1
|
Shu Z, Feng J, Liu L, Liao Y, Cao Y, Zeng Z, Huang Q, Li Z, Jin G, Yang Z, Xing J, Zhou S. Short-Chain Acyl-CoA Dehydrogenase as a Therapeutic Target for Cardiac Fibrosis. J Cardiovasc Pharmacol 2024; 83:410-432. [PMID: 38323905 DOI: 10.1097/fjc.0000000000001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024]
Abstract
ABSTRACT Cardiac fibrosis is considered as unbalanced extracellular matrix production and degradation, contributing to heart failure. Short-chain acyl-CoA dehydrogenase (SCAD) negatively regulates pathological cardiac hypertrophy. The purpose of this study was to investigate the possible role of SCAD in cardiac fibrosis. In vivo experiments were performed on spontaneously hypertensive rats (SHR) and SCAD-knockout mice. The cardiac tissues of hypertensive patients with cardiac fibrosis were used for the measurement of SCAD expression. In vitro experiments, with angiotensin II (Ang II), SCAD siRNA and adenovirus-SCAD were performed using cardiac fibroblasts (CFs). SCAD expression was significantly decreased in the left ventricles of SHR. Notably, swim training ameliorated cardiac fibrosis in SHR in association with the elevation of SCAD. The decrease in SCAD protein and mRNA expression levels in SHR CFs were in accordance with those in the left ventricular myocardium of SHR. In addition, SCAD expression was downregulated in CFs treated with Ang II in vitro, and SCAD siRNA interference induced the same changes in cardiac fibrosis as Ang II-treated CFs, while adenovirus-SCAD treatment significantly reduced the Ang II-induced CFs proliferation, alpha smooth muscle actin (α-SMA), and collagen expression. In SHR infected with adenovirus-SCAD, the cardiac fibrosis of the left ventricle was significantly decreased. However, cardiac fibrosis occurred in conventional SCAD-knockout mice. SCAD immunofluorescence intensity of cardiac tissue in hypertensive patients with cardiac fibrosis was lower than that of healthy subjects. Altogether, the current experimental outcomes indicate that SCAD has a negative regulatory effect on cardiac fibrosis and support its potential therapeutic target for suppressing cardiac fibrosis.
Collapse
Affiliation(s)
- Zhaohui Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lanting Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingqin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhong Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenhua Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuju Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhonghong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guifang Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
| | - Zhicheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
| | - Jieyu Xing
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
| | - Sigui Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China ; and
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Chen J, Xu X, Shao Y, Bian X, Li R, Zhang Y, Xiao Y, Lu M, Jiang Q, Zeng Y, Yan F, Ye J, Li Z. AKT2 deficiency alleviates doxorubicin-induced cardiac injury via alleviating oxidative stress in cardiomyocytes. Int J Biochem Cell Biol 2024; 169:106539. [PMID: 38290690 DOI: 10.1016/j.biocel.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Doxorubicin (DOX), a widely used chemotherapy agent in cancer treatment, encounters limitations in clinical efficacy due to associated cardiotoxicity. This study aims to explore the role of AKT serine/threonine kinase 2 (AKT2) in mitigating DOX-induced oxidative stress within the heart through both intracellular and extracellular signaling pathways. Utilizing Akt2 knockout (KO) and Nrf2 KO murine models, alongside neonatal rat cardiomyocytes (NRCMs), we systematically investigate the impact of AKT2 deficiency on DOX-induced cardiac injury. Our findings reveal that DOX administration induces significant oxidative stress, a primary contributor to cardiac injury. Importantly, Akt2 deficiency exhibits a protective effect by alleviating DOX-induced oxidative stress. Mechanistically, Akt2 deficiency facilitates nuclear translocation of NRF2, thereby suppressing intracellular oxidative stress by promoting the expression of antioxidant genes. Furthermore, We also observed that AKT2 inhibition facilitates superoxide dismutase 2 (SOD2) expression both inside macrophages and SOD2 secretion to the extracellular matrix, which is involved in lowering oxidative stress in cardiomyocytes upon DOX stimulation. The present study underscores the important role of AKT2 in mitigating DOX-induced oxidative stress through both intracellular and extracellular signaling pathways. Additionally, our findings propose promising therapeutic strategies for addressing DOX-induced cardiomyopathy in clinic.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuru Shao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yubin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Zeng
- Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
