1
|
Ibañez AM, Godoy Coto J, Martínez VR, Del Milagro Yeves A, Dolcetti FJC, Cervellini S, Echavarría L, Velez-Rueda JO, Lofeudo JM, Portiansky EL, Bellini MJ, Aiello EA, Ennis IL, De Giusti VC. Cardioprotection and neurobehavioral impact of swimming training in ovariectomized rats. GeroScience 2025; 47:2317-2334. [PMID: 39527177 PMCID: PMC11979057 DOI: 10.1007/s11357-024-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular (CV) disease is the major cause of mortality. Estrogens (E) exert multiple CV and neuroprotective effects. During menopause, CV and cognitive pathologies increase dramatically. At present, it is known that E exert many of their beneficial effects through the G protein-coupled estrogen receptor (GPER). Exercise reduces the risk of developing CV diseases. Sodium/proton exchanger (NHE-1) is overexpressed in ovariectomized (OVX) rats, probably due to the increase in reactive oxidative species (ROS). Insulin-like growth factor 1 (IGF-1), the main humoral mediator of exercise, inhibits the NHE-1. We aim to explore the subcellular mechanisms involved in the heart and brain impact of physiological exercise in OVX rats. We speculate that physical training, via IGF-1, prevents the increase in ROS, improving heart and brain physiological functions during menopause. Exercise diminished cardiac ROS production and increased catalase (CAT) activity in OVX rats. In concordance, IGF-1 treatment reduces brain ROS, surely contributing to the improvement in brain behavior. Moreover, the aerobic routine was able to prevent, and IGF-1 therapy to revert, NHE-1 hyperactivity in OVX rats. Finally, our results confirm the proposed signaling pathway as IGF-1/PI3K-AKT/NO. Surprisingly, GPER inhibitor (G36) was able to abolish the IGF-1 effect, suggesting that directly or indirectly GPER is part of the IGF-1 pathway. We propose that IGF-1 is the main responsible for the protective effect of aerobic training both in the heart and brain in OVX rats. Moreover, we showed that not only it is possible to prevent but also to revert the menopause-induced NHE-1 hyperactivity by exercise/IGF-1 cascade.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Valeria Romina Martínez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandra Del Milagro Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Sofía Cervellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Lucía Echavarría
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Jorge Omar Velez-Rueda
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Enrique Leo Portiansky
- Cátedra de Patología General- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata- CONICET, La Plata, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
2
|
Cai J, Liao F, Mao Y, Liu S, Wu X, Tang S, Wang S, Shan G, Wu S. Regulation of LAMTOR1 by oxidative stress in retinal pigment epithelium: Implications for age-related macular degeneration pathogenesis. Exp Eye Res 2024; 249:110129. [PMID: 39424220 DOI: 10.1016/j.exer.2024.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Oxidative stress is a critical pathogenic factor for age-related macular degeneration (AMD). Autophagy serves as a mechanism to counteract oxidative stress. LAMTOR1 regulates mTORC1 activity by recruiting or disassembling it on the lysosome under the addition or deprivation of amino acids. This regulation inhibits or enhances autophagy. Our study investigates whether oxidative stress impacts LAMTOR1, thereby adapting to oxidative conditions. We employed oxidative stressors, menadione (VK3) and 4-hydroxynonenal (4-HNE), and observed a reduction of LAMTOR1 in both human and mouse retinal pigment epithelium (RPE) following short-term (1h) and prolonged exposures (24h). Nrf2 overexpression increased both lamtor1 mRNA and LAMTOR1 protein in the RPE. To determine if Nrf2 regulates lamtor1 transcription, we cloned the deletion mutants of the lamtor1 promoter into a luciferase reporter. Although the promoter contained antioxidant response elements, transcriptional activity depended on the interaction between Nrf2 and the constructs containing the transcriptional start site. Moreover, Nrf2-driven transcription was significantly reduced by an inhibitor of histone acetyltransferase, p300. Correspondingly, Nrf2 overexpression increased levels of acetylated histone 3 and p300. The reduction in LAMTOR1 by 4-HNE was reversed by pepstatin A and NH4Cl which block lysosomal degradation. 4-HNE increased TFEB nuclear translocation which was reversed by LAMTOR1 overexpression. In vivo, LAMTOR1 levels decreased in the photoreceptor and RPE layers of NaIO3-injected mice, compared to PBS-injected controls. In conclusion, oxidative injury reduces LAMTOR1, predominantly through lysosomal degradation although Nrf2-mediated histone acetylation enhances lamtor1 transcription. This study reveals a previously unrecognized regulatory mechanism of lamtor1 by oxidative stress, suggesting a novel role for LAMTOR1 in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jingjing Cai
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yandie Mao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuyi Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiong Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shiqi Tang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Simin Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shengzhou Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Kikuchi T, Udagawa K, Sasazaki Y. High-molecular-weight Hyaluronan Administration Inhibits Bone Resorption and Promotes Bone Formation in Young-age Osteoporosis Rats. J Histochem Cytochem 2024; 72:373-385. [PMID: 38804525 PMCID: PMC11179592 DOI: 10.1369/00221554241255724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis poses a significant global health concern, affecting both the elderly and young individuals, including athletes. Despite the development of numerous antiosteoporotic drugs, addressing the unique needs of young osteoporosis patients remains challenging. This study focuses on young rats subjected to ovariectomy (OVX) to explore the impact of high-molecular-weight hyaluronan (HA) on preventing OVX-induced osteoporosis. Twenty-four rats underwent OVX, while 12 underwent sham procedures (sham control group). Among the OVX rats, half received subcutaneous injections of HA (MW: 2700 kDa) at 10 mg/kg/week into their backs (OVX-HA group), whereas the other half received saline injections (0.5 ml/week) at the same site (OVX-saline group). OVX-HA group exhibited significantly higher percentages of osteoclast surface (Oc. S/BS), osteoblast surface per bone surface (Ob. S/BS), and bone volume/tissue volume (BV/TV) compared with OVX-saline group at the same age. The proportions of Ob. S/BS and BV/TV in the OVX-HA group closely resembled those of the sham control group, whereas the proportion of Oc. S/BS in the OVX-HA group was notably higher than that in the sham control group. In summary, the administration of HA significantly mitigated bone resorption and enhanced bone formation, suggesting a crucial role for HA in the treatment of young adult osteoporosis.
