitors (drugs), and others. Finally, this review aims to provide valuable insights into the role of cytokines in postmenopausal women's diabetes, OP, and NAFLD. Deeply investigating the mechanisms and therapeutic interventions involved will address the characteristics of immune mediators (cytokines) and improve the management of these illnesses, thereby enhancing the general quality of life and health of the corresponding populations of women.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, Brandi ML. Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol. Int J Mol Sci 2022; 23:ijms23042103. [PMID: 35216216 PMCID: PMC8879671 DOI: 10.3390/ijms23042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases.
Collapse
Affiliation(s)
- Vladana Domazetovic
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Teresa Vincenzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
6
|
Li R, Qu Y, Li X, Tao Y, Yang Q, Wang J, Diao Y, Li Q, Fang Y, Huang Y, Wang L. Molecular Hydrogen Attenuated N-methyl-N-Nitrosourea Induced Corneal Endothelial Injury by Upregulating Anti-Apoptotic Pathway. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34196654 PMCID: PMC8267183 DOI: 10.1167/iovs.62.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previous work by our group has demonstrated the value of N-methyl-N-nitrosourea (MNU)-induced corneal endothelial decompensation in animal models. The aim of this study was to investigate the effect of molecular hydrogen (H2) on MNU-induced corneal endothelial cell (CEC) injury and the underlying mechanism. Methods MNU-induced animal models of CEC injury were washed with hydrogen-rich saline (HRS) for 14 days. Immunofluorescence staining, immunohistochemical staining, and corneal endothelial assessment were applied to determine architectural and cellular changes on the corneal endothelium following HRS treatment. MNU-induced cell models of CEC injury were co-cultured with H2. The effect of H2 was examined using morphological and functional assays. Results It was shown that MNU could inhibit the proliferation and specific physiological functions of CECs by increasing apoptosis and decreasing the expression of ZO-1 and Na+/K+-ATPase, whereas H2 improved the proliferation and physiological function of CECs by anti-apoptosis. Cell experiments further confirmed that H2 could reverse MNU damage to CECs by decreasing oxidative stress injury, interfering with the NF-κB/NLRP3 pathway and the FOXO3a/p53/p21 pathway. Conclusions This study suggests that topical application of H2 could protect CECs against corneal damage factors through anti-apoptotic effect, reduce the incidence and severity of corneal endothelial decompensation, and maintain corneal transparency.
Collapse
Affiliation(s)
- Runpu Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Radyuk SN. Mechanisms Underlying the Biological Effects of Molecular Hydrogen. Curr Pharm Des 2021; 27:626-735. [PMID: 33308112 DOI: 10.2174/1381612826666201211112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Aberrant redox-sensitive reactions and accumulation of oxidative damage can impair body functions and contribute to the development of various pathologies and aging. Although antioxidant substances have long been recognized as a measure of alleviating oxidative stress and restoring redox balance, the arsenal of effective means of preventing the development of various disorders, is still limited. There is an emerging field that utilizes molecular hydrogen (H2) as a scavenger of free radicals and reactive oxygen species (ROS). Among the remarkable characteristics of H2 is its ability to counteract the harmful effects of hydroxyl radical and peroxynitrite without affecting the activity of functionally important ROS, such as hydrogen peroxide and nitric oxide. The beneficial effects of H2 have been documented in numerous clinical studies and studies on animal models and cell cultures. However, the established scavenging activity of H2 can only partially explain its beneficial effects because the effects are achieved at very low concentrations of H2. Given the rate of H2 diffusion, such low concentrations may not be sufficient to scavenge continuously generated ROS. H2 can also act as a signaling molecule and induce defense responses. However, the exact targets and mechanism(s) by which H2 exerts these effects are unknown. Here, we analyzed both positive and negative effects of the endogenous H2, identified the redox-sensitive components of the pathways affected by molecular hydrogen, and also discussed the potential role of molecular hydrogen in regulating cellular redox.
