1
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Busceti CL, Fornai F, Rubattu S. Uncoupling Protein 2 as a Pathogenic Determinant and Therapeutic Target in Cardiovascular and Metabolic Diseases. Curr Neuropharmacol 2022; 20:662-674. [PMID: 33882809 PMCID: PMC9878956 DOI: 10.2174/1570159x19666210421094204] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022] Open
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.
Collapse
Affiliation(s)
- Rosita Stanzione
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Address correspondence to these authors at the IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Is, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail: and Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, 00189 Rome, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail:
| | | | | | | | | | | | - Francesco Fornai
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli Isernia, Italy,,Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy,Address correspondence to these authors at the IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Is, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail: and Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, 00189 Rome, Italy; Tel: +390865915224/23; Fax: +390865927575; E-mail:
| |
Collapse
|
2
|
Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021; 83:100941. [PMID: 33422637 DOI: 10.1016/j.preteyeres.2021.100941] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic and knockout mice have documented the ability of increased UCP2 activity to provide neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a strong candidate for a therapeutic target. Molecular studies have identified the structural mechanism of action of UCP2 and have detailed the ways in which its expression and activity can be controlled at the transcriptional, translational and posttranslational levels. These studies suggest a number of ways in control of UCP2 expression and activity can be used therapeutically for both acute and chronic conditions. The development of such therapeutic approaches will greatly increase the tools available to combat a broad range of serious retinal diseases.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA, 98109, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:4823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
4
|
Associations of Uncoupling Protein 2 Ala55Val and Uncoupling Protein 3-55C/T Polymorphisms with Heart Rate Variability in Young Oarsmen-a Pilot Study. Asian J Sports Med 2019. [DOI: 10.5812/asjsm.77082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Echtay KS, Bienengraeber M, Mayinger P, Heimpel S, Winkler E, Druhmann D, Frischmuth K, Kamp F, Huang SG. Uncoupling proteins: Martin Klingenberg's contributions for 40 years. Arch Biochem Biophys 2018; 657:41-55. [PMID: 30217511 DOI: 10.1016/j.abb.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
The uncoupling protein (UCP1) is a proton (H+) transporter in the mitochondrial inner membrane. By dissipating the electrochemical H+ gradient, UCP1 uncouples respiration from ATP synthesis, which drives an increase in substrate oxidation via the TCA cycle flux that generates more heat. The mitochondrial uncoupling-mediated non-shivering thermogenesis in brown adipose tissue is vital primarily to mammals, such as rodents and new-born humans, but more recently additional functions in adult humans have been described. UCP1 is regulated by β-adrenergic receptors through the sympathetic nervous system and at the molecular activity level by nucleotides and fatty acid to meet thermogenesis needs. The discovery of novel UCP homologs has greatly contributed to the understanding of human diseases, such as obesity and diabetes. In this article, we review the progress made towards the molecular mechanism and function of the UCPs, in particular focusing on the influential contributions from Martin Klingenberg's laboratory. Because all members of the UCP family are potentially promising drug targets, we also present and discuss possible approaches and methods for UCP-related drug discovery.
Collapse
Affiliation(s)
- Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, P.O. Box: 100, Tripoli, Lebanon
| | - Martin Bienengraeber
- Departments of Anesthesiology and Pharmacology, Medical College of Wisconsin, Milwaukee, USA
| | - Peter Mayinger
- Division of Nephrology & Hypertension and Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2730 SW Moody Ave, Portland, OR, 97201, USA
| | - Simone Heimpel
- Campus of Applied Science, University of Applied Sciences Würzburg-Schweinfurt, Münzstraße 12, D-97070, Würzburg, Germany
| | - Edith Winkler
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Doerthe Druhmann
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Karina Frischmuth
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Frits Kamp
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, D-80336, Munich, Germany
| | - Shu-Gui Huang
- BioAssay Systems, 3191 Corporate Place, Hayward, CA, 94545, USA.
