1
|
Zicha J, Řezáčová L, Behuliak M, Vaněčková I. Blood pressure reduction induced by chronic intracerebroventricular or peroral clonidine administration in rats with salt-dependent or angiotensin II-dependent hypertension. Physiol Res 2022. [DOI: 10.33549/physiolres.935041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The agonists of α2-adrenergic receptors such as clonidine, rilmenidine or monoxidine are known to lower blood pressure (BP) through a reduction of brain sympathetic outflow but their chronic antihypertensive effects in rats with low-renin or high-renin forms of experimental hypertension were not studied yet. Moreover, there is no comparison of mechanisms underlying BP reduction elicited by chronic peroral (po) or intracerebroventricular (icv) clonidine treatment. Male salt-sensitive Dahl rats fed 4% NaCl diet and Ren-2 transgenic rats were treated with clonidine administered either in the drinking fluid (0.5 mg/kg/day po) or as the infusion into lateral brain ventricle (0.1 mg/kg/day icv) for 4 weeks. Basal BP and the contributions of renin-angiotensin system (captopril 10 mg/kg iv) or sympathetic nervous system (pentolinium 5 mg/kg iv) to BP maintenance were determined in conscious cannulated rats at the end of the study. Both peroral and intracerebroventricular clonidine treatment lowered BP to the same extent in either rat model. However, in both models chronic clonidine treatment reduced sympathetic BP component only in rats treated intracerebroventricularly but not in perorally treated animals. In contrast, peroral clonidine treatment reduced angiotensin II-dependent vasoconstriction in Ren-2 transgenic rats, whereas it lowered residual blood pressure in Dahl rats. In conclusions, our results indicate different mechanisms of antihypertensive action of clonidine when administered centrally or systemically.
Collapse
Affiliation(s)
- J Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Čertíková Chábová V, Kujal P, Vaňourková Z, Škaroupková P, Sadowski J, Kompanowska-Jezierska E, Tesař V, Hammock B, Imig J, Maxová H, Červenka L, Vaněčková I. Addition of Endothelin A-Receptor Blockade Spoils the Beneficial Effect of Combined Renin-Angiotensin and Soluble Epoxide Hydrolase Inhibition: Studies on the Course of Chronic Kidney Disease in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats. Kidney Blood Press Res 2019; 44:1493-1505. [PMID: 31770762 PMCID: PMC10107074 DOI: 10.1159/000504137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022] Open
Abstract
Introduction: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. Methods: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. Results: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance – all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. Conclusion: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czechia,
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia,
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Zdeňka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Vladimír Tesař
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Bruce Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California, USA
| | - John Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hana Maxová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Ivana Vaněčková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
3
|
Vaněčková I, Hojná S, Kadlecová M, Kompanowska-Jezierska E, Zicha J. Distinct effects of bosentan on NO-dependent vasodilation and calcium influx in heterozygous Ren-2 transgenic rats on high-salt diet. Physiol Res 2019; 68:717-725. [PMID: 31424254 DOI: 10.33549/physiolres.934192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our studies in hypertensive Ren-2 transgenic rats (TGR) demonstrated that chronic administration of atrasentan (ETA receptor antagonist) decreased blood pressure by reduced Ca2+ influx through L-type voltage-dependent calcium channels (L-VDCC) and attenuated angiotensin II-dependent vasoconstriction. We were interested whether bosentan (nonselective ET(A)/ET(B) receptor antagonist) would have similar effects. Young 4-week-old (preventive study) and adult 8-week-old (therapeutic study) heterozygous TGR and their normotensive Hannover Sprague-Dawley (HanSD) controls were fed normal-salt (NS, 0.6 % NaCl) or high-salt (HS, 2 % NaCl) diet for 8 weeks. An additional group of TGR fed HS was treated with bosentan (100 mg/kg/day). Bosentan had no effect on BP of TGR fed high-salt diet in both the preventive and therapeutic studies. There was no difference in the contribution of angiotensin II-dependent and sympathetic vasoconstriction in bosentan-treated TGR compared to untreated TGR under the condition of high-salt intake. However, bosentan significantly reduced NO-dependent vasodilation and nifedipine-sensitive BP component in TGR on HS diet. A highly important correlation of nifedipine-induced BP change and the BP after L-NAME administration was demonstrated. Although bosentan did not result in any blood pressure lowering effects, it substantially influenced NO-dependent vasodilation and calcium influx through L-VDCC in the heterozygous TGR fed HS diet. A significant correlation of nifedipine-induced BP change and the BP after L-NAME administration suggests an important role of nitric oxide in the closure of L-type voltage dependent calcium channels.
