1
|
Chakraborty S, Dutta A, Roy A, Joshi A, Basak T. The theatrics of collagens in the myocardium: the supreme architect of the fibrotic heart. Am J Physiol Cell Physiol 2025; 328:C1893-C1920. [PMID: 40257077 DOI: 10.1152/ajpcell.01043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Heart failure (HF) mediated by cardiac fibrosis (CF) is characterized by an excessive accumulation of collagen-based extracellular matrix (ECM) in the myocardium. CF is a common pathophysiological condition in many heart diseases and can be distinctly categorized into two types: replacement and interstitial. In ischemic heart diseases, sudden loss of cardiomyocytes leads to the replacement of CF to prevent ventricular rupture. In contrast, excessive collagen deposition in the interstitial space between cardiomyocytes (often in response to pressure overload, chronic cardiac stress, hypertension, etc.) is termed interstitial CF. The progression of HF due to cardiac fibrosis is mainly driven by compromised diastolic function, resulting from increased stiffness of the heart wall muscle due to collagen-based scar formation. Increased myocardial stiffness is primarily catalyzed by the differential cross linking of deposited collagens forming the scar in the fibrotic heart. Although collagen deposition remained a hallmark of fibrosis, the pathophysiological progression due to biochemical alterations and mechanistic discrepancy of collagens across cardiac fibrosis subtypes remains elusive. With the advent of next-generation RNA sequencing and high-resolution mass spectrometry, mechanistic insights into collagen-mediated scar maturation have gained impetus. A deeper understanding of the spatiocellular transcriptional heterogeneity and site-specific collagen posttranslational modifications (PTMs) in maneuvering ECM remodeling is gaining attention. The unexplored mechanisms of posttranslational modifications and subsequent collagen cross linking in various cardiac fibrosis may provide the prime target for therapeutic interventions. This review comprehensively summarizes the detailed pattern, role, signaling, and mechanical contributions of different collagens and their PTMs, including cross-linking patterns as newer therapeutic regimens during cardiac fibrosis.
Collapse
Affiliation(s)
- Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Antara Roy
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Ashutosh Joshi
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
2
|
Dewars ER, Landstrom AP. The Genetic Basis of Sudden Cardiac Death: From Diagnosis to Emerging Genetic Therapies. Annu Rev Med 2025; 76:283-299. [PMID: 39499917 PMCID: PMC11929482 DOI: 10.1146/annurev-med-042423-042903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sudden cardiac death (SCD) is an abrupt, tragic manifestation of a number of cardiovascular diseases, primarily ion channelopathies and heritable cardiomyopathies. Because these diseases are heritable, genetics play a key role in the diagnosis and management of SCD-predisposing diseases. Historically, genetics have been used to confirm a diagnosis and identify at-risk family members, but a deeper understanding of the genetic causes of SCD could pave the way for individualized therapy, early risk detection, and a transformative shift toward genetically informed therapies. This review focuses on the evolving genetic landscape of SCD-predisposing diseases, the current state of gene therapy and therapeutic development, and the promise of using predictive genetics to identify individuals at risk of SCD.
Collapse
Affiliation(s)
- Enya R Dewars
- Developmental and Stem Cell Biology Program and Cell and Molecular Biology Program, Duke University School of Medicine, Durham, North Carolina, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Andrew P Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
3
|
Mukhopadhyay S, Dixit P, Khanom N, Sanghera G, McGurk KA. The Genetic Factors Influencing Cardiomyopathies and Heart Failure across the Allele Frequency Spectrum. J Cardiovasc Transl Res 2024; 17:1119-1139. [PMID: 38771459 PMCID: PMC11519107 DOI: 10.1007/s12265-024-10520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) remains a major cause of mortality and morbidity worldwide. Understanding the genetic basis of HF allows for the development of disease-modifying therapies, more appropriate risk stratification, and personalised management of patients. The advent of next-generation sequencing has enabled genome-wide association studies; moving beyond rare variants identified in a Mendelian fashion and detecting common DNA variants associated with disease. We summarise the latest GWAS and rare variant data on mixed and refined HF aetiologies, and cardiomyopathies. We describe the recent understanding of the functional impact of titin variants and highlight FHOD3 as a novel cardiomyopathy-associated gene. We describe future directions of research in this field and how genetic data can be leveraged to improve the care of patients with HF.
Collapse
Affiliation(s)
- Srinjay Mukhopadhyay
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
- School of Medicine, Cardiff University, Wales, UK
| | - Prithvi Dixit
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Najiyah Khanom
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Gianluca Sanghera
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK
| | - Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, LMS Building, Hammersmith Campus, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
4
|
Dubey PK, Dubey S, Singh S, Bhat PD, Pogwizd S, Krishnamurthy P. Identification and development of Tetra-ARMS PCR-based screening test for a genetic variant of OLA1 (Tyr254Cys) in the human failing heart. PLoS One 2024; 19:e0293105. [PMID: 38889130 PMCID: PMC11185490 DOI: 10.1371/journal.pone.0293105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Obg-like ATPase 1 (OLA1) protein has GTP and ATP hydrolyzing activities and is important for cellular growth and survival. The human OLA1 gene maps to chromosome 2 (locus 2q31.1), near Titin (TTN), which is associated with familial dilated cardiomyopathy (DCM). In this study, we found that expression of OLA1 was significantly downregulated in failing human heart tissue (HF) compared to non-failing hearts (NF). Using the Sanger sequencing method, we characterized the human OLA1 gene and screened for mutations in the OLA1 gene in patients with failing and non-failing hearts. Among failing and non-failing heart patients, we found 15 different mutations in the OLA1 gene, including two transversions, one substitution, one deletion, and eleven transitions. All mutations were intronic except for a non-synonymous 5144A>G, resulting in 254Tyr>Cys in exon 8 of the OLA1 gene. Furthermore, haplotype analysis of these mutations revealed that these single nucleotide polymorphisms (SNPs) are linked to each other, resulting in disease-specific haplotypes. Additionally, to screen the 254Tyr>Cys point mutation, we developed a cost-effective, rapid genetic screening PCR test that can differentiate between homozygous (AA and GG) and heterozygous (A/G) genotypes. Our results demonstrate that this PCR test can effectively screen for OLA1 mutation-associated cardiomyopathy in human patients using easily accessible cells or tissues, such as blood cells. These findings have important implications for the diagnosis and treatment of cardiomyopathy.
Collapse
Affiliation(s)
- Praveen K. Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarojini Singh
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Purnima Devaki Bhat
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
5
|
Mėlinytė-Ankudavičė K, Šukys M, Kasputytė G, Krikštolaitis R, Ereminienė E, Galnaitienė G, Mizarienė V, Šakalytė G, Krilavičius T, Jurkevičius R. Association of uncertain significance genetic variants with myocardial mechanics and morphometrics in patients with nonischemic dilated cardiomyopathy. BMC Cardiovasc Disord 2024; 24:224. [PMID: 38664609 PMCID: PMC11044472 DOI: 10.1186/s12872-024-03888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Careful interpretation of the relation between phenotype changes of the heart and gene variants detected in dilated cardiomyopathy (DCM) is important for patient care and monitoring. OBJECTIVE We sought to assess the association between cardiac-related genes and whole-heart myocardial mechanics or morphometrics in nonischemic dilated cardiomyopathy (NIDCM). METHODS It was a prospective study consisting of patients with NIDCM. All patients were referred for genetic testing and a genetic analysis was performed using Illumina NextSeq 550 and a commercial gene capture panel of 233 genes (Systems Genomics, Cardiac-GeneSGKit®). It was analyzed whether there are significant differences in clinical, two-dimensional (2D) echocardiographic, and magnetic resonance imaging (MRI) parameters between patients with the genes variants and those without. 2D echocardiography and MRI were used to analyze myocardial mechanics and morphometrics. RESULTS The study group consisted of 95 patients with NIDCM and the average age was 49.7 ± 10.5. All echocardiographic and MRI parameters of myocardial mechanics (left ventricular ejection fraction 28.4 ± 8.7 and 30.7 ± 11.2, respectively) were reduced and all values of cardiac chambers were increased (left ventricular end-diastolic diameter 64.5 ± 5.9 mm and 69.5 ± 10.7 mm, respectively) in this group. It was noticed that most cases of whole-heart myocardial mechanics and morphometrics differences between patients with and without gene variants were in the genes GATAD1, LOX, RASA1, KRAS, and KRIT1. These genes have not been previously linked to DCM. It has emerged that KRAS and KRIT1 genes were associated with worse whole-heart mechanics and enlargement of all heart chambers. GATAD1, LOX, and RASA1 genes variants showed an association with better cardiac function and morphometrics parameters. It might be that these variants alone do not influence disease development enough to be selective in human evolution. CONCLUSIONS Combined variants in previously unreported genes related to DCM might play a significant role in affecting clinical, morphometrics, or myocardial mechanics parameters.
Collapse
Affiliation(s)
- Karolina Mėlinytė-Ankudavičė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania.