Collapse
Affiliation(s)
- Toshiyuki Kikuchi
- National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Kazuhiko Udagawa
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
4
|
Piťha J, Vaněčková I, Zicha J. Hypertension after the Menopause: What Can We Learn from Experimental Studies? Physiol Res 2023; 72:S91-S112. [PMID: 37565415 PMCID: PMC10660576 DOI: 10.33549/physiolres.935151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Hypertension is the most prevalent cardiovascular disease of the adult population and is closely associated with serious cardiovascular events. The burden of hypertension with respect to vascular and other organ damage is greater in women. These sex differences are not fully understood. The unique feature in women is their transition to menopause accompanied by profound hormonal changes that affect the vasculature that are also associated with changes of blood pressure. Results from studies of hormone replacement therapy and its effects on the cardiovascular system are controversial, and the timing of treatment after menopause seems to be important. Therefore, revealing potential sex- and sex hormone-dependent pathophysiological mechanisms of hypertension in experimental studies could provide valuable information for better treatment of hypertension and vascular impairment, especially in postmenopausal women. The experimental rat models subjected to ovariectomy mimicking menopause could be useful tools for studying the mechanisms of blood pressure regulation after menopause and during subsequent therapy.
Collapse
Affiliation(s)
- J Piťha
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
5
|
Agas D, Marchegiani A, Laus F, Gabai V, Sufianov AA, Shneider A, Sabbieti MG. p62/SQSTM1 indirectly mediates remote multipotent mesenchymal cells and rescues bone loss and bone marrow integrity in ovariectomized rats. J Cell Physiol 2023; 238:407-419. [PMID: 36565474 DOI: 10.1002/jcp.30937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Intramuscular administration of p62/SQSTM1 (sequestosome1)-encoding plasmid demonstrated an anticancer effect in rodent models and dogs as well as a high safety profile and the first evidence of clinical benefits in humans. Also, an anti-inflammatory effect of the plasmid was reported in several rodent disease models. Yet, the mechanisms of action for the p62 plasmid remain unknown. Here, we tested a hypothesis that the p62-plasmid can act through the modulation of bone marrow multipotent mesenchymal cells (MSCs). We demonstrated that a p62 plasmid can affect MSCs indirectly by stimulating p62-transfected cells to secrete an active ingredient(s) sensed by untransfected MSCs. When we transfected MSCs with the p62-plasmid, collected their supernatant, and added it to an untransfected MSCs culture, it switched the differentiation state and prompt osteogenic responses of the untransfected MSCs. According to an accepted viewpoint, ovariectomy leads to bone pathology via dysregulation of MSCs, and restoring the MSC homeostasis would restore ovariectomy-induced bone damage. To validate our in vitro observations in a clinically relevant in vivo model, we administered the p62 plasmid to ovariectomized rats. It partially reversed bone loss and notably reduced adipogenesis with concurrent reestablishing of the MSC subpopulation pool within the bone marrow. Overall, our study suggests that remote modulation of progenitor MSCs via administering a p62-encoding plasmid may constitute a mechanism for its previously reported effects and presents a feasible disease-preventing and/or therapeutic strategy.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Albert A Sufianov
- Federal Center of Neurosurgery, Tyumen, Russian Federation.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Shneider
- CureLab Oncology Inc., Dedham, Massachusetts, USA.,Department of Molecular Biology, Ariel University, Ariel, Israel
| | | |
Collapse
|
6
|
Chaiyarit S, Thongboonkerd V. Oxidative Modifications Switch Modulatory Activities of Urinary Proteins From Inhibiting to Promoting Calcium Oxalate Crystallization, Growth, and Aggregation. Mol Cell Proteomics 2021; 20:100151. [PMID: 34562649 PMCID: PMC8551538 DOI: 10.1016/j.mcpro.2021.100151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
The incidence/prevalence of kidney stone disease has been increasing around the globe, but its pathogenic mechanisms remained unclear. We evaluated effects of oxidative modifications of urinary proteins on calcium oxalate (CaOx) stone formation processes. Urinary proteins derived from 20 healthy individuals were modified by performic oxidation, and the presence of oxidatively modified urinary proteins was verified, quantified, and characterized by Oxyblot assay and tandem MS (nanoLC-electrospray ionization-linear trap quadrupole-Orbitrap-MS/MS). Subsequently, activities of oxidatively modified urinary proteins on CaOx stone formation processes were examined. Oxyblot assay confirmed the marked increase in protein oxidation level in the modified urine. NanoLC-electrospray ionization-linear trap quadrupole-Orbitrap-MS/MS identified a total of 193 and 220 urinary proteins in nonmodified and modified urine samples, respectively. Among these, there were 1121 and 5297 unambiguous oxidatively modified peptides representing 42 and 136 oxidatively modified proteins in the nonmodified and modified urine samples, respectively. Crystal assays revealed that oxidatively modified urinary proteins significantly promoted CaOx crystallization, crystal growth, and aggregation. By contrast, the nonmodified urinary proteins had inhibitory activities. This is the first direct evidence demonstrating that oxidative modifications of urinary proteins increase the risk of kidney stone disease by switching their modulatory activities from inhibiting to promoting CaOx crystallization, crystal growth, and aggregation.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5523516. [PMID: 34257804 PMCID: PMC8260319 DOI: 10.1155/2021/5523516] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Perimenopause is an important stage of female senescence. Epidemiological investigation has shown that the incidence of cardiovascular disease in premenopausal women is lower than that in men, and the incidence of cardiovascular disease in postmenopausal women is significantly higher than that in men. This phenomenon reveals that estrogen has a definite protective effect on the cardiovascular system. In the cardiovascular system, oxidative stress is considered important in the pathogenesis of atherosclerosis, myocardial dysfunction, cardiac hypertrophy, heart failure, and myocardial ischemia. From the perspective of oxidative stress, estrogen plays a regulatory role in the cardiovascular system through the estrogen receptor, providing strategies for the treatment of menopausal women with cardiovascular diseases.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Bourgonje MF, Bourgonje AR, Abdulle AE, Kieneker LM, la Bastide-van Gemert S, Gansevoort RT, Bakker SJL, Mulder DJ, Pasch A, Saleh J, Gordijn SJ, van Goor H. Systemic Oxidative Stress, Aging and the Risk of Cardiovascular Events in the General Female Population. Front Cardiovasc Med 2021; 8:630543. [PMID: 33634173 PMCID: PMC7900172 DOI: 10.3389/fcvm.2021.630543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction: Menopause is associated with increased cardiovascular risk, in which oxidative stress plays a pivotal role. Systemic oxidative stress is reflected by decreased levels of free thiols (R-SH, sulfhydryl groups), which are key components of the extracellular antioxidant machinery. In this study, we investigated the relation between serum free thiols as marker of oxidative stress and the female cardiovascular phenotype, as well as potential associations with the risk of cardiovascular (CV) events in pre- and postmenopausal women from the general population. Methods: Female participants (n = 2,980) of the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) cohort study were included. Serum free thiol concentrations were analyzed for associations with demographic, clinical, biochemical, and gynecological parameters, as well as with menopausal status and, prospectively, with the risk of CV events. Results: Postmenopausal women had significantly reduced levels of serum free thiols (4.8 ± 1.0 vs. 5.2 ± 1.0 μmol/g, P < 0.001) compared to reproductive women. In multivariable analyses, serum free thiols were significantly associated with menopausal status (OR 0.70 [0.49–0.98], P = 0.039), even when adjusted for potential confounding factors, except for age (P = 0.550). Prospectively, serum free thiols were significantly associated with the risk of CV events (HR 0.52 [0.27–0.97], P = 0.040), even with covariate adjustment, although this disappeared when correcting for age. Conclusion: In this study, we revealed serum free thiols to be strongly associated with the female cardiovascular phenotype as well as with female risk of CV events, where the influence of age itself seemed to outweigh that of female menopause. Future studies are warranted to further unravel the clinical utility of serum free thiol levels in the context of female cardiovascular risk management.
