1
|
Jeong C, Lee CH, Seo J, Park JHY, Lee KW. Catechin and flavonoid glycosides from the Ulmus genus: Exploring their nutritional pharmacology and therapeutic potential in osteoporosis and inflammatory conditions. Fitoterapia 2024; 178:106188. [PMID: 39153558 DOI: 10.1016/j.fitote.2024.106188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This review investigates the therapeutic effects of Ulmus species extracts, traditionally used as tea ingredients in East Asia, on bone health and inflammatory conditions. Through the analysis of 9757 studies, narrowing down to 56 pertinent ones, we evaluated the safety and efficacy of Ulmus extracts. The focus was on catechin glycosides (CG) and flavonoid glycosides (FG), key compounds identified for their potential benefits. The research highlights the extracts' role in enhancing bone mineral density (BMD) by stimulating osteoblast activity and suppressing osteoclast differentiation, suggesting a protective effect against osteoporosis. Furthermore, the extracts demonstrated significant anti-inflammatory properties by modulating inflammatory markers and pathways. The findings confirm the historical use of Ulmus extracts in East Asia for health benefits and recommend further exploration into functional foods and nutraceuticals. The review calls for more rigorous research, including clinical trials, to establish optimal use and integration into modern health solutions. It underscores the potential of Ulmus extracts in promoting bone health and managing inflammation, advocating for a bridge between traditional practices and contemporary scientific validation. In conclusion, Ulmus extracts, a material long consumed as tea ingredients in East Asia, exhibit significant potential for improving bone health and reducing inflammation. This review calls for additional research to explore their full therapeutic capabilities, emphasizing the need for optimized extraction methods and clinical trials. It reinforces the importance of bridging traditional knowledge with contemporary scientific approaches to health and dietary solutions, promoting overall wellness.
Collapse
Affiliation(s)
- Chanhyeok Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Jiwon Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024; 16:1414-1437. [PMID: 39012676 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea
| | - Roshani Rajvansh
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea
| |
Collapse
|
3
|
Deng TT, Ding WY, Lu XX, Zhang QH, Du JX, Wang LJ, Yang MN, Yin Y, Liu FJ. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front Pharmacol 2024; 15:1338951. [PMID: 38333006 PMCID: PMC10851760 DOI: 10.3389/fphar.2024.1338951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/β-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.
Collapse
Affiliation(s)
- Ting-Ting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Yu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xi-Xue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Hao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jin-Xin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li-Juan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mei-Na Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan-Jie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Xiong Y, Huang CW, Shi C, Peng L, Cheng YT, Hong W, Liao J. Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp Biol Med (Maywood) 2023; 248:2363-2380. [PMID: 38240215 PMCID: PMC10903250 DOI: 10.1177/15353702231211977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 01/23/2024] Open
Abstract
With the aging population and the popularity of implant prostheses, an increasing number of postmenopausal osteoporosis (PMOP) patients require implant restorations; however, poor bone condition affects the long-term stability of implant prostheses. This study aimed to investigate the therapeutic effect of quercetin (QR) compared with alendronate (ALN), the primary treatment for PMOP, on mandibular osteoporosis (OP) induced by ovariectomy (OVX) in female rats. Adult female rats were treated with QR (50 mg/kg/day), ALN (6.25 mg/kg/week) by gavage for 8 weeks, chloroquine (CQ, 10 mg/kg/twice a week), and cytokine release inhibitory drug 3 (MCC950, 10 mg/kg/three times a week) by intraperitoneal injection for 8 weeks after bilateral OVX. Blood samples were collected prior to euthanasia; the mandibles were harvested and subjected to micro-computed tomography (micro-CT) and pathological analysis. QR administration controlled weight gain and significantly improved the bone microstructure in OVX rats, increasing bone mass, and bone mineral density (BMD), reducing bone trabecular spacing, and decreasing osteoclast numbers. Western blotting, real-time quantitative PCR (RT-qPCR), and serum markers confirmed that QR inhibited interleukin- 1β (IL-1β) and interleukin-18 (IL-18) on the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) pathway thereby inhibiting osteoclast differentiation, immunofluorescence and western blotting also confirmed that QR inhibited autophagy in OVX rats and suppressed the number of tartrate-resistant acid phosphatase (TRAP)-stained positive osteoclasts. The findings suggest that QR may protect the bone structure and prevent bone loss in osteoporotic rats by inhibiting the NLRP3 pathway and autophagy in osteoclasts with comparable effects to ALN, thus QR may have the potential to be a promising alternative supplement for the preventive and therapeutic treatment of PMOP.