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania.
| | - Marius Šukys
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | - Gabrielė Kasputytė
- Faculty of Informatics, Vytautas Magnus University, Kaunas, LT-44248, Lithuania
| | | | - Eglė Ereminienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Grytė Galnaitienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
| | - Vaida Mizarienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
| | - Gintarė Šakalytė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Tomas Krilavičius
- Faculty of Informatics, Vytautas Magnus University, Kaunas, LT-44248, Lithuania
| | - Renaldas Jurkevičius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
| |
Collapse
|
6
|
Huang H, Verma J, Mok V, Bharadwaj HR, Alrawashdeh MM, Aratikatla A, Sudan S, Talukder S, Habaka M, Tse G, Bardhan M. Exploring Health Care Disparities in Genetic Testing and Research for Hereditary Cardiomyopathy: Current State and Future Perspectives. Glob Med Genet 2024; 11:36-47. [PMID: 38304308 PMCID: PMC10834107 DOI: 10.1055/s-0044-1779469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background Hereditary cardiomyopathies are commonly occurring myocardial conditions affecting heart structure and function with a genetic or familial association, but the etiology is often unknown. Cardiomyopathies are linked to significant mortality, requiring robust risk stratification with genetic testing and early diagnosis. Hypothesis We hypothesized that health care disparities exist in genetic testing for hereditary cardiomyopathies within clinical practice and research studies. Methods In a narrative fashion, we conducted a literature search with online databases such as PubMed/MEDLINE, Google Scholar, EMBASE, and Science Direct on papers related to hereditary cardiomyopathies. A comprehensive analysis of findings from articles in English on disparities in diagnostics and treatment was grouped into four categories. Results Racial and ethnic disparities in research study enrollment and health care delivery favor White populations and higher socioeconomic status, resulting in differences in the development and implementation of effective genetic screening. Such disparities have shown to be detrimental, as minorities often suffer from disease progression to heart failure and sudden cardiac death. Barriers related to clinical genetic testing included insurance-related issues and health illiteracy. The underrepresentation of minority populations extends to research methodologies, as testing in ethnic minorities resulted in a significantly lower detection rate and diagnostic yield, as well as a higher likelihood of misclassification of variants. Conclusions Prioritizing minority-based participatory research programs and screening protocols can address systemic disparities. Diversifying research studies can improve risk stratification strategies and impact clinical practice.
Collapse
Affiliation(s)
- Helen Huang
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Jay Verma
- Department of Medicine, Maulana Azad Medical College, University of Delhi, Delhi, India
| | - Valerie Mok
- Department of Medicine Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hareesha R. Bharadwaj
- Division of Medical Education, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Maen M. Alrawashdeh
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Adarsh Aratikatla
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Sourav Sudan
- Department of Medicine, Government Medical College, Jammu, Jammu and Kashmir, India
| | - Suprateeka Talukder
- Department of Medicine, Norfolk and Norwich University Hospital, Colney Lane, Norwich, United Kingdom
| | - Minatoullah Habaka
- Department of Medicine, School of Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Medicine, Kent and Medway Medical School, Canterbury, Kent, United Kingdom
- Department of Medicine, School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, People's Republic of China
| | - Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, United States
| |
Collapse
|
7
|
Yang H, Gong K, Luo Y, Wang L, Tan Z, Yao Y, Xie L. Case report: A new de novo mutation of the Troponin T2 gene in a Chinese patient with dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1288328. [PMID: 38054088 PMCID: PMC10694197 DOI: 10.3389/fcvm.2023.1288328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiovascular disease characterized by persistent ventricular dilatation and systolic dysfunction. DCM has a variety of causes, including myocarditis; exposure to narcotics, alcohol, or other toxins; and metabolic or endocrine disorders. Genetic factors play a dominant role in 30%-40% of DCM cases. Here, we report a case of DCM with very severe heart failure. Because of the severity of heart failure, the patient underwent heart transplantation. We speculated that the patient's DCM might be due to a mutation; hence, we performed whole-exome sequencing of the patient and their parents, which showed a de novo heterozygous mutation (NM_001001431.2c.769G>A:p.E257K) in TNNT2, which was considered pathogenic according to the ACMG pathogenicity assessment. This finding expands the genetic map of DCM and TNNT2 and will be important for future studies on the genetic and disease relationships between DCM and TNNT2.
Collapse
Affiliation(s)
- Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Lei Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yao Yao
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| |
Collapse
|
8
|
Heliö K, Cicerchia M, Hathaway J, Tommiska J, Huusko J, Saarinen I, Koskinen L, Muona M, Kytölä V, Djupsjöbacka J, Gentile M, Salmenperä P, Alastalo TP, Steinberg C, Heliö T, Paananen J, Myllykangas S, Koskenvuo J. Diagnostic yield of genetic testing in a multinational heterogeneous cohort of 2088 DCM patients. Front Cardiovasc Med 2023; 10:1254272. [PMID: 37795486 PMCID: PMC10546047 DOI: 10.3389/fcvm.2023.1254272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Background Familial dilated cardiomyopathy (DCM) causes heart failure and may lead to heart transplantation. DCM is typically a monogenic disorder with autosomal dominant inheritance. Currently disease-causing variants have been reported in over 60 genes that encode proteins in sarcomeres, nuclear lamina, desmosomes, cytoskeleton, and mitochondria. Over half of the patients undergoing comprehensive genetic testing are left without a molecular diagnosis even when patient selection follows strict DCM criteria. Methods and results This study was a retrospective review of patients referred for genetic testing at Blueprint Genetics due to suspected inherited DCM. Next generation sequencing panels included 23-316 genes associated with cardiomyopathies and other monogenic cardiac diseases. Variants were considered diagnostic if classified as pathogenic (P) or likely pathogenic (LP). Of the 2,088 patients 514 (24.6%) obtained a molecular diagnosis; 534 LP/P variants were observed across 45 genes, 2.7% (14/514) had two diagnostic variants in dominant genes. Nine copy number variants were identified: two multigene and seven intragenic. Diagnostic variants were observed most often in TTN (45.3%), DSP (6.7%), LMNA (6.7%), and MYH7 (5.2%). Clinical characteristics independently associated with molecular diagnosis were: a lower age at diagnosis, family history of DCM, paroxysmal atrial fibrillation, absence of left bundle branch block, and the presence of an implantable cardioverter-defibrillator. Conclusions Panel testing provides good diagnostic yield in patients with clinically suspected DCM. Causative variants were identified in 45 genes. In minority, two diagnostic variants were observed in dominant genes. Our results support the use of genetic panels in clinical settings in DCM patients with suspected genetic etiology.
Collapse
Affiliation(s)
- Krista Heliö
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Julie Hathaway
- Blueprint Genetics, A Quest Diagnostics Company, Seattle, USA
| | | | - Johanna Huusko
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Inka Saarinen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Lotta Koskinen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Mikko Muona
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | - Ville Kytölä
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | | | | | | | | | - Tiina Heliö
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi Paananen
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | - Juha Koskenvuo
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| |
Collapse
|
9
|
Renaux A, Terwagne C, Cochez M, Tiddi I, Nowé A, Lenaerts T. A knowledge graph approach to predict and interpret disease-causing gene interactions. BMC Bioinformatics 2023; 24:324. [PMID: 37644440 PMCID: PMC10463539 DOI: 10.1186/s12859-023-05451-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Understanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results. RESULTS We introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction. CONCLUSION Our method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.
Collapse
Affiliation(s)
- Alexandre Renaux
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chloé Terwagne
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael Cochez
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Discovery Lab, Elsevier, Amsterdam, The Netherlands
| | - Ilaria Tiddi
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ann Nowé
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Migunova E, Rajamani S, Bonanni S, Wang F, Zhou C, Dubrovsky EB. Cardiac RNase Z edited via CRISPR-Cas9 drives heart hypertrophy in Drosophila. PLoS One 2023; 18:e0286214. [PMID: 37228086 PMCID: PMC10212119 DOI: 10.1371/journal.pone.0286214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiomyopathy (CM) is a group of diseases distinguished by morphological and functional abnormalities in the myocardium. It is etiologically heterogeneous and may develop via cell autonomous and/or non-autonomous mechanisms. One of the most severe forms of CM has been linked to the deficiency of the ubiquitously expressed RNase Z endoribonuclease. RNase Z cleaves off the 3'-trailer of both nuclear and mitochondrial primary tRNA (pre-tRNA) transcripts. Cells mutant for RNase Z accumulate unprocessed pre-tRNA molecules. Patients carrying RNase Z variants with reduced enzymatic activity display a plethora of symptoms including muscular hypotonia, microcephaly and severe heart hypertrophy; still, they die primarily due to acute heart decompensation. Determining whether the underlying mechanism of heart malfunction is cell autonomous or not will provide an opportunity to develop novel strategies of more efficient treatments for these patients. In this study, we used CRISPR-TRiM technology to create Drosophila models that carry cardiomyopathy-linked alleles of RNase Z only in the cardiomyocytes. We found that this modification is sufficient for flies to develop heart hypertrophy and systolic dysfunction. These observations support the idea that the RNase Z linked CM is driven by cell autonomous mechanisms.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Saathvika Rajamani
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Stefania Bonanni
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Edward B. Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY, United States of America
| |
Collapse
|
12
|
Miranda AMA, Janbandhu V, Maatz H, Kanemaru K, Cranley J, Teichmann SA, Hübner N, Schneider MD, Harvey RP, Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat Rev Cardiol 2023; 20:289-308. [PMID: 36539452 DOI: 10.1038/s41569-022-00805-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.
Collapse
Affiliation(s)
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Henrike Maatz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kazumasa Kanemaru
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
13
|
Shiraishi C, Matsumoto A, Ichihara K, Yamamoto T, Yokoyama T, Mizoo T, Hatano A, Matsumoto M, Tanaka Y, Matsuura-Suzuki E, Iwasaki S, Matsushima S, Tsutsui H, Nakayama KI. RPL3L-containing ribosomes determine translation elongation dynamics required for cardiac function. Nat Commun 2023; 14:2131. [PMID: 37080962 PMCID: PMC10119107 DOI: 10.1038/s41467-023-37838-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Although several ribosomal protein paralogs are expressed in a tissue-specific manner, how these proteins affect translation and why they are required only in certain tissues have remained unclear. Here we show that RPL3L, a paralog of RPL3 specifically expressed in heart and skeletal muscle, influences translation elongation dynamics. Deficiency of RPL3L-containing ribosomes in RPL3L knockout male mice resulted in impaired cardiac contractility. Ribosome occupancy at mRNA codons was found to be altered in the RPL3L-deficient heart, and the changes were negatively correlated with those observed in myoblasts overexpressing RPL3L. RPL3L-containing ribosomes were less prone to collisions compared with RPL3-containing canonical ribosomes. Although the loss of RPL3L-containing ribosomes altered translation elongation dynamics for the entire transcriptome, its effects were most pronounced for transcripts related to cardiac muscle contraction and dilated cardiomyopathy, with the abundance of the encoded proteins being correspondingly decreased. Our results provide further insight into the mechanisms and physiological relevance of tissue-specific translational regulation.