Collapse
Affiliation(s)
- Martin F Bourgonje
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Amaal E Abdulle
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lyanne M Kieneker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Douwe J Mulder
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Andreas Pasch
- Department of Physiology and Pathophysiology, Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Jumana Saleh
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
The Developing Cerebellum as a Target for Toxic Substances: Protective Role of Antioxidants. THE CEREBELLUM 2021; 20:614-630. [PMID: 33474620 DOI: 10.1007/s12311-021-01231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cerebellar development begins during the late embryological period and continues to undergo organizational changes long after birth. The cerebellum is particularly susceptible to developmental abnormalities on exposure to oxidants and free radicals, thus leading to oxidative stress. Oxidative stress occurs when there is an imbalance between reactive oxygen species generation and antioxidant defences which may disrupt signalling pathways, leading to cerebellar anomalies and dysfunction. In this regard, this review assesses current research underlining the importance of the cerebellum, provides an update on substances affecting cerebellar development and highlights some promising antioxidants that may play a role in attenuating toxicity in the developing cerebellum. To accomplish this, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) system was employed and key scientific databases such as Science Direct, PubMed, Scopus, Web of Science and Google Scholar were searched to explore and collect information on the cerebellum and the role of antioxidants during its development. Originally, 109 articles were obtained but 22 articles which met the inclusion criteria were selected for the review. These findings provide an updated compilation of antioxidants capable of attenuating oxidative damage in the developing cerebellum, thus allowing future interdisciplinary studies in the form of clinical applications for screening and possible development of novel therapeutic agents from the identified products.
Collapse
|
10
|
Factors related to follicular oxidative stress in intracytoplasmic sperm injection cycles and its effects on granulosa cells. ZYGOTE 2020; 29:59-65. [PMID: 32981552 DOI: 10.1017/s0967199420000520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to investigate several common conditions that may potentially be correlated with follicular oxidative status during an intracytoplasmic sperm injection (ICSI) cycle and that include the serum oestrogen level on the day of oocyte pick-up, maternal age and pregnancy outcome. Patients that were enrolled in the study were classified randomly into three groups using their numerical order. The first group were classified based on maternal age (<35 and ≥35 years) (n = 398), the second group on the serum oestradiol (E2) level on the day of human chorionic gonadotropin (hCG) administration (levels >90th percentile and ≤ 90th percentile) (n = 491) and the third group on pregnancy outcome (positive/negative) (n = 376). The groups were matched for the other variables (stimulation protocol, dose of gonadotropin, duration of stimulation, antral follicle count, body mass index, basal follicle stimulating hormone (FSH), and E2 levels and day of hCG trigger) to prevent the possible contribution of those parameters to the results. Each group was matched for other variables (stimulation protocol, dose of gonadotrophin, duration of stimulation, antral follicle count, body mass index, basal FSH and E2 levels and day of hCG trigger) that may have affected the outcome, except for the parameter under investigation. Maternal age (P = 0.044,168 r = 0.418), oestrogen level on day of hCG administration (P = 0.001, r = 0.436) and pregnancy outcome (AUC = 0.65, P = 0.071) were found to be correlated with follicular oxidative status. The results obtained will help us to shield patients from possible situations that may cause oxidative stress and therefore adverse outcomes of an ICSI cycle.
Collapse
|
11
|
Systemic Oxidative Stress Is Increased in Postmenopausal Women and Independently Associates with Homocysteine Levels. Int J Mol Sci 2020; 21:ijms21010314. [PMID: 31906485 PMCID: PMC6982320 DOI: 10.3390/ijms21010314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of cardiovascular diseases (CVD). Postmenopausal women have an increased risk of developing CVD due to decreased estrogen availability, which is accompanied by increased oxidative stress. Serum free thiols (R-SH) provide a robust and powerful read-out of systemic oxidative stress. In this study, we aimed to establish serum levels of free thiols and explore associations between free thiols and demographic, clinical, and biochemical parameters related to obesity and the risk for developing CVD in both pre- and postmenopausal women. Serum free thiols were measured in a cohort consisting of healthy pre- (n = 223) and postmenopausal (n = 118) Omani women. Postmenopausal women had significantly lower levels of serum free thiols as compared to premenopausal women (762.9 ± 85.3 vs. 780 ± 80.9 μM, age-adjusted p < 0.001). Women′s age was positively associated with serum free thiol levels in premenopausal women (β = 0.36, p = 0.002), whereas an inverse association was observed in postmenopausal women (β = −0.29, p = 0.002). Homocysteine levels were significantly inversely associated with serum free thiol levels in both pre- (β = −0.19, p = 0.005) and postmenopausal (β = −0.20, p = 0.032) women, independent from known cardiovascular risk factors. In this study, we show that postmenopausal women are affected by increased systemic oxidative stress, which independently associates with homocysteine levels.