3
|
Cao J, Zhang D, Li W, Yuan W, Luo G, Xie S. Azilsartan improves urinary albumin excretion in hypertension mice. Aging (Albany NY) 2024; 16:4138-4148. [PMID: 38462692 PMCID: PMC10968693 DOI: 10.18632/aging.205271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 03/12/2024]
Abstract
Hypertension is one of the most important risk factors for chronic kidney diseases, leading to hypertensive nephrosclerosis, including excessive albuminuria. Azilsartan, an angiotensin II type 1 receptor blocker, has been widely used for the treatment of hypertension. However, the effects of Azilsartan on urinary albumin excretion in hypertension haven't been reported before. In this study, we investigated whether Azilsartan possesses a beneficial property against albuminuria in mice treated with angiotensin II and a high-salt diet (ANG/HS). Compared to the control group, the ANG/HS group had higher blood pressure, oxidative stress, and inflammatory response, all of which were rescued by Azilsartan dose-dependently. Importantly, the ANG/HS-induced increase in urinary albumin excretion and decrease in the expression of occludin were reversed by Azilsartan. Additionally, it was shown that increased fluorescence intensity of FITC-dextran, declined trans-endothelial electrical resistance (TEER) values, and reduction of occludin and krüppel-like factor 2 (KLF2) were observed in ANG/HS-treated human renal glomerular endothelial cells (HrGECs), then prevented by Azilsartan. Moreover, the regulatory effect of Azilsartan on endothelial monolayer permeability in ANG/HS-treated HrGECs was abolished by the knockdown of KLF2, indicating KLF2 is required for the effect of Azilsartan. We concluded that Azilsartan alleviated diabetic nephropathy-induced increase in Uterine artery embolization (UAE) mediated by the KLF2/occludin axis.
Collapse
Affiliation(s)
- Jun Cao
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Dandan Zhang
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenfeng Li
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenjin Yuan
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Gang Luo
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Shaofeng Xie
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| |
Collapse
|
4
|
Kong W, Peng Y, Ji C, Liu Z, Gao S, Zhang Y, Chen J, Li X, Bao M, Zhang Y, Jiang Q, Wang F, Li Z, Bian X, Ye J. Akt2 deficiency alleviates oxidative stress in the heart and liver via up-regulating SIRT6 during high-fat diet-induced obesity. Clin Sci (Lond) 2023; 137:823-841. [PMID: 37184210 DOI: 10.1042/cs20230433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
The present study aims to investigate the role of AKT2 in the pathogenesis of hepatic and cardiac lipotoxicity induced by lipid overload-induced obesity and identify its downstream targets. WT and Akt2 KO mice were fed either normal diet, or high-fat diet (HFD) to induce obesity model in vivo. Human hepatic cell line (L02 cells) and neonatal rat cardiomyocytes (NRCMs) were used as in vitro models. We observed that during HFD-induced obesity, Akt2 loss-of-function mitigated lipid accumulation and oxidative stress in the liver and heart tissue. Mechanistically, down-regulation of Akt2 promotes SIRT6 expression in L02 cells and NRCMs, the latter deacetylates SOD2, which promotes SOD2 activity and therefore alleviates oxidative stress-induced injury of hepatocytes and cardiomyocytes. Furthermore, we also proved that AKT2 inhibitor protects hepatocytes and cardiomyocytes from HFD-induced oxidative stress. Therefore, our work prove that AKT2 plays an important role in the regulation of obesity-induced lipid metabolic disorder in the liver and heart. Our study also indicates AKT2 inhibitor as a potential therapy for obesity-induced hepatic and cardiac injury.
Collapse
Affiliation(s)
- Weixian Kong
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Yue Peng
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Caoyu Ji
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Zekun Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Shuya Gao
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Yuexin Zhang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Jiawen Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Xie Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Mengmeng Bao
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Yubin Zhang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Qizhou Jiang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fuqun Wang
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou 514031, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xiaohong Bian
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Junmei Ye
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| |
Collapse
|
5
|
AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle. Clin Sci (Lond) 2021; 134:2381-2398. [PMID: 32880392 DOI: 10.1042/cs20191320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.