Collapse
Affiliation(s)
- Chisa Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Kazuya Ichihara
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Eriko Matsuura-Suzuki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
14
|
Integrative network analysis interweaves the missing links in cardiomyopathy diseasome. Sci Rep 2022; 12:19670. [PMID: 36385157 PMCID: PMC9668833 DOI: 10.1038/s41598-022-24246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiomyopathies are progressive disease conditions that give rise to an abnormal heart phenotype and are a leading cause of heart failures in the general population. These are complex diseases that show co-morbidity with other diseases. The molecular interaction network in the localised disease neighbourhood is an important step toward deciphering molecular mechanisms underlying these complex conditions. In this pursuit, we employed network medicine techniques to systematically investigate cardiomyopathy's genetic interplay with other diseases and uncover the molecular players underlying these associations. We predicted a set of candidate genes in cardiomyopathy by exploring the DIAMOnD algorithm on the human interactome. We next revealed how these candidate genes form association across different diseases and highlighted the predominant association with brain, cancer and metabolic diseases. Through integrative systems analysis of molecular pathways, heart-specific mouse knockout data and disease tissue-specific transcriptomic data, we screened and ascertained prominent candidates that show abnormal heart phenotype, including NOS3, MMP2 and SIRT1. Our computational analysis broadens the understanding of the genetic associations of cardiomyopathies with other diseases and holds great potential in cardiomyopathy research.
Collapse
|
15
|
Vadgama N, Ameen M, Sundaram L, Gaddam S, Gifford C, Nasir J, Karakikes I. De novo and inherited variants in coding and regulatory regions in genetic cardiomyopathies. Hum Genomics 2022; 16:55. [PMID: 36357925 PMCID: PMC9647983 DOI: 10.1186/s40246-022-00420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cardiomyopathies are a leading cause of progressive heart failure and sudden cardiac death; however, their genetic aetiology remains poorly understood. We hypothesised that variants in noncoding regulatory regions and oligogenic inheritance mechanisms may help close the diagnostic gap. METHODS We first analysed whole-genome sequencing data of 143 parent-offspring trios from Genomics England 100,000 Genomes Project. We used gene panel testing and a phenotype-based, variant prioritisation framework called Exomiser to identify candidate genes in trios. To assess the contribution of noncoding DNVs to cardiomyopathies, we intersected DNVs with open chromatin sequences from single-cell ATAC-seq data of cardiomyocytes. We also performed a case-control analysis in an exome-negative cohort, including 843 probands and 19,467 controls, to assess the association between noncoding variants in known cardiomyopathy genes and disease. RESULTS In the trio analysis, a definite or probable genetic diagnosis was identified in 21 probands according to the American College of Medical Genetics guidelines. We identified novel DNVs in diagnostic-grade genes (RYR2, TNNT2, PTPN11, MYH7, LZR1, NKX2-5), and five cases harbouring a combination of prioritised variants, suggesting that oligogenic inheritance and genetic modifiers contribute to cardiomyopathies. Phenotype-based ranking of candidate genes identified in noncoding DNV analysis revealed JPH2 as the top candidate. Moreover, a case-control analysis revealed an enrichment of rare noncoding variants in regulatory elements of cardiomyopathy genes (p = .035, OR = 1.43, 95% Cl = 1.095-1.767) versus controls. Of the 25 variants associated with disease (p< 0.5), 23 are novel and nine are predicted to disrupt transcription factor binding motifs. CONCLUSION Our results highlight complex genetic mechanisms in cardiomyopathies and reveal novel genes for future investigations.
Collapse
Affiliation(s)
- Nirmal Vadgama
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA, 943054, USA
- Department of Pediatrics, Division of Cardiology, Stanford School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Mohamed Ameen
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | | | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey Gifford
- Department of Pediatrics, Division of Cardiology, Stanford School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Jamal Nasir
- Division of Life Sciences, University of Northampton, Waterside Campus, University Drive, Northampton, NN1 5PH, UK.
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA, 943054, USA.
| |
Collapse
|
16
|
Yousaf M, Khan WA, Shahzad K, Khan HN, Ali B, Hussain M, Awan FR, Mustafa H, Sheikh FN. Genetic Association of Beta-Myosin Heavy-Chain Gene (MYH7) with Cardiac Dysfunction. Genes (Basel) 2022; 13:genes13091554. [PMID: 36140722 PMCID: PMC9498774 DOI: 10.3390/genes13091554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac dysfunction accelerates the risk of heart failure, and its pathogenesis involves a complex interaction between genetic and environmental factors. Variations in myosin affect contractile abilities of cardiomyocytes and cause structural and functional abnormalities in myocardium. The study aims to find the association of MYH7 rs121913642 (c.1594 T>C) and rs121913645 (c.667G>A) variants with cardiac dysfunction in the Punjabi Pakistani population. Patients with heart failure (n = 232) and healthy controls (n = 205) were enrolled in this study. MYH7 variant genotyping was performed using tetra ARMS-PCR. MYH7 rs121913642 TC genotype was significantly more prevalent in the patient group (p < 0.001). However, MYH7 rs121913645 genotype frequencies were not significantly different between the patient and control groups (p < 0.666). Regression analysis also revealed that the rs121913642 C allele increases the risk of cardiac failure by ~2 [OR:1.98, CI: 1.31−2.98, p < 0.001] in comparison to the T allele. High levels of the cardiac enzymes cardiac troponin I (cTnI) and CK-MB were observed in patients. There was also an increase in total cholesterol, LDL cholesterol, and uric acid in patients compared to the healthy control group (p < 0.001). In conclusion, the MYH7 gene variant rs121913642 is genetically associated with cardiac dysfunction and involved in the pathogenesis of HF.
Collapse
Affiliation(s)
- Memoona Yousaf
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Waqas Ahmed Khan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (W.A.K.); (H.M.); Tel.: +92-321-9331563 (W.A.K.)
| | - Khurrum Shahzad
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
- Institute of Clinical Chemistry, University Hospital Leipzig Institute of Clinical Chemistry Liebigstraße27, D-04103 Leipzig, Germany
| | - Haq Nawaz Khan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Basharat Ali
- Department of Family Medicine, University of Health Sciences, Lahore 42000, Pakistan
| | - Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Hamid Mustafa
- Department of Animal Breeding & Genetics, University of Veterinary and Animal Sciences, Lahore 42000, Pakistan
- Correspondence: (W.A.K.); (H.M.); Tel.: +92-321-9331563 (W.A.K.)
| | | |
Collapse
|
17
|
Coscarella IL, Landim-Vieira M, Pinto JR, Chelko SP. Arrhythmogenic Cardiomyopathy: Exercise Pitfalls, Role of Connexin-43, and Moving beyond Antiarrhythmics. Int J Mol Sci 2022; 23:ijms23158753. [PMID: 35955883 PMCID: PMC9369094 DOI: 10.3390/ijms23158753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmogenic Cardiomyopathy (ACM), a Mendelian disorder that can affect both left and right ventricles, is most often associated with pathogenic desmosomal variants that can lead to fibrofatty replacement of the myocardium, a pathological hallmark of this disease. Current therapies are aimed to prevent the worsening of disease phenotypes and sudden cardiac death (SCD). Despite the use of implantable cardioverter defibrillators (ICDs) there is no present therapy that would mitigate the loss in electrical signal and propagation by these fibrofatty barriers. Recent studies have shown the influence of forced vs. voluntary exercise in a variety of healthy and diseased mice; more specifically, that exercised mice show increased Connexin-43 (Cx43) expression levels. Fascinatingly, increased Cx43 expression ameliorated the abnormal electrical signal conduction in the myocardium of diseased mice. These findings point to a major translational pitfall in current therapeutics for ACM patients, who are advised to completely cease exercising and already demonstrate reduced Cx43 levels at the myocyte intercalated disc. Considering cardiac dysfunction in ACM arises from the loss of cardiomyocytes and electrical signal conduction abnormalities, an increase in Cx43 expression-promoted by low to moderate intensity exercise and/or gene therapy-could very well improve cardiac function in ACM patients.
Collapse
Affiliation(s)
- Isabella Leite Coscarella
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
| | - José Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
| | - Stephen P. Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32303, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21215, USA
- Correspondence: ; Tel.: +1-850-644-2215
| |
Collapse
|
18
|
Sun S, Lu J, Lai C, Feng Z, Sheng X, Liu X, Wang Y, Huang C, Shen Z, Lv Q, Fu G, Shang M. Transcriptome analysis uncovers the autophagy-mediated regulatory patterns of the immune microenvironment in dilated cardiomyopathy. J Cell Mol Med 2022; 26:4101-4112. [PMID: 35752958 PMCID: PMC9279601 DOI: 10.1111/jcmm.17455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between autophagy and immunity has been well studied. However, little is known about the role of autophagy in the immune microenvironment during the progression of dilated cardiomyopathy (DCM). Therefore, this study aims to uncover the effect of autophagy on the immune microenvironment in the context of DCM. By investigating the autophagy gene expression differences between healthy donors and DCM samples, 23 dysregulated autophagy genes were identified. Using a series of bioinformatics methods, 13 DCM‐related autophagy genes were screened and used to construct a risk prediction model, which can well distinguish DCM and healthy samples. Then, the connections between autophagy and immune responses including infiltrated immunocytes, immune reaction gene‐sets and human leukocyte antigen (HLA) genes were systematically evaluated. In addition, two autophagy‐mediated expression patterns in DCM were determined via the unsupervised consensus clustering analysis, and the immune characteristics of different patterns were revealed. In conclusion, our study revealed the strong effect of autophagy on the DCM immune microenvironment and provided new insights to understand the pathogenesis and treatment of DCM.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chaojie Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhaojin Feng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xia Sheng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xianglan Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chengchen Huang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Abstract
Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.