Collapse
Affiliation(s)
- Yue Xiong
- Department of Prosthodontics and Implantology, School/Hospital of Stomatology, Guizhou Medical University, Guiyang 550004, P.R. China
| | | | - Chao Shi
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Liang Peng
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Ting Cheng
- Department of Prosthodontics and Implantology, School/Hospital of Stomatology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wei Hong
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Jian Liao
- Department of Prosthodontics and Implantology, School/Hospital of Stomatology, Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
5
|
Jeong C, Cho YJ, Lee Y, Wang W, Park KH, Roh E, Lee CH, Son YJ, Park JHY, Kang H, Lee KW. Discovery and optimized extraction of the anti-osteoclastic agent epicatechin-7-O-β-D-apiofuranoside from Ulmus macrocarpa Hance bark. Sci Rep 2023; 13:11102. [PMID: 37423923 PMCID: PMC10330169 DOI: 10.1038/s41598-023-38208-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
Ulmus macrocarpa Hance bark (UmHb) has been used as a traditional herbal medicine in East Asia for bone concern diseases for a long time. To find a suitable solvent, we, in this study, compared the efficacy of UmHb water extract and ethanol extract which can inhibit osteoclast differentiation. Compared with two ethanol extracts (70% and 100% respectively), hydrothermal extracts of UmHb more effectively inhibited receptor activators of nuclear factor κB ligand-induced osteoclast differentiation in murine bone marrow-derived macrophages. We identified for the first time that (2R,3R)-epicatechin-7-O-β-D-apiofuranoside (E7A) is a specific active compound in UmHb hydrothermal extracts through using LC/MS, HPLC, and NMR techniques. In addition, we confirmed through TRAP assay, pit assay, and PCR assay that E7A is a key compound in inhibiting osteoclast differentiation. The optimized condition to obtain E7A-rich UmHb extract was 100 mL/g, 90 °C, pH 5, and 97 min. At this condition, the content of E7A was 26.05 ± 0.96 mg/g extract. Based on TRAP assay, pit assay, PCR, and western blot, the optimized extract of E7A-rich UmHb demonstrated a greater inhibition of osteoclast differentiation compared to unoptimized. These results suggest that E7A would be a good candidate for the prevention and treatment of osteoporosis-related diseases.
Collapse
Affiliation(s)
- Chanhyeok Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Yeon-Jin Cho
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Korea
| | - Yongjin Lee
- Department of Pharmacy, Sunchon National University, 315 Maegok-dong, Suncheon, Jeollanam-do, 57922, Korea
| | - Weihong Wang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul, 08826, Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Korea
| | - Kyu-Hyung Park
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul, 08826, Korea
| | - Eun Roh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul, 08826, Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, 315 Maegok-dong, Suncheon, Jeollanam-do, 57922, Korea
| | | | - Heonjoong Kang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Korea
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80, Seoul, 08826, Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul, 08826, Korea
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, NS-80, Seoul, 08826, Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Korea.
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea.
- Department of Agricultural Biotechnology and Center for Food and Bio convergence, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
6
|
Diosmetin inhibits subchondral bone loss and indirectly protects cartilage in a surgically-induced osteoarthritis mouse model. Chem Biol Interact 2023; 370:110311. [PMID: 36563736 DOI: 10.1016/j.cbi.2022.110311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/26/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by articular cartilage destruction, subchondral bone remodeling, ectopic osteophyte formation and synovitis. It is now recognized that the integrity of the underlying subchondral bone is crucial for the maintenance of the overlying articular cartilage. Therapeutic agents that can prevent subchondral bone loss are demonstrate potential in the prevention and treatment of OA. Diosmetin (DIOS; 3',5,7 -trihydroxy-4'-methoxy flavone), a natural flavonoid, has been shown to exert anti-oxidative, anti-inflammatory, anti-apoptotic and anticancer properties. In this study, we found that diosmetin suppressed the DMM-induced subchondral bone loss and reduced subsequent cartilage degradation in vivo. Cellular-based assays showed that diosmetin inhibited RANKL-induced osteoclast formation and bone resorption,but did not affect IL-1β-induced chondrocyte hypertrophy. Biochemical analyses demonstrated that the anti-osteoclastic effect of diosmetin was at least in part due to the suppression of RANKL-induced activation of the ERK, p38, and JNK MAPK signaling pathways. Collectively, our results show that diosmetin have potential as a therapeutic agent the treatment of abnormal subchondral bone loss and cartilage degradation associated with the onset of OA.
Collapse
|
7
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
8
|
Shen P, Lin W, Deng X, Ba X, Han L, Chen Z, Qin K, Huang Y, Tu S. Potential Implications of Quercetin in Autoimmune Diseases. Front Immunol 2021; 12:689044. [PMID: 34248976 PMCID: PMC8260830 DOI: 10.3389/fimmu.2021.689044] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases are a worldwide health problem with growing rates of morbidity, and are characterized by breakdown and dysregulation of the immune system. Although their etiology and pathogenesis remain unclear, the application of dietary supplements is gradually increasing in patients with autoimmune diseases, mainly due to their positive effects, relatively safety, and low cost. Quercetin is a natural flavonoid that is widely present in fruits, herbs, and vegetables. It has been shown to have a wide range of beneficial effects and biological activities, including anti-inflammation, anti-oxidation, and neuroprotection. In several recent studies quercetin has reportedly attenuated rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and systemic lupus erythematosus in humans or animal models. This review summarizes the evidence for the pharmacological application of quercetin for autoimmune diseases, which supports the view that quercetin may be useful for their prevention and treatment.