Collapse
|
12
|
Sex and Gender Differences in Heart Failure. ACTA ACUST UNITED AC 2020; 2:157-181. [PMID: 36262368 PMCID: PMC9536682 DOI: 10.36628/ijhf.2020.0004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/04/2023]
|
13
|
Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med 2019; 25:1657-1666. [PMID: 31700185 DOI: 10.1038/s41591-019-0643-8] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
The prevalence of cardiometabolic disorders in both women and men has increased worldwide and is linked to a rise in obesity and obesity-associated associated clustering of other cardiometabolic risk factors such as hypertension, impaired glucose regulation and dyslipidemia. However, the predominance of common types of cardiometabolic disorders such as heart failure, atrial fibrillation and ischemic heart disease is sex specific, and our identification of these and the underlying mechanisms is only just emerging. New evidence suggests that sex hormones, sex-specific molecular mechanisms and gender influence glucose and lipid metabolisms, as well as cardiac energy metabolism, and function. Here we review sex differences in cardiometabolic risk factors, associated preclinical and clinical cardiac disorders and potential therapeutic avenues.
Collapse
Affiliation(s)
- Eva Gerdts
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Vera Regitz-Zagrosek
- Berlin Institute for Gender in Medicine, Charité Universitätsmedizin, Berlin, Germany.,DZHK, partner site Berlin, Berlin, Germany
| |
Collapse
|
14
|
Elnoury HA. Isoquercetin Could Protect Against Ovariectomy-Induced Neuronal Changes in Rats. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.32527/2019/101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Boese AC, Chang L, Yin KJ, Chen YE, Lee JP, Hamblin MH. Sex differences in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2018; 314:H1137-H1152. [PMID: 29350999 DOI: 10.1152/ajpheart.00519.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder with a high case fatality rate in the instance of rupture. AAA is a multifactorial disease, and the etiology is still not fully understood. AAA is more likely to occur in men, but women have a greater risk of rupture and worse prognosis. Women are reportedly protected against AAA possibly by premenopausal levels of estrogen and are, on average, diagnosed at older ages than men. Here, we review the present body of research on AAA pathophysiology in humans, animal models, and cultured cells, with an emphasis on sex differences and sex steroid hormone signaling.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
16
|
Narumi M, Takahashi K, Yamatani H, Seino M, Yamanouchi K, Ohta T, Takahashi T, Kurachi H, Nagase S. Oxidative Stress in the Visceral Fat Is Elevated in Postmenopausal Women with Gynecologic Cancer. J Womens Health (Larchmt) 2018; 27:99-106. [DOI: 10.1089/jwh.2016.6301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Megumi Narumi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kazuhiro Takahashi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hizuru Yamatani
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Manabu Seino
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Keiko Yamanouchi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshifumi Takahashi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hirohisa Kurachi
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
17
|
El-Bayomi KM, Saleh AA, Awad A, El-Tarabany MS, El-Qaliouby HS, Afifi M, El-Komy S, Essawi WM, Almadaly EA, El-Magd MA. Association of CYP19A1 gene polymorphisms with anoestrus in water buffaloes. Reprod Fertil Dev 2018; 30:487-497. [DOI: 10.1071/rd16528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/17/2017] [Indexed: 01/23/2023] Open
Abstract
Cytochrome P450 aromatase (encoded by the CYP19A1 gene) regulates oestrogen biosynthesis and so plays an essential role in female fertility. We investigated the genetic association of CYP19A1 with the risk of anoestrus in Egyptian water buffaloes. A total of 651 animals (326 anoestrous and 325 cycling) were used in this case-control study. Using single-strand conformation polymorphisms and sequencing, four single nucleotide polymorphisms (SNPs) were detected; c.−135T > C SNP in the 5′UTR and three non-synonymous SNPs: c.559G > A (p. V187M) in Exon 5, c.1285C > T (p. P429S) and c.1394A > G (p. D465G) in Exon 10. Individual SNP-anoestrus association analyses revealed that genotypes (CC, AA and GG) and alleles (C, A and G) of the −135T > C, c.559G > A and c.1394A > G SNPs respectively were high risk for anoestrus. A further analysis confirmed that these three SNPs were in linkage disequilibrium. Additionally, haplotypes with two (TAG/122 and CAA/221) or three (CAG/222) risk alleles were significantly associated with susceptibility to anoestrus, lower blood levels of both oestradiol and antioxidant enzymes (superoxide dismutase, glutathione peroxidase (GPX) and catalase) and downregulated expression levels of CYP19A1, oestrogen receptor α and Gpx3 in the ovary, as well as increased serum level of malondialdehyde. This suggests the occurrence of a high incidence of oxidative ovarian damage and subsequently ovarian inactivity in buffaloes carrying risk alleles. Therefore, with this study we suggest the selection of buffaloes with protective alleles at these SNPs to improve the reproductive efficiency of the herd.
Collapse
|
18
|
Schüller ÁK, Mena Canata DA, Hackenhaar FS, Engers VK, Heemann FM, Putti JS, Salomon TB, Benfato MS. Effects of lipoic acid and n-3 long-chain polyunsaturated fatty acid on the liver ovariectomized rat model of menopause. Pharmacol Rep 2017; 70:263-269. [PMID: 29475009 DOI: 10.1016/j.pharep.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bilateral ovariectomy is an experimental model used to analyse the effects of menopause and develop strategies to mitigate the deleterious effects of this condition. Supplementation of the diet with antioxidants has been used to reduce potential oxidative stress caused by menopause. The purpose of the study was to analyse the effects of α-lipoic acid (LA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), dietary supplementation on oxidative stress in the livers of ovariectomized rats. METHODS In this study, we evaluated the effect of dietary supplementation with LA, DHA and EPA for a period of 16 weeks on oestrogen levels and oxidative stress biomarkers in the livers of ovariectomized 25 three-month-old rats. RESULTS Serum oestrogen levels were lower after ovariectomy but were not altered by dietary treatments. LA was capable of acting in the liver, recovering the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and reducing protein oxidative damage. Moreover, LA supplementation reduced nitrite and nitrate levels. DHA and EPA recovered the antioxidant activity of cytosolic and mitochondrial superoxide dismutase, decreasing protein oxidation. Protection against lipid oxidation differed between treatments. The DHA-treated group showed increased levels of the lipid peroxidation biomarker malondialdehyde compared to the ovariectomized group. However, malondialdehyde levels were not altered by EPA treatment. CONCLUSIONS The results suggest that the antioxidant response varies among evaluated supplementations and all supplements were able to alter enzymatic and non-enzymatic antioxidants in the livers of ovariectomized rats. DHA presented the most evident antioxidant effect, decreasing protein and lipid damage.