Collapse
Affiliation(s)
- Sarah J Lehman
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
20
|
Bangi EF, Maikawa N, Kaur A, Jain R, Jain R. Pregnancy in women with dilated cardiomyopathy. Future Cardiol 2022; 18:661-667. [PMID: 35549709 DOI: 10.2217/fca-2021-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Only a few studies describe the pathophysiology and outcomes of dilated cardiomyopathy (DCM) in pregnancy, which the authors aim to review here. DCM causes enlargement of the ventricles and reduced systolic function. Fluid overload and raised cardiac output in pregnancy may contribute to cardiac complications that lead to cardiac remodeling and heart failure, a common cause of maternal mortality. The risk of cardiac complications is higher in women with New York Heart Association class III and IV. Fetal and neonatal complications are common with coexisting obstetric risk factors. Hence, prepregnancy counseling and a multi-disciplinary approach are essential. Renin-angiotensin-aldosterone system blockers prevent cardiac remodeling but are teratogenic. Drugs, such as β-blockers to control cardiac remodeling, thiazide diuretics to reduce preload, hydralazine and nitrates to reduce afterload and digoxin to increase inotropy, are safe and should be used to manage DCM in pregnancy.
Collapse
Affiliation(s)
- Eera Fatima Bangi
- Seth Gordhandas Sunderdas Medical College & King Edward Memorial Hospital, Mumbai, India 400012
| | - Nicolle Maikawa
- Saint James School of Medicine, C/o Human Resource Development Services (HRDS) Inc., 1480 Renaissance Drive, Suite 300, Park Ridge, IL 60068, USA
| | - Amandeep Kaur
- American University of Integrative Sciences School of Medicine, Barbados
| | - Rahul Jain
- University of Indiana, Department of Internal Medicine, Division of Cardiology, IN 46202, USA
| | - Rohit Jain
- Penn State Milton S Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
21
|
Rani DS, Vijaya Kumar A, Nallari P, Sampathkumar K, Dhandapany PS, Narasimhan C, Rathinavel A, Thangaraj K. Novel Mutations in β-MYH7 Gene in Indian Patients With Dilated Cardiomyopathy. CJC Open 2022; 4:1-11. [PMID: 35072022 PMCID: PMC8767027 DOI: 10.1016/j.cjco.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Deepa Selvi Rani
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
- Corresponding authors: Drs Deepa Selvi Rani and Kumarasamy Thangaraj, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India. Tel.: +91-40-27192637.
| | - Archana Vijaya Kumar
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Pathology and Immunology, University of Geneva Hospital, Geneva, Switzerland
| | | | - Katakam Sampathkumar
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Andiappan Rathinavel
- Department of Cardio-Thoracic Surgery, Government Rajaji Hospital, Madurai, India
| | - Kumarasamy Thangaraj
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Biotechnology-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Qin J, Zhang J, Lin L, Haji-Ghassemi O, Lin Z, Woycechowsky KJ, Van Petegem F, Zhang Y, Yuchi Z. Structures of PKA-phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy. eLife 2022; 11:75346. [PMID: 35297759 PMCID: PMC8970585 DOI: 10.7554/elife.75346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
Several mutations identified in phospholamban (PLN) have been linked to familial dilated cardiomyopathy (DCM) and heart failure, yet the underlying molecular mechanism remains controversial. PLN interacts with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and regulates calcium uptake, which is modulated by the protein kinase A (PKA)-dependent phosphorylation of PLN during the fight-or-flight response. Here, we present the crystal structures of the catalytic domain of mouse PKA in complex with wild-type and DCM-mutant PLNs. Our structures, combined with the results from other biophysical and biochemical assays, reveal a common disease mechanism: the mutations in PLN reduce its phosphorylation level by changing its conformation and weakening its interactions with PKA. In addition, we demonstrate that another more ubiquitous SERCA-regulatory peptide, called another-regulin (ALN), shares a similar mechanism mediated by PKA in regulating SERCA activity.
Collapse
Affiliation(s)
- Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Jingfeng Zhang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British ColumbiaVancouverCanada
| | - Zhi Lin
- School of Life Sciences, Tianjin UniversityTianjinChina
| | - Kenneth J Woycechowsky
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British ColumbiaVancouverCanada
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina,Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for CancerTianjinChina
| |
Collapse
|
23
|
Wang Y, Han B, Fan Y, Yi Y, Lv J, Wang J, Yang X, Jiang D, Zhao L, Zhang J, Yuan H. Next-Generation Sequencing Reveals Novel Genetic Variants for Dilated Cardiomyopathy in Pediatric Chinese Patients. Pediatr Cardiol 2022; 43:110-120. [PMID: 34350506 DOI: 10.1007/s00246-021-02698-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022]
Abstract
Dilated cardiomyopathy (DCM) is a myocardial disease characterized by bilateral or left ventricular cardiac dilation and systolic dysfunction that can lead to heart failure and sudden cardiac death in children. Many studies have focused on genetic variation in DCM-related genes in adult populations; however, the mutational landscape in pediatric DCM patients remains undetermined, especially in the Chinese population. We applied next-generation sequencing (NGS) technology to genetically analyze 46 pediatric DCM patients to reveal genotype-phenotype correlations. Our results indicated DCM-associated pathogenic mutations in 10 genes related to the structure or function of the sarcomere, desmosome, and cytoskeleton. We also identified 6 pathogenic mutations (5 novel) in the Titin (TTN) gene that resulted in truncated TTN variants in 6 (13%) out of 46 patients. Correlations between TTN mutations and clinical outcomes were assessed. Our data indicate that one-third of pediatric DCM cases are caused by genetic mutations. The role of TTN variants should not be underestimated in pediatric DCM and age-dependent pathogenic penetrance of these mutations should be considered for familial DCM cases. We argue that genetic testing of DCM cases is valuable for predicting disease severity, prognosis, and recurrence risk, and for screening first-degree relatives.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Bo Han
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China.
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Youfei Fan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Yingchun Yi
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Jianli Lv
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Jing Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Xiaofei Yang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Diandong Jiang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Lijian Zhao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Jianjun Zhang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hui Yuan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| |
Collapse
|
24
|
Khan RS, Pahl E, Dellefave‐Castillo L, Rychlik K, Ing A, Yap KL, Brew C, Johnston JR, McNally EM, Webster G. Genotype and Cardiac Outcomes in Pediatric Dilated Cardiomyopathy. J Am Heart Assoc 2021; 11:e022854. [PMID: 34935411 PMCID: PMC9075202 DOI: 10.1161/jaha.121.022854] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Pediatric dilated cardiomyopathy (DCM) is a well‐known clinical entity; however, phenotype–genotype correlations are inadequately described. Our objective was to provide genotype associations with life‐threatening cardiac outcomes in pediatric DCM probands. Methods and Results We performed a retrospective review of children with DCM at a large pediatric referral center (2007–2016), excluding syndromic, chemotherapy‐induced, and congenital heart disease causes. Genetic variants were adjudicated by an expert panel and an independent clinical laboratory. In a cohort of 109 pediatric DCM cases with a mean age at diagnosis of 4.2 years (SD 5.9), life‐threatening cardiac outcomes occurred in 47% (42% heart transplant, 5% death). One or more pathogenic/likely pathogenic variants were present in 40/109 (37%), and 36/44 (82%) of pathogenic/likely pathogenic variants occurred in sarcomeric genes. The frequency of pathogenic/likely pathogenic variants was not different in patients with familial cardiomyopathy (15/33 with family history versus 25/76 with no family history, P=0.21). TTN truncating variants occurred in a higher percentage of children diagnosed as teenagers (26% teenagers versus 6% younger children, P=0.01), but life‐threatening cardiac outcomes occurred in both infants and teenagers with these TTN variants. DCM with left ventricular noncompaction features occurred in 6/6 patients with MYH7 variants between amino acids 1 and 600. Conclusions Sarcomeric variants were common in pediatric DCM. We demonstrated genotype‐specific associations with age of diagnosis and cardiac outcomes. In particular, MYH7 had domain‐specific association with DCM with left ventricular noncompaction features. Family history did not predict pathogenic/likely pathogenic variants, reinforcing that genetic testing should be considered in all children with idiopathic DCM.
Collapse
Affiliation(s)
- Rabia S. Khan
- Division of Cardiology Department of Pediatrics Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | - Elfriede Pahl
- Division of Cardiology Department of Pediatrics Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | - Lisa Dellefave‐Castillo
- Center for Genetic Medicine Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of Medicine Chicago IL
| | - Karen Rychlik
- Biostatistics Research Core Stanley Manne Children’s Research InstituteAnn & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | - Alexander Ing
- Center for Genomics Department of Pathology and Laboratory Medicine Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | - Kai Lee Yap
- Center for Genomics Department of Pathology and Laboratory Medicine Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | - Casey Brew
- Center for Genomics Department of Pathology and Laboratory Medicine Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| | - Jamie R. Johnston
- Center for Genetic Medicine Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of Medicine Chicago IL
| | - Elizabeth M. McNally
- Center for Genetic Medicine Bluhm Cardiovascular InstituteNorthwestern University Feinberg School of Medicine Chicago IL
| | - Gregory Webster
- Division of Cardiology Department of Pediatrics Ann & Robert H. Lurie Children's Hospital of Chicago Chicago IL
| |
Collapse
|
25
|
Ntusi NAB, Sliwa K. Impact of Racial and Ethnic Disparities on Patients With Dilated Cardiomyopathy: JACC Focus Seminar 7/9. J Am Coll Cardiol 2021; 78:2580-2588. [PMID: 34887144 DOI: 10.1016/j.jacc.2021.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
Significant race- and ethnicity-based disparities among those diagnosed with dilated cardiomyopathy (DCM) exist and are deeply rooted in the history of many societies. The role of social determinants of racial disparities, including racism and bias, is often overlooked in cardiology. DCM incidence is higher in Black subjects; survival and other outcome measures are worse in Black patients with DCM, with fewer referrals for transplantation. DCM in Black patients is underrecognized and under-referred for effective therapies, a consequence of a complex interplay of social and socioeconomic factors. Strategies to manage social determinants of health must be multifaceted and consider changes in policy to expand access to equitable care; provision of insurance, education, and housing; and addressing racism and bias in health care workers. There is an urgent need to prioritize a social justice approach to health care and the pursuit of health equity to eliminate race and other disparities in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa; Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
26
|
MicroRNAs: From Junk RNA to Life Regulators and Their Role in Cardiovascular Disease. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded small non-coding RNA (18–25 nucleotides) that until a few years ago were considered junk RNA. In the last twenty years, they have acquired more importance thanks to the understanding of their influence on gene expression and their role as negative regulators at post-transcriptional level, influencing the stability of messenger RNA (mRNA). Approximately 5% of the genome encodes miRNAs which are responsible for regulating numerous signaling pathways, cellular processes and cell-to-cell communication. In the cardiovascular system, miRNAs control the functions of various cells, such as cardiomyocytes, endothelial cells, smooth muscle cells and fibroblasts, playing a role in physiological and pathological processes and seeming also related to variations in contractility and hereditary cardiomyopathies. They provide a new perspective on the pathophysiology of disorders such as hypertrophy, fibrosis, arrhythmia, inflammation and atherosclerosis. MiRNAs are differentially expressed in diseased tissue and can be released into the circulation and then detected. MiRNAs have become interesting for the development of new diagnostic and therapeutic tools for various diseases, including heart disease. In this review, the concept of miRNAs and their role in cardiomyopathies will be introduced, focusing on their potential as therapeutic and diagnostic targets (as biomarkers).