| |
Collapse
|
6
|
Larbig R, Reda S, Paar V, Trost A, Leitner J, Weichselbaumer S, Motloch KA, Wernly B, Arrer A, Strauss B, Lichtenauer M, Reitsamer HA, Eckardt L, Seebohm G, Hoppe UC, Motloch LJ. Through modulation of cardiac Ca2+handling, UCP2 affects cardiac electrophysiology and influences the susceptibility for Ca2+-mediated arrhythmias. Exp Physiol 2017; 102:650-662. [DOI: 10.1113/ep086209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Robert Larbig
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Sara Reda
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Vera Paar
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Johannes Leitner
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | | | - Karolina A. Motloch
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Bernhard Wernly
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Andreas Arrer
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Benjamin Strauss
- Cardiovascular Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Michael Lichtenauer
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Herbert A. Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IFGH), Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Lukas J. Motloch
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| |
Collapse
|
7
|
Lee YYL, Zhou Y, Jelinek HF, Hambly BD, McLachlan CS. The association of uncoupling protein 2 (UCP2) exon 8 insertion/deletion polymorphism and ECG derived QRS duration: A cross-sectional study in an Australian rural population. Int J Cardiol 2016; 228:507-510. [PMID: 27875726 DOI: 10.1016/j.ijcard.2016.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Associations between inherited mitochondrial disease and cardiac conduction have been previously described. However, there are no available studies exploring the mitochondrial uncoupling protein 2 gene (UCP2) insertion/deletion (I/D) polymorphisms interaction on cardiac electrical conduction. Our aim was to determine if ECG-derived QRS duration is associated with UCP2 DD genotype in a cross-sectional Australian aging rural population. METHODS A retrospective study design utilizing a rural health diabetic screening clinic data-base containing observational data from September 2011 to September 2014. Inclusion criteria included were having ECG parameters such as QRS duration measures and a DNA sample within the same subject. Genomic DNA was extracted and subjects were genotyped for the 45-bp I/D polymorphism in the 3'-untranslated region of UCP2. RESULTS 281 individuals were available for analysis. On the basis of QRS duration >140ms we found an increased percentage of our population with DD homozygotes, compared to ID heterozygotes and II homozygotes (p=0.047). For other ECG parameters; mean PQ duration, QTc across UCP2 genotypes was not significant (p=NS). QTc using a cut-off >440ms in contingency table analysis revealed no significant differences across UCP2 I/D genotypes. Mean QT dispersion (QTd) was paradoxically less in the UCP2 DD genotype compared to UCP2 II subgroup (p=0.034). DISCUSSION We have demonstrated an association between increasing ECG-derived QRS duration >140ms and the UCP2 DD polymorphism. The lack of association with ECG derived QTd and UCP2 DD may suggest that gene-related QRS duration prolongation is independent of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yvonne Yin Leng Lee
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yuling Zhou
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Herbert F Jelinek
- Australia School of Health Sciences, Charles Stuart University, Albury, Australia
| | - Brett D Hambly
- Discipline of Pathology, Sydney Medical School, University of Sydney, Australia
| | - Craig S McLachlan
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
8
|
Drenos F, Grossi E, Buscema M, Humphries SE. Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. PLoS One 2015; 10:e0125876. [PMID: 25951190 PMCID: PMC4423836 DOI: 10.1371/journal.pone.0125876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/24/2015] [Indexed: 02/08/2023] Open
Abstract
We present the use of innovative machine learning techniques in the understanding of Coronary Heart Disease (CHD) through intermediate traits, as an example of the use of this class of methods as a first step towards a systems epidemiology approach of complex diseases genetics. Using a sample of 252 middle-aged men, of which 102 had a CHD event in 10 years follow-up, we applied machine learning algorithms for the selection of CHD intermediate phenotypes, established markers, risk factors, and their previously associated genetic polymorphisms, and constructed a map of relationships between the selected variables. Of the 52 variables considered, 42 were retained after selection of the most informative variables for CHD. The constructed map suggests that most selected variables were related to CHD in a context dependent manner while only a small number of variables were related to a specific outcome. We also observed that loss of complexity in the network was linked to a future CHD event. We propose that novel, non-linear, and integrative epidemiological approaches are required to combine all available information, in order to truly translate the new advances in medical sciences to gains in preventive measures and patients care.