Collapse
|
6
|
Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol Ther 2020; 215:107628. [PMID: 32653530 PMCID: PMC7346797 DOI: 10.1016/j.pharmthera.2020.107628] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a newly emerged coronavirus (CoV) called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). COVID-19 patients with cardiovascular disease (CVD) comorbidities have significantly increased morbidity and mortality. The use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor type 1 blockers (ARBs) improve CVD outcomes; however, there is concern that they may worsen the prognosis of CVD patients that become infected with SARS-CoV-2 because the virus uses the ACE2 receptor to bind to and subsequently infect host cells. Thus, some health care providers and media sources have questioned the continued use of ACE inhibitors and ARBs. In this brief review, we discuss the effect of ACE inhibitor-induced bradykinin on the cardiovascular system, on the renin-angiotensin-aldosterone system (RAAS) regulation in COVID-19 patients, and analyze recent clinical studies regarding patients treated with RAAS inhibitors. We propose that the application of RAAS inhibitors for COVID-19 patients with CVDs may be beneficial rather than harmful.
Collapse
|
7
|
Overexpression of miR-150-5p Alleviates Apoptosis in Sepsis-Induced Myocardial Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3023186. [PMID: 32908879 PMCID: PMC7477614 DOI: 10.1155/2020/3023186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Sepsis-induced myocardial depression has high mortality and is very common in intensive care units. Previous studies have found that microRNAs play an important role in regulating sepsis-induced myocardial depression. miR-150-5p is involved in many biological processes; however, the mechanism underlying its role in sepsis-induced myocardial depression is still unclear. In this study, we generated rat models of septic shock induced by lipopolysaccharide. Whole genomic RNA sequencing was performed on 12 left ventricles collected after LPS treatment to identify miRNAs. Most of the target genes of the differently expressed microRNAs were involved in apoptosis, according to Gene Ontology. We also observed apoptosis in the heart tissue and in H9C2 cardiomyocytes stimulated with lipopolysaccharide, indicating that cell apoptosis may be an important mechanism in sepsis-induced myocardial depression. Furthermore, the expression of miR-150-5p was reduced, and overexpression of miR-150-5p with mimics resulted in a decrease in apoptosis, decreased expression of cleaved caspase3 and Bax, and increased expression of Bcl-2. Additionally, after H9C2 cells were transfected with miR-150-5p mimics or an inhibitor, the expression of Akt2 decreased or increased, respectively. These findings suggest that miR-150-5p can alleviate apoptosis and may be a novel therapeutic target for sepsis-induced myocardial depression.
Collapse
|
8
|
Chen D, Li Z, Bao P, Chen M, Zhang M, Yan F, Xu Y, Ji C, Hu X, Sanchis D, Zhang Y, Ye J. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1253-1264. [PMID: 30668979 DOI: 10.1016/j.bbadis.2019.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND NF-E2-related factor 2 (Nrf2) is a transcription factor playing cytoprotective effects in various pathological processes including oxidative stress and cardiac hypertrophy. Despite being a potential therapeutic target to treat several cardiomyopathies, the signaling underlying Nrf2-dependent cardioprotective action remains largely uncharacterized. AIM This study aimed to explore the signaling mediating the role of Nrf2 in the development of hypertensive cardiac pathogenesis by analyzing the response to Angiotensin II (Ang II) in the presence or absence of Nrf2 expression, both in vivo and in vitro. RESULTS Our results indicated that Nrf2 deficiency exacerbated cardiac damage triggered by Ang II infusion. Mechanistically, our study shows that Ang II-triggered hypertrophy and inflammation is exacerbated in the absence of Nrf2 expression and points to the involvement of the IL-6/STAT3 signaling pathway in this event. Indeed, our results show that IL-6 abundance triggered by Ang II is increased in the absence of Nrf2 and demonstrate the requirement of IL-6 in STAT3 activation and cardiac inflammation induced by Ang II. CONCLUSION Our results show that Nrf2 is important for the protection of the heart against Ang II-induced cardiac hypertrophy and inflammation by mechanisms involving the regulation of IL-6/STAT3-dependent signaling.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China; Hubei key Laboratory of Cardiology, Wuhan 430060, China
| | - Peiqing Bao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miao Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Yitao Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W120NN, United Kingdom
| | - Caoyu Ji
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210006, China
| | - Xinyue Hu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Daniel Sanchis
- Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Universitat de Lleida, Edifici Biomedicina-I. Av. Rovira Roure, 80, 25198 Lleida, Spain.
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| | - Junmei Ye
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|