Collapse
Affiliation(s)
- Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Oral Administration of Quercetin or Its Derivatives Inhibit Bone Loss in Animal Model of Osteoporosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6080597. [PMID: 33194005 PMCID: PMC7641676 DOI: 10.1155/2020/6080597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
Objectives. Quercetin (Q) and its derivatives are the major members of the naturally occurring flavonoid family, which possess beneficial effects on disease prevention including osteoporosis. The present study is aimed at further investigating the efficacy of the Q and its derivatives on bone pathology, bone-related parameters under imageology, bone maximum load, and serum bone metabolism indexes in animal model of osteoporosis. Potential mechanisms of Q and its derivatives in the treatment of osteoporosis as well as the existing problems regarding the modeling method and limitations of researches in this area were also summarized. Eight databases were searched from their inception dates to February 2020. Nineteen eligible studies containing 21 comparisons were identified ultimately. The risk of bias and data on outcome measures were analyzed by the CAMARADES 10-item checklist and Rev-Man 5.3 software separately. The results displayed the number of criteria met varied from 3/10 to 7/10 with an average of 5.05. The present study provided the preliminary preclinical evidence that oral administration of Q or its derivatives was capable of improving bone pathology, bone-related parameters under imageology and bone maximum load, increasing serum osteocalcin, alkaline phosphatase, and estradiol, and reducing serum c-terminal cross-linked telopeptide of type I collagen (P < 0.05). No statistical difference was seen in survival rate, index of liver, or kidney function (P > 0.05). Q and its derivatives partially reverse osteopenia probably via antioxidant, anti-inflammatory, promoting osteogenesis, inhibiting osteoclasts, and its estrogen-like effect. The findings reveal the possibility of developing Q or its derivatives as a drug or an ingredient in diet for clinical treatment of osteoporosis.
Collapse
|
10
|
Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int J Mol Sci 2020; 21:ijms21176448. [PMID: 32899435 PMCID: PMC7503351 DOI: 10.3390/ijms21176448] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
Collapse
|
11
|
Proanthocyanidin-rich grape seed extract improves bone loss, bone healing, and implant osseointegration in ovariectomized animals. Sci Rep 2020; 10:8812. [PMID: 32483182 PMCID: PMC7264202 DOI: 10.1038/s41598-020-65403-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 01/21/2023] Open
Abstract
The purpose of the present study was to confirm if proanthocyanidin-rich grape seed extract (GSE) had the ability to improve bone health such as bone loss, bone healing, and implant osseointegration (defined as the direct connection between bone tissue and an implant) in ovariectomized (OVX) animals. We demonstrated that daily oral administration of GSE prevented bone loss in the lumbar vertebrae and femur in OVX mice. In addition, osteoclastogenesis in the lumbar spine bone of OVX mice, as assessed by histological and histomorphometric analyses, was accelerated but GSE prevented this dynamization, suggesting that GSE could counteract OVX-induced accelerated osteoclastogenic activity. In rats, OVX clearly impaired the healing of defects created on the calvaria, and GSE overcame this OVX-impaired healing. In the same way, osseointegration of a tibial implant in rats was retarded by OVX, and GSE counteracted the OVX-induced poor osseointegration, likely promoting bone healing by preventing imbalanced bone turnover. These results suggest that orally administered GSE improved implant osseointegration by mitigating the impaired bone health induced by OVX as a model of estrogen deficiency.
Collapse
|
12
|
Gu ZY, Feng CY, Li SS, Yin DD, Wu Q, Zhang L, Wang LS. Identification of flavonoids and chlorogenic acids in elm fruits from the genus Ulmus and their antioxidant activity. J Sep Sci 2019; 42:2888-2899. [PMID: 31282097 DOI: 10.1002/jssc.201900302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/29/2019] [Indexed: 11/06/2022]
Abstract
Elm fruits were once an important food source in the years of famine. Research on the functional compounds in elm fruits was almost unavailable. In this study, we established an efficient high-performance liquid chromatography method for the simultaneous separation of eight chlorogenic acids and 28 flavonoids in elm fruits for the first time. Total flavonoid contents ranged from 286 mg/100 g (Ulmus laciniata) to 1228 mg/100 g (U. pumila). High concentrations of rutin, quercetin 3-O-glucoside, and kaempferol derivatives were present in U. laevis, U. castaneifolia, and U. pumila, respectively. Furthermore, the fruit extracts of U. americana, U. castaneifolia, U. davidiana, and U. pumila showed higher antioxidant activity. These results suggest that fruits of these species can be used as bioresources for the extraction of the corresponding functional compounds. This work provides informative data and can be an important reference for future research on elm fruits as a renewed food resource.