Collapse
Affiliation(s)
- Ártur Krumberg Schüller
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Antonio Mena Canata
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Schäfer Hackenhaar
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Krüger Engers
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Maciel Heemann
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Salete Putti
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara Silveira Benfato
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
19
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
20
|
Somjen D, Kohen F, Limor R, Sharon O, Knoll E, Many A, Stern N. Estradiol-17β increases 12- and 15-lipoxygenase (type2) expression and activity and reactive oxygen species in human umbilical vascular smooth muscle cells. J Steroid Biochem Mol Biol 2016; 163:28-34. [PMID: 27033413 DOI: 10.1016/j.jsbmb.2016.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The net vascular effect of estrogens on the vasculature is still under debate. Here we tested the effects of estradiol- 17β (E2) as well as estrogen-receptor subtype specific and non-specific agonists and antagonists on the expression and eicosanoid production of lipoxygenase (LO) enzymes expressed in culture human umbilical vascular smooth muscle cells (VSMC), the platelet type 12LO and 15LO type 2. E2 increased 12 and 15LO mRNA expression by 2-3 folds and elicited an acute 50% increase 12 and 15 hydroxyeicosatetraenoic acid (HETE) production. Neither estrogen receptor ERα nor ERβ-specific agonists were able to reproduce the induction of LO expression, but E2-induced expression was effectively blocked by ER non-specific and receptor subtype specific antagonists. Because 12 and 15HETE can increase reactive oxygen species in other cell types, we tested the possibility that E2 could raise ROS through LO. Indeed, E2 as well as the LO products 12 and 15HETE increased reactive oxygen species (ROS) in VSMC. E2-dependent and HETE-induced ROS could be blocked by NAD (P) H-oxidase inhibitors and by the ER general antagonist ICI. E2-induced ROS was partially (∼50%) blocked by the LO inhibitor baicalein, but the LO blocker had no effect on 12 or 15HETE- induced ROS formation, thus suggesting that part of E2-dependent ROS generation resulted from E2-induced 12 and 15HETE. Collectively these findings unveil an unrecognized effect of E2 in human VSMC, to induce 12 and 15LO type 2 expression and activity and suggest that E2-dependent ROS formation in VSMC may be partially mediated by the induction of 12 and 15HETE.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Flavanones/pharmacology
- Gene Expression Regulation
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitriles/pharmacology
- Phenols/pharmacology
- Piperidines/pharmacology
- Primary Cell Culture
- Propionates/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Raloxifene Hydrochloride/pharmacology
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Umbilical Veins/metabolism
Collapse
Affiliation(s)
- Dalia Somjen
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Fortune Kohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Limor
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orli Sharon
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Esther Knoll
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Many
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naftali Stern
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Stepniak J, Karbownik-Lewinska M. 17β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary. Syst Biol Reprod Med 2015; 62:17-21. [PMID: 26677908 DOI: 10.3109/19396368.2015.1101510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Estrogens, with their principle representative 17β-estradiol, contribute to the redox state of cells showing both pro- and antioxidative properties. In the ovary, being the main source of estrogens, maintaining balance between the production and detoxification of ROS is crucial. Whereas ovary estrogen concentration is difficult to estimate, its circulating concentration in women may reach the nanomolar level. The aim of the study was to evaluate the effects of 17β-estradiol on oxidative damage to membrane lipids (lipid peroxidation, LPO) and to nuclear DNA in the porcine ovary under basal conditions and in the presence of Fenton reaction (Fe(2+)+H2O2→Fe(3+)+(•)OH + OH(-)) substrates. Ovary homogenates and DNA were incubated in the presence of 17β-estradiol (1 mM-1 pM), without/with FeSO4 (30 μM) + H2O2 (0.5 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. The concentration of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) (DNA damage index) was measured by HPLC. We observed that 17β-estradiol did not alter the basal level of oxidative damage, but reduced Fe(2+)+H2O2-induced oxidative damage to membrane lipids when ≥10 nM and to DNA at concentrations ≥1 nM. In the ovary at near physiological concentration, 17β-estradiol prevents experimentally induced oxidative damage. This suggests that under physiological conditions this hormone may contribute to protecting the ovary against oxidative damage.
Collapse
Affiliation(s)
- Jan Stepniak
- a Department of Oncological Endocrinology , Medical University of Lodz and
| | - Malgorzata Karbownik-Lewinska
- a Department of Oncological Endocrinology , Medical University of Lodz and.,b Department of Endocrinology and Metabolic Diseases , Polish Mother's Memorial Hospital - Research Institute , Lodz , Poland
| |
Collapse
|
22
|
Pereyra-Venegas J, Segura-Alegría B, Guadarrama-Olmos JC, Mariscal-Tovar S, Quiróz-González S, Jiménez-Estrada I. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats. J Anim Physiol Anim Nutr (Berl) 2014; 99:974-86. [DOI: 10.1111/jpn.12274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 10/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- J. Pereyra-Venegas
- Departamento de Biología; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Tlalnepantla de Baz Estado de México México
- Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - B. Segura-Alegría
- Departamento de Biología; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Tlalnepantla de Baz Estado de México México
| | - J. C. Guadarrama-Olmos
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| | - S. Mariscal-Tovar
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| | - S. Quiróz-González
- Departamento de Acupuntura y Rehabilitación; Universidad Estatal del Valle de Ecatepec; Valle de Anáhuac Ecatepec Estado de México México
| | - I. Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| |
Collapse
|
23
|
Effendy NM, Shuid AN. Time and dose-dependent effects of Labisia pumila on bone oxidative status of postmenopausal osteoporosis rat model. Nutrients 2014; 6:3288-302. [PMID: 25195641 PMCID: PMC4145309 DOI: 10.3390/nu6083288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/16/2022] Open
Abstract
Postmenopausal osteoporosis can be associated with oxidative stress and deterioration of antioxidant enzymes. It is mainly treated with estrogen replacement therapy (ERT). Although effective, ERT may cause adverse effects such as breast cancer and pulmonary embolism. Labisia pumila var. alata (LP), a herb used traditionally for women’s health was found to protect against estrogen-deficient osteoporosis. An extensive study was conducted in a postmenopausal osteoporosis rat model using several LP doses and duration of treatments to determine if anti-oxidative mechanisms were involved in its bone protective effects. Ninety-six female Sprague-Dawley rats were randomly divided into six groups; baseline group (BL), sham-operated (Sham), ovariectomised control (OVXC), ovariectomised (OVX) and given 64.5 μg/kg of Premarin (ERT), ovariectomised and given 20 mg/kg of LP (LP20) and ovariectomised and given 100 mg/kg of LP (LP100). The groups were further subdivided to receive their respective treatments via daily oral gavages for three, six or nine weeks of treatment periods. Following euthanization, the femora were dissected out for bone oxidative measurements which include superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA) levels. Results: The SOD levels of the sham-operated and all the treatment groups were significantly higher than the OVX groups at all treatment periods. The GPx level of ERT and LP100 groups at the 9th week of treatment were significantly higher than the baseline and OVX groups. MDA level of the OVX group was significantly higher than all the other groups at weeks 6 and 9. The LP20 and LP100 groups at the 9th week of treatment had significantly lower MDA levels than the ERT group. There were no significant differences between LP20 and LP100 for all parameters. Thus, LP supplementations at both doses, which showed the best results at 9 weeks, may reduce oxidative stress which in turn may prevent bone loss via its anti-oxidative property.