Collapse
Affiliation(s)
- Fotios Drenos
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Enzo Grossi
- Medical Department—Bracco Pharmaceuticals, San Donato Milanese, Italy
- current affiliation: Villa Santa Maria Institute, Tavernerio, Italy
- Semeion Research Center of Sciences of Communication, Rome, Italy
| | - Massimo Buscema
- Semeion Research Center of Sciences of Communication, Rome, Italy
- Dept. of Mathematical and Statistical Sciences, University of Colorado at Denver, Denver, CO, United States of America
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
9
|
Vojtková J, Ďurdík P, Čiljaková M, Michnová Z, Turčan T, Babušíková E. The association between glutathione S-transferase T1 and M1 gene polymorphisms and cardiovascular autonomic neuropathy in Slovak adolescents with type 1 diabetes mellitus. J Diabetes Complications 2013; 27:44-8. [PMID: 23021798 DOI: 10.1016/j.jdiacomp.2012.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/22/2023]
Abstract
Glutathione S-transferase (GST), as antioxidant enzyme, protects tissue from oxidative damage typical for many pathologic conditions as type 1 diabetes (T1D) and its chronic complications. The aim of the study was to compare the prevalence of GST T1/M1 gene polymorphisms between diabetic adolescents with (CAN+) and without (CAN-) cardiovascular autonomic neuropathy. Forty-six subjects with T1D at the age 15-19 years were enrolled. CAN was diagnosed in 19 patients (41.3%) based on standard cardiovascular tests. GST M1 null genotype was more prevalent in CAN+subjects but this was not statistically significant (OR=1.889, 0.61-6.55, p>0.05). GST T1 wild genotype nearly 5-fold increased the risk of CAN (OR=4.952, 1.13-21.739, p<0.05). Regarding genotype combination, GST T1/M1 wild/null genotype was significantly more frequent in CAN+compared to the CAN- subjects (OR=3.96, 1.024-15.302, p<0.05). No significant difference was found in any biochemical parameters between CAN+and CAN- subgroups. Multivariable logistic regression showed that none of the biochemical parameters estimated was considered a risk factor for CAN, however GST T1 wild and GST T1/M1 wild/null represented a risk factor for CAN development (OR=2.227, 1.079-4.587, p<0.05 and OR=1.990, 1.026-3.859, p<0.05, respectively). GST T1 wild allele and GST T1/M1 wild/null genotype can be considered as risk factors for CAN in Slovak adolescents with T1D.
Collapse
Affiliation(s)
- Jarmila Vojtková
- Department of Pediatrics, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Autonomic testing is used to define the role of the autonomic nervous system in diverse clinical and research settings. Because most of the autonomic nervous system is inaccessible to direct physiological testing, in the clinical setting the most widely used techniques entail the assessment of an end-organ response to a physiological provocation. The noninvasive measures of cardiovascular parasympathetic function involve the assessment of heart rate variability while the measures of cardiovascular sympathetic function assess the blood pressure response to physiological stimuli. Tilt-table testing, with or without pharmacological provocation, has become an important tool in the assessment of a predisposition to neurally mediated (vasovagal) syncope, the postural tachycardia syndrome, and orthostatic hypotension. Distal, postganglionic, sympathetic cholinergic (sudomotor) function may be evaluated by provoking axon reflex mediated sweating, e.g., the quantitative sudomotor axon reflex (QSART) or the quantitative direct and indirect axon reflex (QDIRT). The thermoregulatory sweat test provides a nonlocalizing measure of global pre- and postganglionic sudomotor function. Frequency domain analyses of heart rate and blood pressure variability, microneurography, and baroreflex assessment are currently research tools but may find a place in the clinical assessment of autonomic function in the future.