Collapse
Affiliation(s)
- Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas, United States
| |
Collapse
|
8
|
Ohta S. Direct Targets and Subsequent Pathways for Molecular Hydrogen to Exert Multiple Functions: Focusing on Interventions in Radical Reactions. Curr Pharm Des 2021; 27:595-609. [PMID: 32767925 DOI: 10.2174/1381612826666200806101137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
Molecular hydrogen (H2) was long regarded as non-functional in mammalian cells. We overturned the concept by demonstrating that H2 exhibits antioxidant effects and protects cells against oxidative stress. Subsequently, it has been revealed that H2 has multiple functions in addition to antioxidant effects, including antiinflammatory, anti-allergic functions, and as cell death and autophagy regulation. Additionally, H2 stimulates energy metabolism. As H2 does not readily react with most biomolecules without a catalyst, it is essential to identify the primary targets with which H2 reacts or interacts directly. As a first event, H2 may react directly with strong oxidants, such as hydroxyl radicals (•OH) in vivo. This review addresses the key issues related to this in vivo reaction. •OH may have a physiological role because it triggers a free radical chain reaction and may be involved in the regulation of Ca2+- or mitochondrial ATP-dependent K+-channeling. In the subsequent pathway, H2 suppressed a free radical chain reaction, leading to decreases in lipid peroxide and its end products. Derived from the peroxides, 4-hydroxy-2-nonenal functions as a mediator that up-regulates multiple functional PGC-1α. As the other direct target in vitro and in vivo, H2 intervenes in the free radical chain reaction to modify oxidized phospholipids, which may act as an antagonist of Ca2+-channels. The resulting suppression of Ca2+-signaling inactivates multiple functional NFAT and CREB transcription factors, which may explain H2 multi-functionality. This review also addresses the involvement of NFAT in the beneficial role of H2 in COVID-19, Alzheimer's disease and advanced cancer. We discuss some unsolved issues of H2 action on lipopolysaccharide signaling, MAPK and NF-κB pathways and the Nrf2 paradox. Finally, as a novel idea for the direct targeting of H2, this review introduces the possibility that H2 causes structural changes in proteins via hydrate water changes.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
9
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Li M, Hao L, Li L, Liu L, Chen G, Jiang W, Xu W, Zhu C, Yao G, Fang S. Cinnamtannin B-1 Prevents Ovariectomy-Induced Osteoporosis via Attenuating Osteoclastogenesis and ROS Generation. Front Pharmacol 2020; 11:1023. [PMID: 32754032 PMCID: PMC7365944 DOI: 10.3389/fphar.2020.01023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is one of the common bone metabolic diseases that endangers postmenopausal women and the elders. Both excessive bone resorption caused by osteoclast over-activation and increased oxidative stress are associated with osteoporosis. Cinnamtannin B-1 (CB-1) is considered as a high-valued plant extract monomer due to its antioxidant properties. However, the mechanism of CB-1 impacts on reducing oxidative stress, inhibiting the production of reactive oxygen species (ROS) and osteoclast differentiation and preventing ovariectomy-induced osteoporosis are still unclear. In this study, the effects of CB-1 on nuclear factor κB (RANKL)-induced osteoclasts formation and differentiation in vitro and the potential therapeutic effect on ovariectomy (OVX)-induced osteoporosis in vivo are investigated. CB-1 was found to inhibit osteoclast formation and bone resorption function in a dose-dependent manner, and it inhibited specific genes related to osteoclast as well. Micro-CT and histopathological staining showed that CB-1 can effectively prevent OVX-induced osteoporosis. In addition, CB-1 treatment can effectively inhibit the production of reactive oxygen species (ROS) in vivo and in vitro. Mechanistically, CB-1 inhibits the activation of osteoclasts by inhibiting the activation of the NF-κB signaling pathway. In conclusion, CB-1 would be able to be used as a promising new drug strategy to inhibit RANKL-induced osteoclastogenesis and prevent ovariectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Hao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Li
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Liu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guang Chen
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Jiang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gang Yao
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyuan Fang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|