1
|
Huber MJ, Fan Y, Jiang E, Zhu F, Larson RA, Yan J, Li N, Chen QH, Shan Z. Increased activity of the orexin system in the paraventricular nucleus contributes to salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2017; 313:H1075-H1086. [PMID: 28667055 DOI: 10.1152/ajpheart.00822.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 01/29/2023]
Abstract
The orexin system is involved in arginine vasopressin (AVP) regulation, and its overactivation has been implicated in hypertension. However, its role in salt-sensitive hypertension (SSHTN) is unknown. Here, we tested the hypothesis that hyperactivity of the orexin system in the paraventricular nucleus (PVN) contributes to SSHTN via enhancing AVP signaling. Eight-week-old male Dahl salt-sensitive (Dahl S) and age- and sex-matched Sprague-Dawley (SD) rats were placed on a high-salt (HS; 8% NaCl) or normal-salt (NS; 0.4% NaCl) diet for 4 wk. HS intake did not alter mean arterial pressure (MAP), PVN mRNA levels of orexin receptor 1 (OX1R), or OX2R but slightly increased PVN AVP mRNA expression in SD rats. HS diet induced significant increases in MAP and PVN mRNA levels of OX1R, OX2R, and AVP in Dahl S rats. Intracerebroventricular infusion of orexin A (0.2 nmol) dramatically increased AVP mRNA levels and immunoreactivity in the PVN of SD rats. Incubation of cultured hypothalamus neurons from newborn SD rats with orexin A increased AVP mRNA expression, which was attenuated by OX1R blockade. In addition, increased cerebrospinal fluid Na+ concentration through intracerebroventricular infusion of NaCl solution (4 µmol) increased PVN OX1R and AVP mRNA levels and immunoreactivity in SD rats. Furthermore, bilateral PVN microinjection of the OX1R antagonist SB-408124 resulted in a greater reduction in MAP in HS intake (-16 ± 5 mmHg) compared with NS-fed (-4 ± 4 mmHg) anesthetized Dahl S rats. These results suggest that elevated PVN OX1R activation may contribute to SSHTN by enhancing AVP signaling.NEW & NOTEWORTHY To our best knowledge, this study is the first to investigate the involvement of the orexin system in salt-sensitive hypertension. Our results suggest that the orexin system may contribute to the Dahl model of salt-sensitive hypertension by enhancing vasopressin signaling in the hypothalamic paraventricular nucleus.
Collapse
Affiliation(s)
- Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Institute for Nursing and Health Research, Henan University, Kaifeng, China
| | - Fengli Zhu
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia; and
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Biotech Research Center, Michigan Technological University, Houghton, Michigan
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; .,Biotech Research Center, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
2
|
Jin C, O'Boyle S, Kleven DT, Pollock JS, Pollock DM, White JJ. Antihypertensive and anti-inflammatory actions of combined azilsartan and chlorthalidone in Dahl salt-sensitive rats on a high-fat, high-salt diet. Clin Exp Pharmacol Physiol 2014; 41:579-88. [DOI: 10.1111/1440-1681.12250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Chunhua Jin
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - Sean O'Boyle
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - Daniel T. Kleven
- Department of Pathology; Georgia Regents University; Augusta GA USA
| | - Jennifer S. Pollock
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - David M. Pollock
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - John J. White
- Section of Nephrology, Hypertension and Transplantation; Department of Medicine; Georgia Regents University; Augusta GA USA
| |
Collapse
|
3
|
Rimbaud S, Ruiz M, Piquereau J, Mateo P, Fortin D, Veksler V, Garnier A, Ventura-Clapier R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One 2011; 6:e26391. [PMID: 22028869 PMCID: PMC3196575 DOI: 10.1371/journal.pone.0026391] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/26/2011] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF) is characterized by contractile dysfunction associated with altered energy metabolism. This study was aimed at determining whether resveratrol, a polyphenol known to activate energy metabolism, could be beneficial as a metabolic therapy of HF. Survival, ventricular and vascular function as well as cardiac and skeletal muscle energy metabolism were assessed in a hypertensive model of HF, the Dahl salt-sensitive rat fed with a high-salt diet (HS-NT). Resveratrol (18 mg/kg/day; HS-RSV) was given for 8 weeks after hypertension and cardiac hypertrophy were established (which occurred 3 weeks after salt addition). Resveratrol treatment improved survival (64% in HS-RSV versus 15% in HS-NT, p<0.001), and prevented the 25% reduction in body weight in HS-NT (P<0.001). Moreover, RSV counteracted the development of cardiac dysfunction (fractional shortening −34% in HS-NT) as evaluated by echocardiography, which occurred without regression of hypertension or hypertrophy. Moreover, aortic endothelial dysfunction present in HS-NT was prevented in resveratrol-treated rats. Resveratrol treatment tended to preserve mitochondrial mass and biogenesis and completely protected mitochondrial fatty acid oxidation and PPARα (peroxisome proliferator-activated receptor α) expression. We conclude that resveratrol treatment exerts beneficial protective effects on survival, endothelium–dependent smooth muscle relaxation and cardiac contractile and mitochondrial function, suggesting that resveratrol or metabolic activators could be a relevant therapy in hypertension-induced HF.