Collapse
Affiliation(s)
- Zhao-Yu Gu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Cheng-Yong Feng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shan-Shan Li
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan-Dan Yin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, P. R. China
| | - Qian Wu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ling Zhang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.,College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Liang-Sheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
13
|
Gupta P, Singh A, Tiwari S, Mishra A, Maurya R, Singh S. Ulmosides A: Flavonoid 6-C-glycosides from Ulmus wallichiana attenuates lipopolysacchride induced oxidative stress, apoptosis and neuronal death. Neurotoxicology 2019; 73:100-111. [PMID: 30857974 DOI: 10.1016/j.neuro.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 01/04/2023]
Abstract
Extract of Ulmus wallichiana is being used as traditional medicine used for the treatment of fractured bones however the effect of its individual flavonols is not known. The present study was conducted to investigate the effect of its novel flavonol, (2S, 3S)-(+)-30, 40, 5, 7-tetrahydroxydihydroflavonol-6-C-b-d-glucopyranoside named as Ulmoside A (UA), on lipopolysaccharides (LPS) treated neurons. LPS treatment to neuronal cells caused significant cytotoxicity, reactive oxygen species generation, depletion in glutathione and mitochondrial impairment which were significantly inhibited with UA treatment. LPS treatment also caused significant translocation of cytochrome-c, decreased level of Bcl2, increased level of Bax and cleaved caspase-3 in neuronal cells reflecting the involvement of intrinsic apoptotic pathway in neuronal death which was attenuated with UA treatment. Since LPS is a well known pro-inflammatory agent it also offered the significant increase in proinflammatory cytokines (tumor necrosis factors-α & interleukin 1-beta) however, UA treatment did not exhibit significant inhibition against LPS induced inflammatory response. LPS also caused the augmented level of inducible nitric oxide synthase (iNOS) which was also not inhibited with co treatment of UA. We have also observed the significant DNA fragmentation and augmented level of cleaved Poly (ADP-Ribose) polymerase 1 after LPS treatment which was significantly reverted with UA treatment. Findings suggested that UA acts through mitochondria and exhibited its anti-oxidative and anti-apoptotic activities in neuronal cells while no significant anti-inflammatory activity and effect on iNOS were observed.
Collapse
Affiliation(s)
- Parul Gupta
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific & Innovative Research (AcSIR), India
| | - Abhishek Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific & Innovative Research (AcSIR), India
| | - Shubhangini Tiwari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Rakesh Maurya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific & Innovative Research (AcSIR), India.
| |
Collapse
|
14
|
Tsuchiya S, Sugimoto K, Kamio H, Okabe K, Kuroda K, Okido M, Hibi H. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro. Int J Nanomedicine 2018; 13:1665-1676. [PMID: 29593412 PMCID: PMC5865554 DOI: 10.2147/ijn.s150786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Surface modification of titanium dioxide (TiO2) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO2 implants. Methods There were four experimental groups. Alkali-treated TiO2 samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO2 implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO2 samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO2 implants placed on rat femur bones were analyzed for bone-implant contact by histological methods. Results Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants. Conclusion TiO2 implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.
Collapse
Affiliation(s)
- Shuhei Tsuchiya
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Keisuke Sugimoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisanobu Kamio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuto Okabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Kensuke Kuroda
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Masazumi Okido
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
16
|
Shukla A, Dasgupta N, Ranjan S, Singh S, Chidambram R. Nanotechnology towards prevention of anaemia and osteoporosis: from concept to market. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1335615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ayushi Shukla
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, India
| | - Satnam Singh
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| | - Ramalingam Chidambram
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of BioSciences and Technology, VIT University, Vellore, India
| |
Collapse
|
17
|
Kalam A, Talegaonkar S, Vohora D. Effects of raloxifene against letrozole-induced bone loss in chemically-induced model of menopause in mice. Mol Cell Endocrinol 2017; 440:34-43. [PMID: 27832985 DOI: 10.1016/j.mce.2016.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/10/2016] [Accepted: 11/05/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The deleterious effects of letrozole, an aromatase inhibitor, used in the adjuvant treatment of breast cancer in postmenopausal women, on bone are well-documented and represent a major drawback to its clinical use. Raloxifene, a selective estrogen receptor modulator and a clinically approved anti-osteoporotic drug, has been recently demonstrated to be efficacious in women with breast cancer. The present study evaluated the effects of preventive and curative treatment with raloxifene on letrozole-induced alterations of bone microarchitecture and turnover markers in a chemically-induced menopause model in mice. METHOD Swiss strain albino female mice were made menopausal by inducing ovotoxicity using vinyl cyclohexene di epoxide (VCD, 160 mg/kg for 15 days followed by 30 days drug-free period) confirmed by ovarian histology and serum estradiol levels. Effects on femoral and lumbar bones were evaluated by micro CT determination of bone volume, trabecular number, separation, thickness, connective density and trabecular pattern factor and bone turnover markers including ALP, TRAP5b, hydroxyproline and RANKL. In addition to these, markers of Wnt signaling (sclerostin and dickkopf-1) were also evaluated. To rule out the involvement of pharmacokinetic interaction, plasma levels of letrozole and raloxifene were measured following drugs alone and in combination. RESULTS Though bone loss was observed in VCD treated mice (as indicated by micro CT measurements), it was further enhanced with letrozole administration (1 mg/kg) for one month particularly in epiphysis of femoral bones. Raloxifene (15 mg/kg), whether administered concurrently or post-letrozole was able to revert the structural alterations and changes in turnover markers caused by letrozole to varying degrees (p < 0.01 or p < 0.001). Further, estrogen deficiency following letrozole treatment in ovotoxic mice was associated with significant increase in sclerostin and dickkopf-1 in both lumbar and femur bones (p < 0.001) which was attenuated with preventive and curative treatment with raloxifene (p < 0.05). The plasma levels of letrozole remained unaffected by raloxifene administration and vice versa. CONCLUSIONS Our study indicates the potential of raloxifene in preventing and attenuating letrozole-induced bone loss. Further, these effects were found to be independent of a pharmacokinetic interaction between the two drugs.