Collapse
Affiliation(s)
- Nadia Mohd Effendy
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Xiao D, Hu XQ, Huang X, Zhou J, Wilson SM, Yang S, Zhang L. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PLoS One 2013; 8:e73731. [PMID: 24066066 PMCID: PMC3774750 DOI: 10.1371/journal.pone.0073731] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022] Open
Abstract
Chronic hypoxia during gestation has profound adverse effects on the adaptation of uteroplacental circulation in pregnancy. Yet, the underlying mechanisms are not fully understood. The present study tested the hypothesis that enhanced production of reactive oxygen species (ROS) in uterine arteries plays a critical role in the maladaptation of uterine circulation associated with chronic hypoxia. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (~300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia significantly increased ROS production in uterine arteries of pregnant, but not nonpregnant, sheep. This was associated with a significant increase in NADPH oxidase (Nox) 2, but not Nox1 or Nox4, protein abundance and total Nox activity in uterine arteries of pregnant animals. Chronic hypoxia significantly increased pressure-dependent uterine arterial myogenic tone in pregnant sheep, which was abrogated by a Nox inhibitor apocynin. Additionally, the hypoxia-induced increase in myogenic reactivity of uterine arteries to phorbol 12,13-dibutyrate in pregnant sheep was blocked by apocynin and tempol. In consistence with the myogenic responses, the hypoxia-mediated down-regulation of BKCa channel activity in uterine arteries of pregnant animals was reversed by apocynin. The findings suggest that heightened oxidative stress in uterine arteries plays a key role in suppressing the BKCa channel activity, resulting in increased myogenic reactivity and maladaptation of uteroplacental circulation caused by chronic hypoxia during gestation.
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Xiaohui Huang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Jianjun Zhou
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Sean M. Wilson
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Shumei Yang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
25
|
Lima-Mendoza LA, Colado-Velázquez J, Mailloux-Salinas P, Espinosa-Juárez JV, Gómez-Viquez NL, Molina-Muñoz T, Huang F, Bravo G. Vascular damage in obese female rats with hypoestrogenism. J Physiol Biochem 2013; 70:81-91. [DOI: 10.1007/s13105-013-0283-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 08/12/2013] [Indexed: 12/20/2022]
|
26
|
Arias-Loza PA, Muehlfelder M, Pelzer T. Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch 2013; 465:739-46. [DOI: 10.1007/s00424-013-1247-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023]
|
27
|
Baek IJ, Jung KY, Yon JM, Lee SR, Lee BJ, Yun YW, Nam SY. Phospholipid hydroperoxide glutathione peroxidase gene is regulated via an estrogen and estrogen receptor signaling in cultured mouse fetuses. In Vitro Cell Dev Biol Anim 2011; 47:535-40. [PMID: 21717270 DOI: 10.1007/s11626-011-9438-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/20/2011] [Indexed: 01/18/2023]
Abstract
Although it has been suggested that the transcription of phospholipid hydroperoxide glutathione peroxidase (PHGPx), an essential antioxidant selenoenzyme, may be affected by the estrogen state in mammals, the direct mechanism underlying the regulation of the PHGPx gene by estrogens in mammalian tissues remains to be clearly elucidated. In this study, we evaluated the expression of the PHGPx mRNA in cultured mouse fetuses (embryonic days 8.5-10.5) exposed to 17β-estradiol (E(2); 0.1, 1, 10, 100, and 1,000 ng/ml); estrogen receptor (ER) agonists [propyl pyrazole triol (PPT, an ERα-selective ligand, 1 μl/ml) and diarylpropionitrile (DPN, an ERβ-selective ligand, 1 μl/ml)]; and/or ER antagonist [ICI 182,780 (ICI, 1 μl/ml)] using a whole embryo culture system. E(2)-alone treatment significantly stimulated the expressions of both ERα and ERβ mRNAs in all the cultured fetuses (p < 0.05), although the ERβ mRNA levels were higher than ERα mRNA. PHGPx mRNA expression was significantly increased in all the fetuses treated with E(2) (1-1,000 ng/ml), PPT, and DPN (p < 0.05). Furthermore, pretreatment with ICI completely blocked the E(2)-induced PHGPx mRNA expression in the fetuses. In addition, the mRNA levels of cytosolic GPx, the other intracellular antioxidant selenoenzyme, did not differ significantly from the controls by an exposure to those agents. These results suggest that the PHGPx gene is regulated via an estrogen and ER signal pathway in the cultured mouse fetus.