Collapse
Affiliation(s)
- I Vaněčková
- Department of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
4
|
Exaggerated blood pressure response to fasudil or nifedipine in hypertensive Ren-2 transgenic rats: role of altered baroreflex. Hypertens Res 2018; 42:145-154. [PMID: 30518983 DOI: 10.1038/s41440-018-0146-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/25/2018] [Indexed: 11/08/2022]
Abstract
Basal calcium sensitization is decreased in spontaneously hypertensive rats, although their blood pressure (BP) response to acute Rho-kinase inhibition is enhanced. Using fasudil (Rho-kinase inhibitor) or nifedipine (L-VDCC blocker), we evaluated the contribution of calcium sensitization and calcium entry to BP maintenance in hypertensive transgenic Ren-2 rats (TGR) focusing on the influence of major vasoactive systems and/or baroreflex efficiency on BP responses to these two drugs. Homozygous TGR and normotensive Hannover Sprague-Dawley (HanSD) control rats aged 5, 11, or 22 weeks were used. The acute BP-lowering effects of fasudil or nifedipine were studied in intact rats, nitric oxide-deficient L-NAME-pretreated rats and rats subjected to combined blockade of the renin-angiotensin system (RAS), sympathetic nervous system (SNS) and nitric oxide synthase (NOS). Fasudil- or nifedipine-induced BP reduction increased during hypertension development in TGR. By contrast, the nifedipine-induced BP response decreased, whereas the fasudil-induced BP response increased with age in HanSD controls. Our data indicated a major contribution of nifedipine-sensitive calcium entry and relative attenuation of calcium sensitization in hypertensive rats compared with normotensive controls. The BP responses to fasudil or nifedipine were enhanced by NOS inhibition and combined blockade in normotensive HanSD rats but not in hypertensive TGR. In conclusion, calcium sensitization is attenuated by endogenous nitric oxide in normotensive HanSD rats but not in hypertensive TGR. Moreover, BP reduction elicited by acute Rho-kinase inhibition is partially compensated by enhanced sympathetic vasoconstriction. The decreased compensation in hypertensive rats with impaired baroreflex efficiency explains their greater BP response to fasudil than in normotensive animals.
Collapse
|
5
|
Sedláková L, Čertíková Chábová V, Doleželová Š, Škaroupková P, Kopkan L, Husková Z, Červenková L, Kikerlová S, Vaněčková I, Sadowski J, Kompanowska-Jezierska E, Kujal P, Kramer HJ, Červenka L. Renin–angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens 2017; 39:183-195. [DOI: 10.1080/10641963.2016.1235184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lenka Sedláková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šárka Doleželová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Červenková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Herbert J. Kramer
- Section of Nephrology, Medical Policlinic, Department of Medicine, University of Bonn, Bonn, Germany
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Martínez-Miguel P, Medrano-Andrés D, Griera-Merino M, Ortiz A, Rodríguez-Puyol M, Rodríguez-Puyol D, López-Ongil S. Tweak up-regulates endothelin-1 system in mouse and human endothelial cells. Cardiovasc Res 2016; 113:207-221. [DOI: 10.1093/cvr/cvw239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
|
7
|
Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening. Int J Mol Sci 2016; 17:389. [PMID: 26999111 PMCID: PMC4813245 DOI: 10.3390/ijms17030389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.
Collapse
|
8
|
Vaněčková I, Řezáčová L, Kuneš J, Zicha J. Moderate additive effects of endothelin receptor A blockade in Ren-2 transgenic rats subjected to various types of RAS blockade. Life Sci 2016; 159:127-134. [PMID: 26775568 DOI: 10.1016/j.lfs.2016.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/19/2022]
Abstract
AIMS Chronic endothelin receptor A (ETA) blockade lowered blood pressure (BP) by decreasing angiotensin-dependent vasoconstriction and attenuating calcium influx. We tested whether the addition of ETA blockade to renin-angiotensin system (RAS) blockade would have further effects on the principal vasoactive systems contributing to BP maintenance in Ren-2 transgenic rats (TGR). METHODS Four-week-old TGR rats were fed with normal-salt diet and given either different renin-angiotensin system (RAS) blockers [angiotensin receptor blocker losartan, angiotensin converting enzyme inhibitor captopril, direct renin inhibitor aliskiren], or ETA blocker (atrasentan) alone, or a combination of atrasentan with RAS blockers for 4weeks. At the end of the study, basal BP and acute BP responses to sequential blockade of renin-angiotensin (RAS), sympathetic nervous (SNS), and nitric oxide (NO) systems were determined in conscious rats. Thereafter, BP responses to acute inhibition of nifedipine-sensitive calcium influx through voltage-dependent calcium channels (L-VDCC) were measured. KEY FINDINGS All RAS blockers similarly decreased BP to normotension, their effects being mediated through substantially attenuated RAS-dependent and moderately decreased SNS-dependent vasoconstriction. Atrasentan alone partially lowered BP, while BP was normalized by combination of atrasentan with either RAS blocker. In combination therapies, BP lowering effects resulted from the attenuation of both RAS- and SNS-dependent vasoconstriction. Moreover, atrasentan-treated groups had substantially reduced NO-dependent vasodilation and significantly decreased calcium influx through L-VDCC. CONCLUSIONS Although the BP-lowering effect of combined ETA and RAS blockades in TGR is predominantly dependent on the effects exerted by RAS blockade, further effects are attributable to decreased calcium influx due to chronic ETA blockade.
Collapse
Affiliation(s)
| | | | | | - Josef Zicha
- Institute of Physiology AS CR, Prague, Czech Republic
| |
Collapse
|