Collapse
Affiliation(s)
- Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
18
|
Messer JG, La S, Hopkins RG, Kipp DE. Quercetin Partially Preserves Development of Osteoblast Phenotype in Fetal Rat Calvaria Cells in an Oxidative Stress Environment. J Cell Physiol 2016; 231:2779-88. [DOI: 10.1002/jcp.25392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/25/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan G. Messer
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina
| | - Stephanie La
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina
| | - Robin G. Hopkins
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina
| | - Deborah E. Kipp
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina
| |
Collapse
|
19
|
Law YY, Chiu HF, Lee HH, Shen YC, Venkatakrishnan K, Wang CK. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct 2016; 7:902-12. [DOI: 10.1039/c5fo01251a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoporosis is a chronic inflammatory condition that is characterized by the loss of bone mineral density (BMD).
Collapse
Affiliation(s)
- Yat-Yin Law
- Department of Orthopedics
- Chung Shan Medical University Hospital
- Institute of Medicine
- Chung Shan Medical University
- Taichung City
| | - Hui-Fang Chiu
- Department of Chinese Medicine
- Taichung Hospital Ministry of Health and Well-being
- Taichung
- Republic of China
| | - Hui-Hsin Lee
- School of Nutrition
- Chung Shan Medical University
- Taichung City
- Republic of China
| | - You-Cheng Shen
- School of Health Diet and Industry Management
- Chung Shan Medical University
- Taichung City
- Republic of China
| | | | - Chin-Kun Wang
- School of Nutrition
- Chung Shan Medical University
- Taichung City
- Republic of China
| |
Collapse
|
20
|
Ahmad N, Banala VT, Kushwaha P, Karvande A, Sharma S, Tripathi AK, Verma A, Trivedi R, Mishra PR. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Adv 2016. [DOI: 10.1039/c6ra17141a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A formulation of quercetin-based solid lipid nanoparticles (QSLNs) was developed to increase the bioavailability of quercetin, with an aim to evaluate its effects on bone health in comparison to free quercetin (Q).
Collapse
Affiliation(s)
- Naseer Ahmad
- Division of Endocrinology
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Venkatesh Teja Banala
- Division of Pharmaceutics
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Priyanka Kushwaha
- Division of Endocrinology
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Anirudha Karvande
- Division of Endocrinology
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Shweta Sharma
- Division of Pharmaceutics
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Ashish Kumar Tripathi
- Division of Endocrinology
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Ashwni Verma
- Division of Pharmaceutics
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Ritu Trivedi
- Division of Endocrinology
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics
- Central Drug Research Institute (Council of Scientific and Industrial Research)
- Lucknow 226031
- India
| |
Collapse
|
21
|
Messer JG, Hopkins RG, Kipp DE. Quercetin Metabolites Up-Regulate the Antioxidant Response in Osteoblasts Isolated From Fetal Rat Calvaria. J Cell Biochem 2015; 116:1857-66. [DOI: 10.1002/jcb.25141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Jonathan G. Messer
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina 27412
| | - Robin G. Hopkins
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina 27412
| | - Deborah E. Kipp
- Department of Nutrition; University of North Carolina at Greensboro; Greensboro North Carolina 27412
| |
Collapse
|
22
|
Hohman EE, Weaver CM. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats. J Nutr 2015; 145:253-9. [PMID: 25644345 DOI: 10.3945/jn.114.198598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. OBJECTIVE The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. METHODS Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. RESULTS Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. CONCLUSION This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality.