Collapse
|
27
|
Patel PN, Ito K, Willcox JAL, Haghighi A, Jang MY, Gorham JM, DePalma SR, Lam L, McDonough B, Johnson R, Lakdawala NK, Roberts A, Barton PJR, Cook SA, Fatkin D, Seidman CE, Seidman JG. Contribution of Noncanonical Splice Variants to TTN Truncating Variant Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003389. [PMID: 34461741 DOI: 10.1161/circgen.121.003389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of the splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain. METHODS Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay. RESULTS Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%-95%) but poor sensitivity (15%-50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and -3 acceptor positions. CONCLUSIONS Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.
Collapse
Affiliation(s)
- Parth N Patel
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA
| | - Kaoru Ito
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (K.I.)
| | - Jon A L Willcox
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Alireza Haghighi
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA.,Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA (A.H.)
| | - Min Young Jang
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital (P.N.P., A.H., M.Y.J.), Harvard Medical School, Boston, MA
| | - Joshua M Gorham
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Steven R DePalma
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Lien Lam
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Barbara McDonough
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| | - Renee Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst (R.J., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (R.J., D.F.)
| | - Neal K Lakdawala
- Division of Cardiovascular Medicine, Brigham and Women's Hospital (N.K.L., C.E.S.)
| | - Amy Roberts
- Department of Cardiology, Boston Children's Hospital, MA (A.R.)
| | - Paul J R Barton
- National Heart and Lung Institute (P.J.R.B., S.A.C.).,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, United Kingdom (P.J.R.B.)
| | - Stuart A Cook
- National Heart and Lung Institute (P.J.R.B., S.A.C.).,MRC London Institute of Medical Sciences, Imperial College London (S.A.C.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (S.A.C.).,National Heart Research Institute Singapore, National Heart Centre Singapore (S.A.C.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (R.J., D.F.).,Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia (R.J., D.F.).,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Christine E Seidman
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA.,Howard Hughes Medical Institute (C.E.S.), Harvard Medical School, Boston, MA.,Division of Cardiovascular Medicine, Brigham and Women's Hospital (N.K.L., C.E.S.)
| | - J G Seidman
- Department of Genetics (P.N.P., K.I., J.A.L.W., A.H., M.Y.J., J.M.G., S.R.D., L.L., B.M., C.E.S., J.G.S.), Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Migunova E, Theophilopoulos J, Mercadante M, Men J, Zhou C, Dubrovsky EB. ELAC2/RNaseZ-linked cardiac hypertrophy in Drosophila melanogaster. Dis Model Mech 2021; 14:271965. [PMID: 34338278 PMCID: PMC8419712 DOI: 10.1242/dmm.048931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A severe form of infantile cardiomyopathy (CM) has been linked to mutations in ELAC2, a highly conserved human gene. It encodes Zinc phosphodiesterase ELAC protein 2 (ELAC2), which plays an essential role in the production of mature tRNAs. To establish a causal connection between ELAC2 variants and CM, here we used the Drosophila melanogaster model organism, which carries the ELAC2 homolog RNaseZ. Even though RNaseZ and ELAC2 have diverged in some of their biological functions, our study demonstrates the use of the fly model to study the mechanism of ELAC2-related pathology. We established transgenic lines harboring RNaseZ with CM-linked mutations in the background of endogenous RNaseZ knockout. Importantly, we found that the phenotype of these flies is consistent with the pathological features in human patients. Specifically, expression of CM-linked variants in flies caused heart hypertrophy and led to reduction in cardiac contractility associated with a rare form of CM. This study provides first experimental evidence for the pathogenicity of CM-causing mutations in the ELAC2 protein, and the foundation to improve our understanding and diagnosis of this rare infantile disease. This article has an associated First Person interview with the first author of the paper. Summary: A newly established Drosophila model recapitulates key features of human heart pathology linked to mutations in ELAC2, thus providing experimental evidence of the pathogenicity of ELAC2 variants.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | - Marisa Mercadante
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Jing Men
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63105, USA.,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63105, USA
| | - Edward B Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Center for Cancer, Genetic diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
29
|
Sex Differences, Genetic and Environmental Influences on Dilated Cardiomyopathy. J Clin Med 2021; 10:jcm10112289. [PMID: 34070351 PMCID: PMC8197492 DOI: 10.3390/jcm10112289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle and impaired systolic function and is the second most common cause of heart failure after coronary heart disease. The etiology of DCM is diverse including genetic pathogenic variants, infection, inflammation, autoimmune diseases, exposure to chemicals/toxins as well as endocrine and neuromuscular causes. DCM is inherited in 20–50% of cases where more than 30 genes have been implicated in the development of DCM with pathogenic variants in TTN (Titin) most frequently associated with disease. Even though male sex is a risk factor for heart failure, few studies have examined sex differences in the pathogenesis of DCM. We searched the literature for studies examining idiopathic or familial/genetic DCM that reported data by sex in order to determine the sex ratio of disease. We found 31 studies that reported data by sex for non-genetic DCM with an average overall sex ratio of 2.5:1 male to female and 7 studies for familial/genetic DCM with an overall average sex ratio of 1.7:1 male to female. No manuscripts that we found had more females than males in their studies. We describe basic and clinical research findings that may explain the increase in DCM in males over females based on sex differences in basic physiology and the immune and fibrotic response to damage caused by mutations, infections, chemotherapy agents and autoimmune responses.
Collapse
|
30
|
Fonseca AC, Coelho P. Update on Biomarkers Associated to Cardioembolic Stroke: A Narrative Review. Life (Basel) 2021; 11:life11050448. [PMID: 34067554 PMCID: PMC8156147 DOI: 10.3390/life11050448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background: In the last years, several studies were conducted that evaluated biomarkers that could be helpful for cardioembolic stroke diagnosis, prognosis, and the determination of risk of stroke recurrence. Methods: We performed a narrative review of the main studies that evaluated biomarkers related to specific cardioembolic causes: atrial fibrillation, patent foramen ovale, atrial cardiomyopathy, and left ventricular wall motion abnormalities. Results: BNP and NT-proBNP are, among all biomarkers of cardioembolic stroke, the ones that have the highest amount of evidence for their use. NT-proBNP is currently used for the selection of patients that will be included in clinical trials that aim to evaluate the use of anticoagulation in patients suspected of having a cardioembolic stroke and for the selection of patients to undergo cardiac monitoring. NT-proBNP has also been incorporated in tools used to predict the risk of stroke recurrence (ABC-stroke score). Conclusions: NT-proBNP and BNP continue to be the biomarkers most widely studied in the context of cardioembolic stroke. The possibility of using other biomarkers in clinical practice is still distant, mainly because of the low methodological quality of the studies in which they were evaluated. Both internal and external validation studies are rarely performed for most biomarkers.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Department of Neurology, Hospital de Santa Maria, 1640-035 Lisboa, Portugal;
- Institute of Molecular Medicine, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Correspondence:
| | - Pedro Coelho
- Department of Neurology, Hospital de Santa Maria, 1640-035 Lisboa, Portugal;
| |
Collapse
|
31
|
Horowitz BN. Hypertrophic Cardiomyopathy: A Species-Spanning Pathology. J Cardiothorac Vasc Anesth 2021; 35:2815-2817. [PMID: 33934984 DOI: 10.1053/j.jvca.2021.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Barbara N Horowitz
- Harvard Medical School, Harvard-MIT Health and Science Technology, Boston, MA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA; Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
32
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
33
|
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, Matter ML. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front Cell Dev Biol 2021; 8:624216. [PMID: 33511136 PMCID: PMC7835522 DOI: 10.3389/fcell.2020.624216] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the “powerhouse” of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization. Mitochondria adapt to cellular energy demands via fusion-fission events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. Ca2+ fluxes play a pivotal role in regulating all mitochondrial functions, including ATP production, metabolism, oxidative stress balance and apoptosis. Communication between mitochondria and others organelles, especially the sarcoplasmic reticulum is required for optimal function. Consequently, abnormal mitochondrial activity results in decreased energy production leading to pathological conditions. In this review, we will describe how mitochondrial function or dysfunction impacts cardiac activities and the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Daniela Ramaccini
- University of Hawaii Cancer Center, Honolulu, HI, United States.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | | - Femke J Aan
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Lorenzo Modesti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Irena Krga
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | |
Collapse
|
34
|
Schultze-Berndt A, Kühnisch J, Herbst C, Seidel F, Al-Wakeel-Marquard N, Dartsch J, Theisen S, Knirsch W, Jenni R, Greutmann M, Oechslin E, Berger F, Klaassen S. Reduced Systolic Function and Not Genetic Variants Determine Outcome in Pediatric and Adult Left Ventricular Noncompaction Cardiomyopathy. Front Pediatr 2021; 9:722926. [PMID: 34540771 PMCID: PMC8447880 DOI: 10.3389/fped.2021.722926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Left ventricular noncompaction cardiomyopathy (LVNC CMP) is a genetic cardiomyopathy. Genotype-phenotype correlation and clinical outcome of genetic variants in pediatric and adult LVNC CMP patients are still unclear. Methods: The retrospective multicenter study was conducted in unrelated index patients with LVNC CMP, diagnosed between the years 1987 and 2017, and all available family members. All index patients underwent next-generation sequencing for genetic variants in 174 target genes using the Illumina TruSight Cardio Sequencing Panel. Major adverse cardiac events (MACE) included mechanical circulatory support, heart transplantation, survivor of cardiac death, and/or all-cause death as combined endpoint. Results: Study population included 149 LVNC CMP patients with a median age of 27.8 (9.2-44.8) years at diagnosis; 58% of them were symptomatic, 18% suffered from non-sustained and sustained arrhythmias, and 17% had an implantable cardioverter defibrillator (ICD) implanted. 55/137 patients (40%) were ≤ 18 years at diagnosis. A total of 134 variants were identified in 87/113 (77%) index patients. 93 variants were classified as variant of unknown significance (VUS), 24 as likely pathogenic and 15 as pathogenic. The genetic yield of (likely) pathogenic variants was 35/113 (31%) index patients. Variants occurred most frequently in MYH7 (n=19), TTN (n = 10) and MYBPC3 (n = 8). Altogether, sarcomere gene variants constituted 42.5% (n = 57) of all variants. The presence or absence of (likely) pathogenic variants or variants in specific genes did not allow risk stratification for MACE. Reduced left ventricular (LV) systolic function and increased left ventricular end-diastolic diameter (LVEDD) were risk factors for event-free survival in the Kaplan-Meier analysis. Through multivariate analysis we identified reduced LV systolic function as the main risk factor for MACE. Patients with reduced LV systolic function were at a 4.6-fold higher risk for MACE. Conclusions: Genetic variants did not predict the risk of developing a MACE, neither in the pediatric nor in the adult cohort. Multivariate analysis emphasized reduced LV systolic function as the main independent factor that is elevating the risk for MACE. Genetic screening is useful for cascade screening to identify family members at risk for developing LVNC CMP.