Collapse
Affiliation(s)
- Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
11
|
Mutombo PB, Yamasaki M, Shiwaku K. UCP2 I/D modulated change in BMI during a lifestyle modification intervention study in Japanese subjects. Genet Test Mol Biomarkers 2012; 17:16-20. [PMID: 23101559 DOI: 10.1089/gtmb.2012.0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIM Polymorphisms in uncoupling protein (UCP) genes have been strongly associated with energy expenditure and obesity. This study aimed at investigating the effects of UCP gene polymorphisms (UCP1 -3826A/G, UCP2A/V, UCP2 I/D, and UCP3 -55C/T) on change in body mass index (BMI) during a lifestyle modification program in Japanese subjects. RESULTS Intervention induced a significant decrease in energy intake (-8.6% ± 17.0%) and a significant increase in energy expenditure (7.7% ± 7.4%). As a result, participants experienced a significant decrease in their BMI of -1.8% ± 2.7%. In a multivariate regression analysis, only UCP2 D/I among the selected UCP gene polymorphisms was associated with a change in BMI independent of the effects of gender, age, baseline BMI, changes in energy intake, and expenditure. Further regression analysis revealed that, in contrast to the DD genotype group, the DI+II genotype group showed no significant association between weight loss and change in energy expenditure suggesting this polymorphism altered the effects of this parameter on change in BMI. CONCLUSION The study found UCP2 D/I to be associated with change in BMI by altering the effect of change in energy expenditure on change in BMI.
Collapse
Affiliation(s)
- P B Mutombo
- Department of Environmental & Preventive Medicine, Faculty of Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | |
Collapse
|
12
|
Yang AC, Tsai SJ, Hong CJ, Wang C, Chen TJ, Liou YJ, Peng CK. Clustering heart rate dynamics is associated with β-adrenergic receptor polymorphisms: analysis by information-based similarity index. PLoS One 2011; 6:e19232. [PMID: 21573230 PMCID: PMC3087751 DOI: 10.1371/journal.pone.0019232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 03/23/2011] [Indexed: 01/06/2023] Open
Abstract
Background Genetic polymorphisms in the gene encoding the β-adrenergic receptors (β-AR) have a pivotal role in the functions of the autonomic nervous system. Using heart rate variability (HRV) as an indicator of autonomic function, we present a bottom-up genotype–phenotype analysis to investigate the association between β-AR gene polymorphisms and heart rate dynamics. Methods A total of 221 healthy Han Chinese adults (59 males and 162 females, aged 33.6±10.8 years, range 19 to 63 years) were recruited and genotyped for three common β-AR polymorphisms: β1-AR Ser49Gly, β2-AR Arg16Gly and β2-AR Gln27Glu. Each subject underwent two hours of electrocardiogram monitoring at rest. We applied an information-based similarity (IBS) index to measure the pairwise dissimilarity of heart rate dynamics among study subjects. Results With the aid of agglomerative hierarchical cluster analysis, we categorized subjects into major clusters, which were found to have significantly different distributions of β2-AR Arg16Gly genotype. Furthermore, the non-randomness index, a nonlinear HRV measure derived from the IBS method, was significantly lower in Arg16 homozygotes than in Gly16 carriers. The non-randomness index was negatively correlated with parasympathetic-related HRV variables and positively correlated with those HRV indices reflecting a sympathovagal shift toward sympathetic activity. Conclusions We demonstrate a bottom-up categorization approach combining the IBS method and hierarchical cluster analysis to detect subgroups of subjects with HRV phenotypes associated with β-AR polymorphisms. Our results provide evidence that β2-AR polymorphisms are significantly associated with the acceleration/deceleration pattern of heart rate oscillation, reflecting the underlying mode of autonomic nervous system control.
Collapse
Affiliation(s)
- Albert C. Yang
- Department of Psychiatry, Chu-Tung Veterans Hospital, Hsin-Chu County, Taiwan
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (ACY); (SJT)
| | - Shih-Jen Tsai
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (ACY); (SJT)
| | - Chen-Jee Hong
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Cynthia Wang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Tai-Jui Chen
- I-Shou University and E-DA Hospital, Kaohsiung, Taiwan
| | - Ying-Jay Liou
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Kang Peng
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan
- Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Abstract
The methods used to assess cardiac parasympathetic (cardiovagal) activity and its effects on the heart in both humans and animal models are reviewed. Heart rate (HR)-based methods include measurements of the HR response to blockade of muscarinic cholinergic receptors (parasympathetic tone), beat-to-beat HR variability (HRV) (parasympathetic modulation), rate of post-exercise HR recovery (parasympathetic reactivation), and reflex-mediated changes in HR evoked by activation or inhibition of sensory (afferent) nerves. Sources of excitatory afferent input that increase cardiovagal activity and decrease HR include baroreceptors, chemoreceptors, trigeminal receptors, and subsets of cardiopulmonary receptors with vagal afferents. Sources of inhibitory afferent input include pulmonary stretch receptors with vagal afferents and subsets of visceral and somatic receptors with spinal afferents. The different methods used to assess cardiovagal control of the heart engage different mechanisms, and therefore provide unique and complementary insights into underlying physiology and pathophysiology. In addition, techniques for direct recording of cardiovagal nerve activity in animals; the use of decerebrate and in vitro preparations that avoid confounding effects of anesthesia; cardiovagal control of cardiac conduction, contractility, and refractoriness; and noncholinergic mechanisms are described. Advantages and limitations of the various methods are addressed, and future directions are proposed.