Collapse
Affiliation(s)
- Emily E Hohman
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
23
|
Singh AK, Joharapurkar AA, Khan MP, Mishra JS, Singh N, Yadav M, Hossain Z, Khan K, Kumar S, Dhanesha NA, Mishra DP, Maurya R, Sharma S, Jain MR, Trivedi AK, Godbole MM, Gayen JR, Chattopadhyay N, Sanyal S. Orally active osteoanabolic agent GTDF binds to adiponectin receptors, with a preference for AdipoR1, induces adiponectin-associated signaling, and improves metabolic health in a rodent model of diabetes. Diabetes 2014; 63:3530-44. [PMID: 24848063 DOI: 10.2337/db13-1619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adiponectin is an adipocytokine that signals through plasma membrane-bound adiponectin receptors 1 and 2 (AdipoR1 and -2). Plasma adiponectin depletion is associated with type 2 diabetes, obesity, and cardiovascular diseases. Adiponectin therapy, however, is yet unavailable owing to its large size, complex multimerization, and functional differences of the multimers. We report discovery and characterization of 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF) as an orally active adiponectin mimetic. GTDF interacted with both AdipoRs, with a preference for AdipoR1. It induced adiponectin-associated signaling and enhanced glucose uptake and fatty acid oxidation in vitro, which were augmented or abolished by AdipoR1 overexpression or silencing, respectively. GTDF improved metabolic health, characterized by elevated glucose clearance, β-cell survival, reduced steatohepatitis, browning of white adipose tissue, and improved lipid profile in an AdipoR1-expressing but not an AdipoR1-depleted strain of diabetic mice. The discovery of GTDF as an adiponectin mimetic provides a promising therapeutic tool for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | | | - Mohd Parvez Khan
- Division of Endocrinology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Jay Sharan Mishra
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Nidhi Singh
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Manisha Yadav
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Zakir Hossain
- Division of Phramacokinetics, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Kainat Khan
- Division of Endocrinology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | | | | | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Sharad Sharma
- Division of Toxicology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | | | - Arun Kumar Trivedi
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Madan Madhav Godbole
- Department of Molecular Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | | | - Sabyasachi Sanyal
- Biochemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
24
|
Rai RK, Barbhuyan T, Singh C, Mittal M, Khan MP, Sinha N, Chattopadhyay N. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One 2013; 8:e83478. [PMID: 24386209 PMCID: PMC3875436 DOI: 10.1371/journal.pone.0083478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022] Open
Abstract
Bone is the living composite biomaterial having unique structural property. Presently, there is a considerable gap in our understanding of bone structure and composition in the native state, particularly with respect to the trabecular bone, which is metabolically more active than cortical bones, and is readily lost in post-menopausal osteoporosis. We used solid-state nuclear magnetic resonance (NMR) to compare trabecular bone structure and composition in the native state between normal, bone loss and bone restoration conditions in rat. Trabecular osteopenia was induced by lactation as well as prolonged estrogen deficiency (bilateral ovariectomy, Ovx). Ovx rats with established osteopenia were administered with PTH (parathyroid hormone, trabecular restoration group), and restoration was allowed to become comparable to sham Ovx (control) group using bone mineral density (BMD) and µCT determinants. We used a technique combining (1)H NMR spectroscopy with (31)P and (13)C to measure various NMR parameters described below. Our results revealed that trabecular bones had diminished total water content, inorganic phosphorus NMR relaxation time (T1) and space between the collagen and inorganic phosphorus in the osteopenic groups compared to control, and these changes were significantly reversed in the bone restoration group. Remarkably, bound water was decreased in both osteopenic and bone restoration groups compared to control. Total water and T1 correlated strongly with trabecular bone density, volume, thickness, connectivity, spacing and resistance to compression. Bound water did not correlate with any of the microarchitectural and compression parameters. We conclude that total water, T1 and atomic space between the crystal and organic surface are altered in the trabecular bones of osteopenic rats, and PTH reverses these parameters. Furthermore, from these data, it appears that total water and T1 could serve as trabecular surrogates of micro-architecture and compression strength.
Collapse
Affiliation(s)
- Ratan Kumar Rai
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Tarun Barbhuyan
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Chandan Singh
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Monika Mittal
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Mohd. Parvez Khan
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
25
|
|
26
|
Khan K, Sharan K, Swarnkar G, Chakravarti B, Mittal M, Barbhuyan TK, China SP, Khan MP, Nagar GK, Yadav D, Dixit P, Maurya R, Chattopadhyay N. Positive skeletal effects of cladrin, a naturally occurring dimethoxydaidzein, in osteopenic rats that were maintained after treatment discontinuation. Osteoporos Int 2013; 24:1455-70. [PMID: 22932734 DOI: 10.1007/s00198-012-2121-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
UNLABELLED Effects of cladrin treatment and withdrawal in osteopenic rats were studied. Cladrin improved trabecular microarchitecture, increased lumbar vertebral compressive strength, augmented coupled remodeling, and increased bone osteogenic genes. A significant skeletal gain was maintained 4 weeks after cladrin withdrawal. Findings suggest that cladrin has significant positive skeletal effects. INTRODUCTION We showed that a standardized extract of Butea monosperma preserved trabecular bone mass in ovariectomized (OVx) rats. Cladrin, the most abundant bioactive compound of the extract, promoted peak bone mass achievement in growing rats by stimulating osteoblast function. Here, we studied the effects of cladrin treatment and withdrawal on the osteopenic bones. METHODS Adult female Sprague-Dawley rats were OVx and left untreated for 12 weeks to allow for significant estrogen deficiency-induced bone loss, at which point cladrin (1 and 10 mg/kg/day) was administered orally for another 12 weeks. Half of the rats were killed at the end of the treatments and the other half at 4 weeks after treatment withdrawal. Sham-operated rats and OVx rats treated with PTH or 17β-estradiol (E2) served as various controls. Efficacy was evaluated by bone microarchitecture using microcomputed tomographic analysis and fluorescent labeling of bone. qPCR and western blotting measured mRNA and protein levels in bone and uterus. Specific ELISA was used for measuring levels of serum PINP and urinary CTx. RESULTS In osteopenic rats, cladrin treatment dose dependently improved trabecular microarchitecture, increased lumbar vertebral compression strength, bone formation rate (BFR), cortical thickness (Cs.Th), serum PINP levels, and expression of osteogenic genes in bones; and reduced expression of bone osteoclastogenic genes and urinary CTx levels. Cladrin had no uterine estrogenicity. Cladrin at 10 mg/kg maintained acquired skeletal gains 4 weeks after withdrawal. CONCLUSION Cladrin had positive skeletal effects in osteopenic rats that were maintained after treatment withdrawal.