Collapse
Affiliation(s)
- Alina Schultze-Berndt
- Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jirko Kühnisch
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Christopher Herbst
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Franziska Seidel
- Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nadya Al-Wakeel-Marquard
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Josephine Dartsch
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Theisen
- Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Rolf Jenni
- University of Zurich, Zurich, Switzerland
| | - Matthias Greutmann
- Department of Cardiology, University Heart Center, University of Zurich, Zurich, Switzerland
| | - Erwin Oechslin
- Toronto Adult Congenital Heart Disease Program, University Health Network/Toronto General Hospital, Peter Munk Cardiac Centre, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Felix Berger
- Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Sabine Klaassen
- Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
35
|
A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. PLoS Genet 2020; 16:e1009000. [PMID: 32925938 PMCID: PMC7571691 DOI: 10.1371/journal.pgen.1009000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/19/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure and sudden cardiac death. It has been estimated that up to half of DCM cases are hereditary. Mutations in more than 50 genes, primarily autosomal dominant, have been reported. Although rare, recessive mutations are thought to contribute considerably to DCM, especially in young children. Here we identified a novel recessive mutation in the striated muscle enriched protein kinase (SPEG, p. E1680K) gene in a family with nonsyndromic, early onset DCM. To ascertain the pathogenicity of this mutation, we generated SPEG E1680K homozygous mutant human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) using CRISPR/Cas9-mediated genome editing. Functional studies in mutant iPSC-CMs showed aberrant calcium homeostasis, impaired contractility, and sarcomeric disorganization, recapitulating the hallmarks of DCM. By combining genetic analysis with human iPSCs, genome editing, and functional assays, we identified SPEG E1680K as a novel mutation associated with early onset DCM and provide evidence for its pathogenicity in vitro. Our study provides a conceptual paradigm for establishing genotype-phenotype associations in DCM with autosomal recessive inheritance.
Collapse
|
36
|
Yeung C, Enriquez A, Suarez-Fuster L, Baranchuk A. Atrial fibrillation in patients with inherited cardiomyopathies. Europace 2020; 21:22-32. [PMID: 29684120 DOI: 10.1093/europace/euy064] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) often complicates the course of inherited cardiomyopathies and, in some cases, may be the presenting feature. Each inherited cardiomyopathy has its own peculiar pathogenetic characteristics that can contribute to the development and maintenance of AF. Atrial fibrillation may occur as a consequence of disease-specific defects, non-specific cardiac chamber changes secondary to the primary illness, or a combination thereof. The presence of AF can denote a turning point in the progression of the disease, promoting clinical deterioration and increasing morbidity and mortality. Furthermore, the management of AF can be particularly challenging in patients with inherited cardiomyopathies. In this article, we review the current information on the prevalence, pathophysiology, risk factors, and treatment of AF in three different inherited cardiomyopathies: hypertrophic cardiomyopathy, arrhythmogenic right ventricular dysplasia/cardiomyopathy, familial dilated cardiomyopathy, and left ventricular non-compaction cardiomyopathy.
Collapse
Affiliation(s)
- Cynthia Yeung
- Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Andres Enriquez
- Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | | | - Adrian Baranchuk
- Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
37
|
Widyastuti HP, Norden-Krichmar TM, Grosberg A, Zaragoza MV. Gene expression profiling of fibroblasts in a family with LMNA-related cardiomyopathy reveals molecular pathways implicated in disease pathogenesis. BMC MEDICAL GENETICS 2020; 21:152. [PMID: 32698886 PMCID: PMC7374820 DOI: 10.1186/s12881-020-01088-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Background Intermediate filament proteins that construct the nuclear lamina of a cell include the Lamin A/C proteins encoded by the LMNA gene, and are implicated in fundamental processes such as nuclear structure, gene expression, and signal transduction. LMNA mutations predominantly affect mesoderm-derived cell lineages in diseases collectively termed as laminopathies that include dilated cardiomyopathy with conduction defects, different forms of muscular dystrophies, and premature aging syndromes as Hutchinson-Gilford Progeria Syndrome. At present, our understanding of the molecular mechanisms regulating tissue-specific manifestations of laminopathies are still limited. Methods To gain deeper insight into the molecular mechanism of a novel LMNA splice-site mutation (c.357-2A > G) in an affected family with cardiac disease, we conducted deep RNA sequencing and pathway analysis for nine fibroblast samples obtained from three patients with cardiomyopathy, three unaffected family members, and three unrelated, unaffected individuals. We validated our findings by quantitative PCR and protein studies. Results We identified eight significantly differentially expressed genes between the mutant and non-mutant fibroblasts, that included downregulated insulin growth factor binding factor protein 5 (IGFBP5) in patient samples. Pathway analysis showed involvement of the ERK/MAPK signaling pathway consistent with previous studies. We found no significant differences in gene expression for Lamin A/C and B-type lamins between the groups. In mutant fibroblasts, RNA-seq confirmed that only the LMNA wild type allele predominately was expressed, and Western Blot showed normal Lamin A/C protein levels. Conclusions IGFBP5 may contribute in maintaining signaling pathway homeostasis, which may lead to the absence of notable molecular and structural abnormalities in unaffected tissues such as fibroblasts. Compensatory mechanisms from other nuclear membrane proteins were not found. Our results also demonstrate that only one copy of the wild type allele is sufficient for normal levels of Lamin A/C protein to maintain physiological function in an unaffected cell type. This suggests that affected cell types such as cardiac tissues may be more sensitive to haploinsufficiency of Lamin A/C. These results provide insight into the molecular mechanism of disease with a possible explanation for the tissue specificity of LMNA-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Halida P Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology, University of California, Irvine, School of Medicine, 3062 Anteater Instruction and Research Building, Irvine, CA, 92697-7550, USA.
| | - Anna Grosberg
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - Michael V Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA.
| |
Collapse
|
38
|
Noll NA, Lal H, Merryman WD. Mouse Models of Heart Failure with Preserved or Reduced Ejection Fraction. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1596-1608. [PMID: 32343958 DOI: 10.1016/j.ajpath.2020.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Heart failure (HF) is a chronic, complex condition with increasing incidence worldwide, necessitating the development of novel therapeutic strategies. This has led to the current clinical strategies, which only treat symptoms of HF without addressing the underlying causes. Multiple animal models have been developed in an attempt to recreate the chronic HF phenotype that arises following a variety of myocardial injuries. Although significant strides have been made in HF research, an understanding of more specific mechanisms will require distinguishing models that resemble HF with preserved ejection fraction (HFpEF) from those with reduced ejection fraction (HFrEF). Therefore, current mouse models of HF need to be re-assessed to determine which of them most closely recapitulate the specific etiology of HF being studied. This will allow for the development of therapies targeted specifically at HFpEF or HFrEF. This review will summarize the commonly used mouse models of HF and discuss which aspect of human HF each model replicates, focusing on whether HFpEF or HFrEF is induced, to allow better investigation into pathophysiological mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Natalie A Noll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Hind Lal
- Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
39
|
Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. BIOCHEMISTRY (MOSCOW) 2020; 85:S20-S33. [PMID: 32087052 DOI: 10.1134/s0006297920140023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is devoted to tropomyosin (Tpm) - actin-binding protein, which plays a crucial role in the regulation of contraction of skeletal and cardiac muscles. Special attention is paid to myopathies and cardiomyopathies - severe hereditary diseases of skeletal and cardiac muscles associated with point mutations in Tpm genes. The current views on the molecular mechanisms of these diseases and the effects of such mutations on the Tpm structure and functions are considered in detail. Besides, some part of the review is devoted to analysis of the properties of Tpm homodimers and heterodimers with myopathic substitutions of amino acid residues in only one of the two chains of the Tpm dimeric molecule.