Collapse
Affiliation(s)
- Stéphanie Rimbaud
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Matthieu Ruiz
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Jérôme Piquereau
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Philippe Mateo
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Dominique Fortin
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Vladimir Veksler
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Anne Garnier
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
| | - Renée Ventura-Clapier
- UMR-S 769 Inserm, Univ Paris-Sud Châtenay-Malabry, Châtenay-Malabry, France
- Univ Paris-Sud, IFR 141, Châtenay-Malabry, France
- * E-mail:
| |
Collapse
|
4
|
Amin MS, Reza E, El-Shahat E, Wang HW, Tesson F, Leenen FH. Enhanced expression of epithelial sodium channels in the renal medulla of Dahl S rats. Can J Physiol Pharmacol 2011; 89:159-68. [DOI: 10.1139/y11-005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inner medullary collecting duct (IMCD) cells from salt-sensitive (S) Dahl rats transport twice as much Na+ as cells from salt-resistant (R) rats, possibly related to dysregulation of the renal epithelial sodium channel (ENaC). The effect of a high-salt diet on ENaC expression in the inner medulla of S versus R rats has not yet been studied. Young, male S and R rats were placed on a regular-salt (0.3%) or high-salt (8%) diet for 2 or 4 weeks. mRNA and protein expression of ENaC subunits were studied by real-time PCR and immunoblotting. Intracellular distribution of the subunits in the IMCD was evaluated by immunohistochemistry. On regular salt, the abundance of the mRNA of β and γENaC was higher in the medulla of S rats than R rats. This was associated with a greater protein abundance of 90 kDa γENaC and higher immunoreactivity for both α and γ ENaC. High salt did not affect mRNA abundance in either strain and decreased apical staining of βENaC in IMCD of R rats. In contrast, high salt did not affect the higher apical localization of αENaC and increased the apical membrane staining for β and γENaC in the IMCD of S rats. Expression of ENaC subunits is enhanced in the medulla of S vs. R rats on regular salt, and further increased on high salt. The persistent high expression of αENaC and increase in apical localization of β and γENaC may contribute to greater retention of sodium in S rats on a high-salt diet.
Collapse
Affiliation(s)
- Md. Shahrier Amin
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Erona Reza
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Esraa El-Shahat
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hong-Wei Wang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Frédérique Tesson
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Frans H.H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Laboratory of Genetics of Cardiac Disease, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Wainford RD, Kapusta DR. Hypothalamic paraventricular nucleus G alpha q subunit protein pathways mediate vasopressin dysregulation and fluid retention in salt-sensitive rats. Endocrinology 2010; 151:5403-14. [PMID: 20861238 PMCID: PMC2954710 DOI: 10.1210/en.2010-0345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022]
Abstract
Central Gαz and Gαq protein-gated pathways play a pivotal role in modulating (inhibiting vs. stimulating, respectively) vasopressin release and urine output; these studies examined the role of brain Gαz/Gαq proteins in the regulation of vasopressin secretion during high-salt challenge. We examined the effects of 21-d normal or high salt intake on plasma vasopressin levels, daily sodium and water balance, and brain Gαz and Gαq protein levels in male Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. Additionally, the effect of central Gαq protein down-regulation on these parameters and the diuretic response evoked by pharmacological [nociceptin/orphanin FQ; 5.5 nmol intracerebroventricularly (icv)] and physiological stimuli (isotonic-saline volume expansion, 5% bodyweight, iv) was examined. After 21 d of high salt intake, DSS, but not SD or DSR rats, exhibited vasopressin dysregulation, as evidenced by elevated plasma vasopressin levels (P < 0.05), marked positive water (and sodium) balance (P < 0.05), and an impaired diuretic response to pharmacological and physiological stimuli (P < 0.05). Chronic high salt intake (21 d) evoked down-regulation of Gαq (P < 0.05), but not Gαz, proteins in the hypothalamic paraventricular nucleus of SD and DSR, but not DSS rats. In salt-challenged (21 d) DSS rats, acute oligodeoxynucleotide-mediated down-regulation of central Gαq proteins returned plasma vasopressin to control levels (P < 0.05), decreased salt-induced water retention (P < 0.05), and restored the profound diuretic responses to pharmacological and physiological stimuli (P < 0.05). Therefore, the down-regulation of PVN Gαq proteins plays a critical counter-regulatory role in preventing vasopressin hypersecretion in salt-resistant phenotypes and may represent a new therapeutic target in pathophysiological states featuring vasopressin dysregulation.
Collapse
Affiliation(s)
- Richard D Wainford
- Department of Pharmacology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|