Collapse
Affiliation(s)
- In-Jeoung Baek
- Laboratory of Mouse Molecular Genetics, Department of Biochemistry, College of Science, Yonsei University, Seoul, 120-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Okumura M, Iwai M, Nakaoka H, Sone H, Kanno H, Senba I, Ito M, Horiuchi M. Possible involvement of AT2 receptor dysfunction in age-related gender difference in vascular remodeling. ACTA ACUST UNITED AC 2011; 5:76-84. [DOI: 10.1016/j.jash.2011.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/26/2022]
|
29
|
Meng X, Dai X, Liao TD, D'Ambrosio M, Wang F, Yang JJ, Yang XP. Dose-dependent toxic effects of high-dose estrogen on renal and cardiac injury in surgically postmenopausal mice. Life Sci 2010; 88:178-86. [PMID: 21074543 DOI: 10.1016/j.lfs.2010.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/08/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023]
Abstract
AIMS We previously found that in mice with experimental myocardial infarction (MI), 17β-estradiol (E2) increased mortality and worsened cardiac remodeling and these deleterious effects were associated with renal enlargement and hydronephrosis in a dose-dependent manner. In the present study we questioned whether E2-induced renal damage predisposes to rather than results from its adverse effects on the heart. MAIN METHODS Ovariectomized (ovx) mice received either placebo (P) or E2 at 0.02 (E2-L, low dose), 0.42 (E2-M, moderate dose) or 4.2 μg/d (E2-H, high dose) for 8 weeks. KEY FINDINGS E2-L partially restored uterine weight and plasma estrogen levels without affecting heart, lung and liver weight, hemodynamic parameters, or heart and kidney morphology and function. E2-M restored normal uterine weight, but this was accompanied by a significant increase in kidney weight, albuminuria, glomerular matrix formation and markers for oxidative stress. E2-H increased uterine weight 4.5-fold and resulted in higher plasma creatinine levels, severe albuminuria, renal tubular dilatation, tubulointerstitial injury, hydronephrosis, glomerulosclerosis and oxidative stress. E2-H also caused ascites, hepatomegaly and fluid retention in the uterine horns but had no significant effect on blood pressure or heart function. SIGNIFICANCE Our data demonstrated that an excessive dose of E2 that raises uterine weight beyond physiological levels adversely affects the kidney even before it damages the heart. We believe estrogen dosage should be taken into account when considering hormonal replacement therapy, since inappropriate doses of E2 may damage not only the heart but also the kidney.
Collapse
Affiliation(s)
- Xiaomei Meng
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sullivan JC, Pardieck JL, Brinson K, Kang KT. Effects of estradiol on renal cyclic guanosine monophosphate and oxidative stress in spontaneously hypertensive rats. ACTA ACUST UNITED AC 2010; 6:498-510. [PMID: 19850246 DOI: 10.1016/j.genm.2009.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2009] [Indexed: 01/02/2023]
Abstract
BACKGROUND Evidence suggests that estradiol offers protection against the development of cardiovascular and renal pathologies, although the mechanisms involved are still under investigation. The nitric oxide (NO) pathway regulates blood pressure and kidney function, and estradiol is associated with increases in NO bioavailability. We hypothesized that in female spontaneously hypertensive rats (SHRs), estra-diol increases NO bioavailability, activates the NO synthase (NOS) pathway, and suppresses superoxide production compared with rats that underwent ovariectomy (OVX). OBJECTIVE The goal of this study was to determine whether estradiol regulates the NO/cyclic guanosine monophosphate (cGMP) pathway and superoxide levels in the kidneys of female SHR. METHODS Three types of SHRs were studied: gonad-intact females, OVX rats, and OVX rats with estra-diol replacement (OVX+E). Renal cortical cGMP levels were measured to assess NO bioavailability. NOS enzymatic activity, NOS protein expression, basal superoxide production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity were measured in the renal cortex. RESULTS Fifty-six SHRs were included in the study (17 intact females, 21 OVX rats, 18 OVX+E rats). Mean (SEM) cGMP levels were significantly lower in the renal cortex of OVX rats (0.03 [0.008] pmol/mg, n = 5) than in intact females (0.1 [0.02] pmol/mg, n = 6; P < 0.05), and estradiol restored cGMP levels to those seen in intact females (0.1 [0.01] pmol/mg, n = 5; P < 0.05). Despite a decrease in cGMP following OVX, renal cortical NOS activity, NOS1 and NOS3 protein expression, and the phosphorylation status of NOS3 were comparable among the 3 groups (n = 7-9 per group). However, mean basal superoxide production in the renal cortex was higher in OVX rats (3.2 [0.3] cpm/mg, n = 12) than in intact females (1.9 [0.3] cpm/mg, n = 8; P < 0.05) and lower in OVX+E rats (1.3 [0.3] cpm/mg, n = 9; P < 0.05). Mean NADPH oxidase activity was comparable in the renal cortex of intact females and OVX rats (81 [4] and 83 [12] cpm/35 microg, respectively [n = 5 per group]). OVX+E rats had significantly lower mean renal cortical NADPH oxidase activity than did rats in the other groups (45 [6] cpm/35 microg, n = 6; P < 0.05), and the decrease in activity was accompanied by a decrease in p22(phox) protein expression. CONCLUSIONS In vivo manipulations of estradiol levels influenced renal cortical NO bioavailability, as assessed indirectly by cGMP measurements. The decrease in cGMP following OVX was not due to alterations in the activity or expression of NOS.
Collapse
|
31
|
Effects of Oral Estrogen on Aortic ROS-Generating and -Scavenging Enzymes and Atherosclerosis in apoE-Deficient Mice. Exp Biol Med (Maywood) 2009; 234:1037-46. [DOI: 10.3181/0811-rm-332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of hormone replacement therapy (HRT) on cardiovascular diseases remains controversial. Studies conducted on postmenopausal women indicate that oral HRT increases risk factors that may counteract the atheroprotective effect of estrogen. However, the effects of estrogen on atherosclerosis have been examined using subcutaneous estrogen in most animal studies, which points to the need for evaluating the effect of oral estrogen. Reactive oxygen species (ROS) have emerged as critical factors in the pathogenesis of atherosclerosis. This study examined the effect of long-term oral estrogen treatment on aortic oxidative stress and atherosclerosis in female apoE−/− mice to mimic HRT in humans. Ovariectomized apoE−/− mice were given 6 μg/day of oral 17β-estradiol (E2) or control vehicle for 12 weeks. Estrogen treatment reduced atherosclerotic lesions by 38% (E2: 0.20 ± 0.01 mm2/section; control vehicle: 0.32 ± 0.02 mm2/section) and intima by 32% (E2: 0.44 ± 0.02 mm2/section; control vehicle: 0.65 ± 0.04 mm2/section) in the aortic root. Serum levels of total and low-density lipoprotein cholesterol were significantly decreased after estrogen treatment. Aortic superoxide anion levels and the expression of NAD(P)H oxidase subunit p22phox markedly decreased, and two ROS scavenging enzymes, Cu/ZnSOD and MnSOD, were upregulated after estrogen treatment. Estrogen at physiological concentration inhibited tumor necrosis factor-α-stimulated NAD(P)H oxidase activity in both cultured smooth muscle cells and peritoneal macrophages. These results showed that long-term oral estrogen treatment reduces ROS levels and atherosclerosis progression in apoE−/− mice. Oral estrogen alters ROS-generating and -scavenging enzyme expression, suggesting that anti-oxidative actions in the vessel wall contribute to atheroprotective effects of estrogen.