Collapse
Affiliation(s)
- Mark W Chapleau
- The Cardiovascular Center and Department of Internal Medicine, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | |
Collapse
|
14
|
Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, Sathyanarayana Rao MR, Mohan V. Uncoupling protein 2 and 3 gene polymorphisms and their association with type 2 diabetes in asian indians. Diabetes Technol Ther 2011; 13:19-25. [PMID: 21175267 DOI: 10.1089/dia.2010.0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND this study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. METHODS a case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant [NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS the genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. CONCLUSIONS Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Collapse
Affiliation(s)
- Karani S Vimaleswaran
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, India
| | | | | | | | | | | |
Collapse
|
15
|
Marques FZ, Campain AE, Yang YHJ, Morris BJ. Meta-analysis of genome-wide gene expression differences in onset and maintenance phases of genetic hypertension. Hypertension 2010; 56:319-24. [PMID: 20585107 DOI: 10.1161/hypertensionaha.110.155366] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene expression differences accompany both the onset and established phases of hypertension. By an integrated genome-transcriptome approach we performed a meta-analysis of data from 74 microarray experiments available on public databases to identify genes with altered expression in the kidney, adrenal, heart, and artery of spontaneously hypertensive and Lyon hypertensive rats. To identify genes responsible for the onset of hypertension we used a statistical approach that sought to eliminate expression differences that occur during maturation unrelated to hypertension. Based on this adjusted fold-difference statistic, we found 36 genes for which the expression differed between the prehypertensive phase and established hypertension. Genes having possible relevance to hypertension onset included Actn2, Ankrd1, ApoE, Cd36, Csrp3, Me1, Myl3, Nppa, Nppb, Pln, Postn, Spp1, Slc21a4, Slc22a2, Thbs4, and Tnni3. In established hypertension 102 genes exhibited altered expression after Bonferroni correction (P<0.05). These included Atp5o, Ech1, Fabp3, Gnb3, Ldhb, Myh6, Lpl, Pkkaca, Vegfb, Vcam1, and reduced nicotinamide-adenine dinucleotide dehydrogenases. Among the genes identified, there was an overrepresentation of gene ontology terms involved in energy production, fatty acid and lipid metabolism, oxidation, and transport. These could contribute to increases in reactive oxygen species. Our meta-analysis has revealed many new genes for which the expression is altered in hypertension, so pointing to novel potential causative, maintenance, and responsive mechanisms and pathways.
Collapse
Affiliation(s)
- Francine Z Marques
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
16
|
Application of serial analysis of gene expression to the study of human genetic disease. Hum Genet 2009; 126:605-14. [PMID: 19590894 DOI: 10.1007/s00439-009-0719-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/02/2009] [Indexed: 02/06/2023]
Abstract
Sequence tag analysis using serial analysis of gene expression (SAGE) is a powerful strategy for the quantitative analysis of gene expression in human genetic disorders. SAGE facilitates the measurement of mRNA transcripts and generates a non-biased gene expression profile of normal and pathological disease tissue. In addition, the SAGE technique has the capacity of detecting the expression of novel transcripts allowing for the identification of previously uncharacterised genes, thus providing a unique advantage over the traditional microarray-based approach for expression profiling. The technique has been successful in providing pathological gene expression profiles in a number of common genetic disorders including diabetes, cardiovascular disease, Parkinson disease and Down syndrome. When combined with next generation sequencing platforms, SAGE has the potential to become a more powerful and sensitive technique making it more amenable for diagnostic use. This review will therefore discuss the application of SAGE to several common genetic disorders and will further evaluate its potential use in diagnosing human genetic disease.
Collapse
|