Collapse
Affiliation(s)
- K Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil, P.O. Box 173, Lucknow, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, Rahman K, Zhang QY, Qin LP. Potential antiosteoporotic agents from plants: a comprehensive review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:364604. [PMID: 23365596 PMCID: PMC3551255 DOI: 10.1155/2012/364604] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease.
Collapse
Affiliation(s)
- Min Jia
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Nie
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Da-Peng Cao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun-Yun Xue
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie-Si Wang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu Zhao
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
28
|
Swarnkar G, Sharan K, Siddiqui JA, Mishra JS, Khan K, Khan MP, Gupta V, Rawat P, Maurya R, Dwivedi AK, Sanyal S, Chattopadhyay N. A naturally occurring naringenin derivative exerts potent bone anabolic effects by mimicking oestrogen action on osteoblasts. Br J Pharmacol 2012; 165:1526-42. [PMID: 21864313 DOI: 10.1111/j.1476-5381.2011.01637.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Naringenin and its derivatives have been assessed in bone health for their oestrogen-'like' effects but low bioavailability impedes clinical potential. This study was aimed at finding a potent form of naringenin with osteogenic action. EXPERIMENTAL APPROACH Osteoblast cultures were harvested from mouse calvaria to study differentiation by naringenin, isosakuranetin, poncirin, phloretin and naringenin-6-C-glucoside (NCG). Balb/cByJ ovariectomized (OVx) mice without or with osteopenia were given naringenin, NCG, 17β-oestradiol (E2) or parathyroid hormone (PTH). Efficacy was evaluated by bone microarchitecture using microcomputed tomography and determination of new bone formation by fluorescent labelling of bone. Plasma levels of NCG and naringenin were determined by HPLC. KEY RESULTS NCG stimulated osteoblast differentiation more potently than naringenin, while isosakuranetin, poncirin or phloretin had no effect. NCG had better oral bioavailability than naringenin. NCG increased the mRNA levels of oestrogen receptors (ERs) and bone morphogenetic protein (an ER responsive gene) in vivo, more than naringenin. In OVx mice, NCG treatment in a preventive protocol increased bone formation rate (BFR) and improved trabecular microarchitecture more than naringenin or E2. In osteopenic mice, NCG but not naringenin, in a therapeutic protocol, increased BFR and improved trabecular microarchitecture, comparable with effects of PTH treatment. Stimulatory effects of NCG on osteoblasts were abolished by an ER antagonist. NCG transactivated ERβ but not ERα. NCG exhibited no uterine oestrogenicity unlike naringenin. CONCLUSIONS AND IMPLICATIONS NCG is a potent derivative of naringenin that has bone anabolic action through the activation of osteoblast ERs and exhibited substantial oral bioavailability.
Collapse
Affiliation(s)
- Gaurav Swarnkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil, Lucknow, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
In vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: a study in ovariectomized rat model. Eur J Pharm Biopharm 2012; 82:508-17. [PMID: 22926146 DOI: 10.1016/j.ejpb.2012.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 02/06/2023]
Abstract
A prototype formulation based on layer-by-layer (LbL) nano-matrix was developed to increase bioavailability of kaempferol with improved retention in bone marrow to achieve enhanced bone formation. The layer-by-layer nano-matrix was prepared by sequential adsorption of biocompatible polyelectrolytes over the preformed kaempferol-loaded CaCO(3) template. The system was pharmaceutically characterized and evaluated for osteogenic activity in ovariectomized (OVx) rats. Data have been compared to the standard osteogenic agent parathyroid hormone (PTH). Single oral dose of kaempferol loaded LbL nano-matrix formulation increased bioavailability significantly compared to unformulated kaempferol. Three months of Formulated kaempferol administration to osteopenic rats increased plasma and bone marrow Kaempferol levels by 2.8- and 1.75-fold, respectively, compared to free Kaempferol. Formulated Kaempferol increased bone marrow osteoprogenitor cells, osteogenic genes in femur, bone formation rate, and improved trabecular micro-architecture. Withdrawal of Formulated kaempferol-in OVx rats resulted in the maintenance of bone micro-architecture up to 30days, whereas micro-architectural deterioration was readily observed in OVx rats treated with unformulated kaempferol-within 15days of withdrawal. The developed novel formulation has enhanced anabolic effect in osteopenic rats through increased stimulatory effect in osteoblasts. Treatment post-withdrawal sustenance of formulated kaempferol could become a strategy to enhance bioavailability of flavanoids.