Collapse
|
32
|
Endothelial damage due to impaired nitric oxide bioavailability triggers cerebral aneurysm formation in female rats. J Hypertens 2009; 27:1284-92. [PMID: 19307983 DOI: 10.1097/hjh.0b013e328329d1a7] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Epidemiological data indicate a high incidence of cerebral aneurysms in postmenopausal women. To elucidate the pathogenesis of cerebral aneurysms, we focused on the contribution of endothelial damage in rats. METHODS We induced estradiol deficiency by oophorectomy (OVX), hypertension, or both, and hemodynamic stress in 7-week-old female Sprague-Dawley rats. They were then given hormone-replacement therapy with 17beta-estradiol or an angiotensin II type 1 receptor blocker (ARB). The effects of estradiol, angiotensin II type 1 receptor blocker, or both on cultured endothelial cells were also examined. RESULTS The number of anomalously shaped endothelial cells was higher in OVX than hypertensive rats (P < 0.05). Rats subjected to hypertension and OVX exhibited a marked increase in the incidence of saccular cerebral aneurysms. Estradiol or angiotensin II type 1 receptor blocker treatment reduced this incidence (P < 0.05). The endothelial nitric oxide synthase (eNOS) mRNA level in the intracranial artery of OVX and hypertensive and OVX rats was low (P < 0.05). Immunohistochemically, the expression of eNOS and estrogen receptor alpha (ERalpha) in the vascular wall of hypertensive and OVX rats was decreased; angiotensin II and the nicotinamide adenine dinucleotide phosphate oxidase subunits nicotinamide adenine dinucleotide phosphate oxidase 4 and p22phox were strongly expressed in cerebral aneurysms. In the absence of estradiol, eNOS was downregulated and nicotinamide adenine dinucleotide phosphate oxidase expression was increased in endothelial cells; angiotensin II augmented these phenomena. The regulation of eNOS was mediated by ERalpha. These results suggest that estrogen deficiency induces endothelial dysfunction and reactive oxygen species generation, triggering endothelial damage that leads to cerebral aneurysms and that hypertension is an additional risk factor. CONCLUSION A therapy targeted at the endothelium and management of hypertension may help to prevent cerebral aneurysms.
Collapse
|
33
|
Sharma K, RamachandraRao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008; 118:1645-56. [PMID: 18431508 PMCID: PMC2323186 DOI: 10.1172/jci32691] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 02/20/2008] [Indexed: 12/13/2022] Open
Abstract
Increased albuminuria is associated with obesity and diabetes and is a risk factor for cardiovascular and renal disease. However, the link between early albuminuria and adiposity remains unclear. To determine whether adiponectin, an adipocyte-derived hormone, is a communication signal between adipocytes and the kidney, we performed studies in a cohort of patients at high risk for diabetes and kidney disease as well as in adiponectin-knockout (Ad(-/-)) mice. Albuminuria had a negative correlation with plasma adiponectin in obese patients, and Ad(-/-) mice exhibited increased albuminuria and fusion of podocyte foot processes. In cultured podocytes, adiponectin administration was associated with increased activity of AMPK, and both adiponectin and AMPK activation reduced podocyte permeability to albumin and podocyte dysfunction, as evidenced by zona occludens-1 translocation to the membrane. These effects seemed to be caused by reduction of oxidative stress, as adiponectin and AMPK activation both reduced protein levels of the NADPH oxidase Nox4 in podocytes. Ad(-/-) mice treated with adiponectin exhibited normalization of albuminuria, improvement of podocyte foot process effacement, increased glomerular AMPK activation, and reduced urinary and glomerular markers of oxidant stress. These results suggest that adiponectin is a key regulator of albuminuria, likely acting through the AMPK pathway to modulate oxidant stress in podocytes.
Collapse
Affiliation(s)
- Kumar Sharma
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Satish RamachandraRao
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gang Qiu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hitomi Kataoka Usui
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yanqing Zhu
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen R. Dunn
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Raogo Ouedraogo
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kelly Hough
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter McCue
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lawrence Chan
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bonita Falkner
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barry J. Goldstein
- Translational Research in Kidney Disease, Division of Nephrology, Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Veterans Administration San Diego Healthcare System, La Jolla, California, USA.
Center for Novel Therapies in Kidney Disease, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, and
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Division of Endocrinology, Diabetes, and Metabolic Diseases, Baylor College of Medicine, Houston, Texas, USA.
Center for Hypertension, Division of Nephrology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Zheng W, Ji H, Maric C, Wu X, Sandberg K. Effect of dietary sodium on estrogen regulation of blood pressure in Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 2008; 294:H1508-13. [PMID: 18245561 DOI: 10.1152/ajpheart.01322.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of high-sodium (HS) and normal-sodium (NS) diets on ovarian hormone modulation of mean arterial pressure (MAP) were examined in Dahl salt-resistant (DR) and salt-sensitive (DS) rats. Ovariectomy increased MAP (OVX-Sham) to a greater extent in DS rats maintained for 2 wk on a HS (22 mmHg) compared with a NS (6 mmHg) diet. Ovariectomy had no effect on MAP in DR rats on NS but did increase MAP in rats on HS (10 mmHg) diets. On HS diets, glomerular filtration rate (GFR) was 36% less in the DS-Sham than DR-Sham animals; ovariectomy increased GFR in both strains by 1.4-1.5-fold; glomerular angiotensin II type 1 receptor (AT(1)R) densities were 1.6-fold higher in the DS-Sham than in the DR-Sham group; ovariectomy increased glomerular AT(1)R densities by 1.3-fold in DR rats but had no effect in DS rats; 17beta-estradiol (E(2)) downregulated adrenal AT(1)R densities in both strains on either diet; ovariectomy reduced estrogen receptor-alpha (ER-alpha) protein expression in the renal cortex by 40-50% although renal ER-alpha expression was 34% lower in DS than in DR rats. These observed effects of gonadectomy were prevented by E(2) treatment, suggesting that E(2) deficiency mediates the effects of ovariectomy on MAP, GFR, AT(1)R densities, and renal ER-alpha protein expression. In conclusion, ovariectomy-induced increases in MAP are augmented by HS diet in both strains, and this effect is not mediated by a reduction in GFR. Aberrant renal AT(1)R regulation and reduced renal ER-alpha expression are potential contributors to the hypertensive effects of E(2) deficiency in DS rats. These findings have implications for women with salt-sensitive hypertension and women who are E(2) deficient, such as postmenopausal women.
Collapse
Affiliation(s)
- Wei Zheng
- Georgetown University, NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|