Collapse
Affiliation(s)
- A M Matyushenko
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - D I Levitsky
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
40
|
Shaboodien G, Spracklen TF, Kamuli S, Ndibangwi P, Van Niekerk C, Ntusi NAB. Genetics of inherited cardiomyopathies in Africa. Cardiovasc Diagn Ther 2020; 10:262-278. [PMID: 32420109 DOI: 10.21037/cdt.2019.10.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In sub-Saharan Africa (SSA), the burden of noncommunicable diseases (NCDs) is rising disproportionately in comparison to the rest of the world, affecting urban, semi-urban and rural dwellers alike. NCDs are predicted to surpass infections like human immunodeficiency virus, tuberculosis and malaria as the leading cause of mortality in SSA over the next decade. Heart failure (HF) is the dominant form of cardiovascular disease (CVD), and a leading cause of NCD in SSA. The main causes of HF in SSA are hypertension, cardiomyopathies, rheumatic heart disease, pericardial disease, and to a lesser extent, coronary heart disease. Of these, the cardiomyopathies deserve greater attention because of the relatively poor understanding of mechanisms of disease, poor outcomes and the disproportionate impact they have on young, economically active individuals. Morphofunctionally, cardiomyopathies are classified as dilated, hypertrophic, restrictive and arrhythmogenic; regardless of classification, at least half of these are inherited forms of CVD. In this review, we summarise all studies that have investigated the incidence of cardiomyopathy across Africa, with a focus on the inherited cardiomyopathies. We also review data on the molecular genetic underpinnings of cardiomyopathy in Africa, where there is a striking lack of studies reporting on the genetics of cardiomyopathy. We highlight the impact that genetic testing, through candidate gene screening, association studies and next generation sequencing technologies such as whole exome sequencing and targeted resequencing has had on the understanding of cardiomyopathy in Africa. Finally, we emphasise the need for future studies to fill large gaps in our knowledge in relation to the genetics of inherited cardiomyopathies in Africa.
Collapse
Affiliation(s)
- Gasnat Shaboodien
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Timothy F Spracklen
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stephen Kamuli
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Polycarp Ndibangwi
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carla Van Niekerk
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Nakao S, Ihara D, Hasegawa K, Kawamura T. Applications for Induced Pluripotent Stem Cells in Disease Modelling and Drug Development for Heart Diseases. Eur Cardiol 2020; 15:1-10. [PMID: 32180835 PMCID: PMC7066852 DOI: 10.15420/ecr.2019.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from reprogrammed somatic cells by the introduction of defined transcription factors. They are characterised by a capacity for self-renewal and pluripotency. Human (h)iPSCs are expected to be used extensively for disease modelling, drug screening and regenerative medicine. Obtaining cardiac tissue from patients with mutations for genetic studies and functional analyses is a highly invasive procedure. In contrast, disease-specific hiPSCs are derived from the somatic cells of patients with specific genetic mutations responsible for disease phenotypes. These disease-specific hiPSCs are a better tool for studies of the pathophysiology and cellular responses to therapeutic agents. This article focuses on the current understanding, limitations and future direction of disease-specific hiPSC-derived cardiomyocytes for further applications.
Collapse
Affiliation(s)
- Shu Nakao
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Dai Ihara
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Koji Hasegawa
- Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,Division of Translational Research, Kyoto Medical Center, National Hospital Organization, Kyoto, Japan
| |
Collapse
|
42
|
Pottinger TD, Puckelwartz MJ, Pesce LL, Robinson A, Kearns S, Pacheco JA, Rasmussen-Torvik LJ, Smith ME, Chisholm R, McNally EM. Pathogenic and Uncertain Genetic Variants Have Clinical Cardiac Correlates in Diverse Biobank Participants. J Am Heart Assoc 2020; 9:e013808. [PMID: 32009526 PMCID: PMC7033893 DOI: 10.1161/jaha.119.013808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Genome sequencing coupled with electronic heath record data can uncover medically important genetic variation. Interpretation of rare genetic variation and its role in mediating cardiovascular phenotypes is confounded by variants of uncertain significance. Methods and Results We analyzed the whole genome sequence of 900 racially and ethnically diverse biobank participants selected from a single US center. Participants were equally divided among European, African, Hispanic, and mixed races/ethnicities. We evaluated the American College of Medical Genetics and Genomics medically actionable list of 59 genes, focusing on the cardiac genes. Variation was interpreted using the most recent reports in ClinVar, a database of medically relevant human variation. We identified 19 individuals with pathogenic or likely pathogenic variants in cardiac actionable genes (2%) and found evidence of related clinical correlates in the electronic health record. Participants of African ancestry, compared with those of European ancestry, had more variants of uncertain significance in the medically actionable genes including the 30 cardiac actionable genes, even when normalized to total variant count per person. Longitudinal measures of left ventricle size from ≈400 biobank participants (1723 patient‐years) were correlated with genetic findings. The presence of ≥1 uncertain variant in the actionable cardiac genes and a cardiomyopathy diagnosis correlated with increased left ventricular internal diameter in diastole and in systole. In particular, MYBPC3 was identified as a gene with excess variants of uncertain significance. Conclusions These data indicate that a subset of uncertain genetic variants may confer risk and should not be considered benign.
Collapse
Affiliation(s)
- Tess D Pottinger
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Megan J Puckelwartz
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago IL
| | | | - Avery Robinson
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Samuel Kearns
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Jennifer A Pacheco
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Maureen E Smith
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | - Rex Chisholm
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
- Department of Cell and Molecular Biology Northwestern University Feinberg School of Medicine Chicago IL
| | - Elizabeth M McNally
- Center for Genetic Medicine Northwestern University Feinberg School of Medicine Chicago IL
| |
Collapse
|
43
|
Low mutation rate in the TTN gene in paediatric patients with dilated cardiomyopathy - a pilot study. Sci Rep 2019; 9:16409. [PMID: 31712709 PMCID: PMC6848193 DOI: 10.1038/s41598-019-52911-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022] Open
Abstract
Idiopathic dilated cardiomyopathy (DCM) is a common cardiomyopathy with the prevalence of 1:250, and at least one-third of all the cases are inherited. Mutations in the TTN gene are considered as the most frequent cause of inherited DCM and cover 10–30% of the cases. The studies were mainly focused on the adult or mixed age group of patients with DCM. The mutation rate in the TTN gene, the characteristics of manifestations and their prognostic significance in childhood have not been studied. To determine TTN mutation rate in children with DCM and the relevance of including this gene in the DNA diagnostic protocol for paediatric DCM, complete clinical and instrumental examination of 36 DCM patients (up to 18 years) with the manifestation of the disease was conducted in specialised cardiology centres. Molecular genetic testing included sequencing of coding and adjacent regulatory regions of the major cardiac TTN isoform N2BA using IonTorrent ™ semiconductor sequencing (for 25 isolated cases) and trio whole exome sequencing (trio WES)on the Illumina platform (for 11 family cases). Our pilot group included 36 probands with DCM diagnosis first established on the basis of the generally accepted criteria at the age of 5 days to 18 years(average age: 6.5 years). The sex ratio (M:F) was 23: 8. There were 25 sporadic DCM cases and 11 cases of familial DCM (at least one of the parents and/or siblings were also diagnosed with DCM). The only likely pathogenic truncating variant p.Arg33703*in the TTN gene (TTNtv) was found in a 16-year-oldmale proband out of 36 (3%). Apparently, TTN-dependent forms of DCMs manifest later at a young (but older than 18 years) or more mature age, and TTN gene cannot be considered as the first-line genetic testing for DCM in the paediatric group, despite several studies have reported a generally high mutation rate in this gene with DCM. Further research is needed to compare the representation of mutations in the TTN gene in different age groups of DCM patients.
Collapse
|
44
|
Colpaert RMW, Calore M. MicroRNAs in Cardiac Diseases. Cells 2019; 8:E737. [PMID: 31323768 PMCID: PMC6678080 DOI: 10.3390/cells8070737] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Since their discovery 20 years ago, microRNAs have been related to posttranscriptional regulation of gene expression in major cardiac physiological and pathological processes. We know now that cardiac muscle phenotypes are tightly regulated by multiple noncoding RNA species to maintain cardiac homeostasis. Upon stress or various pathological conditions, this class of non-coding RNAs has been found to modulate different cardiac pathological conditions, such as contractility, arrhythmia, myocardial infarction, hypertrophy, and inherited cardiomyopathies. This review summarizes and updates microRNAs playing a role in the different processes underlying the pathogenic phenotypes of cardiac muscle and highlights their potential role as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robin M W Colpaert
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Martina Calore
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
45
|
Cannie DE, Akhtar MM, Elliott P. Hidden in Heart Failure. Eur Cardiol 2019; 14:89-96. [PMID: 31360229 PMCID: PMC6659034 DOI: 10.15420/ecr.2019.19.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Current diagnostic strategies fail to illuminate the presence of rare disease in the heart failure population. One-third of heart failure patients are categorised as suffering an idiopathic dilated cardiomyopathy, while others are labelled only as heart failure with preserved ejection fraction. Those affected frequently suffer from delays in diagnosis, which can have a significant impact on quality of life and prognosis. Traditional rhetoric argues that delineation of this patient population is superfluous to treatment, as elucidation of aetiology will not lead to a deviation from standard management protocols. This article emphasises the importance of identifying genetic, inflammatory and infiltrative causes of heart failure to enable patients to access tailored management strategies.