Collapse
|
30
|
Siddiqui JA, Swarnkar G, Sharan K, Chakravarti B, Gautam AK, Rawat P, Kumar M, Gupta V, Manickavasagam L, Dwivedi AK, Maurya R, Chattopadhyay N. A naturally occurring rare analog of quercetin promotes peak bone mass achievement and exerts anabolic effect on osteoporotic bone. Osteoporos Int 2011; 22:3013-27. [PMID: 21225417 DOI: 10.1007/s00198-010-1519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/06/2010] [Indexed: 12/01/2022]
Abstract
UNLABELLED The effect of quercetin C-glucoside (QCG) on osteoblast function in vitro and bone formation in vivo was investigated. QCG supplementation promoted peak bone mass achievement in growing rats and new bone formation in osteopenic rats. QCG has substantial oral bioavailability. Findings suggest a significant bone anabolic effect of QCG. INTRODUCTION Recently, we showed that extracts of Ulmus wallichiana promoted peak bone mass achievement in growing rats and preserved trabecular bone mass and cortical bone strength in ovariectomized (OVx) rats. 3,3',4',5,7-Pentahydroxyflavone-6-C-β-D-glucopyranoside, a QCG, is the most abundant bioactive compound of U. wallichiana extract. We hypothesize that QCG exerts bone anabolic effects by stimulating osteoblast function. METHODS Osteoblast cultures were harvested from rat calvaria and bone marrow (BM) to study differentiation and mineralization. In vivo, growing female Sprague Dawley rats and OVx rats with osteopenia were administered QCG (5.0 or 10.0 mg kg(-1) day(-1)) orally for 12 weeks. Efficacy was evaluated by examining changes in bone microarchitecture using histomorphometric and microcomputed tomographic analyses and by determination of new bone formation by fluorescent labeling of bone. Plasma and BM levels of QCG were determined by high-performance liquid chromatography. RESULTS QCG was much more potent than quercetin (Q) in stimulating osteoblast differentiation, and the effect of QCG was not mediated by estrogen receptors. In growing rats, QCG increased BM osteoprogenitors, bone mineral density, bone formation rate, and cortical deposition. In osteopenic rats, QCG treatment increased bone formation rate and improved trabecular microarchitecture. Comparison with the sham group (ovary intact) revealed significant restoration of trabecular bone in osteopenic rats treated with QCG. QCG levels in the BM were ~50% of that of the plasma levels. CONCLUSION QCG stimulated modeling-directed bone accrual and exerted anabolic effects on osteopenic rats by direct stimulatory effect on osteoprogenitors likely due to substantial QCG delivery at tissue level following oral administration.
Collapse
Affiliation(s)
- J A Siddiqui
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, P.O. Box 173, Lucknow, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sharan K, Mishra JS, Swarnkar G, Siddiqui JA, Khan K, Kumari R, Rawat P, Maurya R, Sanyal S, Chattopadhyay N. A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 2011; 26:2096-111. [PMID: 21638315 DOI: 10.1002/jbmr.434] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We recently reported that extracts made from the stem bark of Ulmus wallichiana promoted peak bone mass achievement in growing rats and preserved trabecular bone mass and cortical bone strength in ovariectomized (OVX) rats. Further, 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-3',4',5,7-tetrahydroxyflavanol (GTDF), a novel flavonol-C-glucoside isolated from the extracts, had a nonestrogenic bone-sparing effect on OVX rats. Here we studied the effects of GTDF on osteoblast function and its mode of action and in vivo osteogenic effect. GTDF stimulated osteoblast proliferation, survival, and differentiation but had no effect on osteoclastic or adipocytic differentiation. In cultured osteoblasts, GTDF transactivated the aryl hydrocarbon receptor (AhR). Activation of AhR mediated the stimulatory effect of GTDF on osteoblast proliferation and differentiation. Furthermore, GTDF stimulated cAMP production, which mediated osteogenic gene expression. GTDF treatments given to 1- to 2-day-old rats or adult rats increased the mRNA levels of AhR target genes in calvaria or bone marrow stromal cells. In growing female rats, GTDF promoted parameters of peak bone accrual in the appendicular skeleton, including increased longitudinal growth, bone mineral density, bone-formation rate (BFR), cortical deposition, and bone strength. GTDF promoted the process of providing newly generated bone to fill drill holes in the femurs of both estrogen-sufficient and -deficient rats. In osteopenic OVX rats, GTDF increased BFR and significantly restored trabecular bone compared with the ovaries-intact group. Together our data suggest that GTDF stimulates osteoblast growth and differentiation via the AhR and promotes modeling-directed bone accrual, accelerates bone healing after injury, and exerts anabolic effects on osteopenic rats likely by a direct stimulatory effect on osteoprogenitors. Based on these preclinical data, clinical evaluation of GTDF as a potential bone anabolic agent is warranted.
Collapse
Affiliation(s)
- Kunal Sharan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dixit P, Khan MP, Swarnkar G, Chattopadhyay N, Maurya R. Osteogenic constituents from Pterospermum acerifolium Willd. flowers. Bioorg Med Chem Lett 2011; 21:4617-21. [DOI: 10.1016/j.bmcl.2011.05.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/28/2022]
|
33
|
Swarnkar G, Sharan K, Siddiqui JA, Chakravarti B, Rawat P, Kumar M, Arya KR, Maurya R, Chattopadhyay N. A novel flavonoid isolated from the steam-bark of Ulmus Wallichiana Planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation. Eur J Pharmacol 2011; 658:65-73. [DOI: 10.1016/j.ejphar.2011.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|