Collapse
Affiliation(s)
- Douglas Ewan Cannie
- University College London Institute for Cardiovascular Science London, UK.,Barts Heart Centre, Barts Health NHS Trust London, UK
| | - Mohammed Majid Akhtar
- University College London Institute for Cardiovascular Science London, UK.,Barts Heart Centre, Barts Health NHS Trust London, UK
| | - Perry Elliott
- University College London Institute for Cardiovascular Science London, UK.,Barts Heart Centre, Barts Health NHS Trust London, UK
| |
Collapse
|
46
|
Chen M, Jiang YF, Yang HJ, Zhang NN, Rui Q, Zhou YF. Tumor Necrosis Factor-α Gene Polymorphism (G-308A) and Dilated Cardiomyopathy. Int Heart J 2019; 60:656-664. [DOI: 10.1536/ihj.17-293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Min Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University
- Department of Cardiology, Wujiang Hospital Affiliated to Nantong University, The First People's Hospital of Wujiang, Medical School of Nantong University
| | - Yu-Feng Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Hua-Jia Yang
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Nan-Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Qing Rui
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| | - Ya-Feng Zhou
- Department of Cardiology, The First Affiliated Hospital of Soochow University
| |
Collapse
|
47
|
Abdelfatah N, Chen R, Duff HJ, Seifer CM, Buffo I, Huculak C, Clarke S, Clegg R, Jassal DS, Gordon PMK, Ober C, Frosk P, Gerull B. Characterization of a Unique Form of Arrhythmic Cardiomyopathy Caused by Recessive Mutation in LEMD2. JACC Basic Transl Sci 2019; 4:204-221. [PMID: 31061923 PMCID: PMC6488817 DOI: 10.1016/j.jacbts.2018.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
Nuclear envelope proteins have been shown to play an important role in the pathogenesis of inherited dilated cardiomyopathy. Here, we present a remarkable cardiac phenotype caused by a homozygous LEMD2 mutation in patients of the Hutterite population with juvenile cataract. Mutation carriers develop arrhythmic cardiomyopathy with mild impairment of left ventricular systolic function but severe ventricular arrhythmias leading to sudden cardiac death. Affected cardiac tissue from a deceased patient and fibroblasts exhibit elongated nuclei with abnormal condensed heterochromatin at the periphery. The patient fibroblasts demonstrate cellular senescence and reduced proliferation capacity, which may suggest an involvement of LEM domain containing protein 2 in chromatin remodeling processes and premature aging.
Collapse
Key Words
- ACM, arrhythmogenic cardiomyopathy
- BANF, barrier to autointegration factor
- CMR, cardiac magnetic resonance
- DAPI, 4′,6′-diamidino-2-phenylindole
- DCM, dilated cardiomyopathy
- DNA, deoxyribonucleic acid
- EMD, emerin
- ICD, implantable cardioverter-defibrillator
- LEMD2
- LEMD2, LEM domain containing protein 2
- LGE, late gadolinium enhancement
- LMNA, lamin A/C
- LV, left ventricular
- NE, nuclear envelope
- P, passage
- PBS, phosphate-buffered saline
- SAHF, senescence-associated heterochromatin foci
- SNV, single nucleotide variant
- chromatin remodeling
- dilated cardiomyopathy
- eGFP, enhanced green fluorescent protein
- inner nuclear membrane
- sudden death
Collapse
Affiliation(s)
- Nelly Abdelfatah
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruping Chen
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colette M Seifer
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ilan Buffo
- Variety Children's Heart Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cathleen Huculak
- Department of Medical Genetics, Alberta Health Services, Calgary, Alberta, Canada
| | - Stephanie Clarke
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robin Clegg
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Davinder S Jassal
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul M K Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois
| | | | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brenda Gerull
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Akinrinade O, Heliö T, Lekanne Deprez RH, Jongbloed JDH, Boven LG, van den Berg MP, Pinto YM, Alastalo TP, Myllykangas S, Spaendonck-Zwarts KV, van Tintelen JP, van der Zwaag PA, Koskenvuo J. Relevance of Titin Missense and Non-Frameshifting Insertions/Deletions Variants in Dilated Cardiomyopathy. Sci Rep 2019; 9:4093. [PMID: 30858397 PMCID: PMC6412046 DOI: 10.1038/s41598-019-39911-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Recent advancements in next generation sequencing (NGS) technology have led to the identification of the giant sarcomere gene, titin (TTN), as a major human disease gene. Truncating variants of TTN (TTNtv) especially in the A-band region account for 20% of dilated cardiomyopathy (DCM) cases. Much attention has been focused on assessment and interpretation of TTNtv in human disease; however, missense and non-frameshifting insertions/deletions (NFS-INDELs) are difficult to assess and interpret in clinical diagnostic workflow. Targeted sequencing covering all exons of TTN was performed on a cohort of 530 primary DCM patients from three cardiogenetic centres across Europe. Using stringent bioinformatic filtering, twenty-nine and two rare TTN missense and NFS-INDELs variants predicted deleterious were identified in 6.98% and 0.38% of DCM patients, respectively. However, when compared with those identified in the largest available reference population database, no significant enrichment of such variants was identified in DCM patients. Moreover, DCM patients and reference individuals had comparable frequencies of splice-region missense variants with predicted splicing alteration. DCM patients and reference populations had comparable frequencies of rare predicted deleterious TTN missense variants including splice-region missense variants suggesting that these variants are not independently causative for DCM. Hence, these variants should be classified as likely benign in the clinical diagnostic workflow, although a modifier effect cannot be excluded at this stage.
Collapse
Affiliation(s)
- Oyediran Akinrinade
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland.
| | - Tiina Heliö
- Heart and Lung Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ludolf G Boven
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yigal M Pinto
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tero-Pekka Alastalo
- Children's Hospital, Institute of Clinical Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Blueprint Genetics, Helsinki, Finland
| | - Samuel Myllykangas
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Blueprint Genetics, Helsinki, Finland
| | - Karin van Spaendonck-Zwarts
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Durrer Centre for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Paul A van der Zwaag
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | | |
Collapse
|
49
|
De Los Santos S, Palma-Flores C, Zentella-Dehesa A, Canto P, Coral-Vázquez RM. (-)-Epicatechin inhibits development of dilated cardiomyopathy in δ sarcoglycan null mouse. Nutr Metab Cardiovasc Dis 2018; 28:1188-1195. [PMID: 30143409 DOI: 10.1016/j.numecd.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Several studies propose that (-)-epicatechin, a flavonol present in high concentration in the cocoa, has cardioprotective effects. This study aimed to evaluate the impact of (-)-epicatechin on the development of dilated cardiomyopathy in a δ sarcoglycan null mouse model. METHODS AND RESULTS δ Sarcoglycan null mice were treated for 15 days with (-)-epicatechin. Histological and morphometric analysis of the hearts treated mutant mice showed significant reduction of the vasoconstrictions in the coronary arteries as well as fewer areas with fibrosis and a reduction in the loss of the ventricular wall. On the contrary, it was observed a thickening of this region. By Western blot analysis, it was shown, and increment in the phosphorylation level of eNOS and PI3K/AKT/mTOR/p70S6K proteins in the heart of the (-)-epicatechin treated animals. On the other hand, we observed a significantly decreased level of the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) heart failure markers. CONCLUSION All the results indicate that (-)-epicatechin has the potential to prevent the development of dilated cardiomyopathy of genetic origin and encourages the use of this flavonol as a pharmacological therapy for dilated cardiomyopathy and heart failure diseases.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/metabolism
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Catechin/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Fibrosis
- Male
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Vasoconstriction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- S De Los Santos
- División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico; Unidad de Investigación en Obesidad, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - C Palma-Flores
- División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico; Catedrático CONACYT, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - A Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - P Canto
- Unidad de Investigación en Obesidad, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - R M Coral-Vázquez
- División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Delegación Miguel Hidalgo, Mexico City, 11340, Mexico.
| |
Collapse
|
50
|
Galata Z, Kloukina I, Kostavasili I, Varela A, Davos CH, Makridakis M, Bonne G, Capetanaki Y. Amelioration of desmin network defects by αB-crystallin overexpression confers cardioprotection in a mouse model of dilated cardiomyopathy caused by LMNA gene mutation. J Mol Cell Cardiol 2018; 125:73-86. [PMID: 30342008 DOI: 10.1016/j.yjmcc.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
The link between the cytoplasmic desmin intermediate filaments and those of nuclear lamins serves as a major integrator point for the intracellular communication between the nucleus and the cytoplasm in cardiac muscle. We investigated the involvement of desmin in the cardiomyopathy caused by the lamin A/C gene mutation using the LmnaH222P/H222P mouse model of the disease. We demonstrate that in these mouse hearts desmin loses its normal Z disk and intercalated disc localization and presents aggregate formation along with mislocalization of basic intercalated disc protein components, as well as severe structural abnormalities of the intercalated discs and mitochondria. To address the extent by which the observed desmin network defects contribute to the progression of LmnaH222P/H222P cardiomyopathy, we investigated the consequences of desmin-targeted approaches for the disease treatment. We showed that cardiac-specific overexpression of the small heat shock protein αΒ-Crystallin confers cardioprotection in LmnaH222P/H222P mice by ameliorating desmin network defects and by attenuating the desmin-dependent mislocalization of basic intercalated disc protein components. In addition, αΒ-Crystallin overexpression rescues the intercalated disc, mitochondrial and nuclear defects of LmnaH222P/H222P hearts, as well as the abnormal activation of ERK1/2. Consistent with that, by generating the LmnaH222P/H222PDes+/- mice, we showed that the genetically decreased endogenous desmin levels have cardioprotective effects in LmnaH222P/H222P hearts since less desmin is available to form dysfunctional aggregates. In conclusion, our results demonstrate that desmin network disruption, disorganization of intercalated discs and mitochondrial defects are a major mechanism contributing to the progression of this LMNA cardiomyopathy and can be ameliorated by αΒ-Crystallin overexpression.
Collapse
Affiliation(s)
- Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Aimilia Varela
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Constantinos H Davos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Gisѐle Bonne
- Sorbonne Université, INSERM UMRS-974, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece.
| |
Collapse
|