1
|
Cizkova D, Zurmanova JM, Gerykova L, Kouvelas A, Heles M, Elsnicova B, Galatik F, Silhavy J, Pravenec M, Mokry J. Nestin expression in intact and hypertrophic myocardium of spontaneously hypertensive rats during aging. J Muscle Res Cell Motil 2024; 45:41-51. [PMID: 36690826 PMCID: PMC11096222 DOI: 10.1007/s10974-023-09641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Nestin is a unique intermediate filament expressed for a short period in the developing heart. It was also documented in several cell types of the adult myocardium under pathological conditions such as myocardial infarction or fibrosis. However, circumstances of nestin re-occurrence in the diseased or aging heart have not been elucidated yet. In this work we immunohistochemically detected nestin to determine its expression and distribution pattern in the left ventricular myocardium of normotensive Wistar Kyoto (WKY) rats and in the hypertrophic ones of spontaneously hypertensive (SHR) rats, both at the age of 1 and 1.5 year. No nestin+ cells were identified in the intact myocardium of 1-year-old WKY rats, whereas in the aged 1.5-year-old WKY rats nestin+ endothelial cells in some blood vessels were discovered. In the hypertrophic myocardium of all SHR rats, nestin was rarely detected in desmin+ vimentin- cardiomyocytes and in some vimentin+ interstitial cells often accumulated in clusters, varying in intensity of desmin immunoreactivity. Moreover, nestin was infrequently expressed in the endothelial cells of some myocardial blood vessels in 1-year-old SHR rats, but not in 1.5-year-old ones. Quantitative image analysis of nestin expression in the myocardium confirmed significant increase in 1.5-year-old WKY rats and in SHR rats of both ages compared to the intact 1-year-old WKY rats. This study firstly documents nestin re-expression indicating cytoskeletal remodelling in different cell types of the aging intact and chronically pressure over-loaded hypertrophied myocardium. Our findings confirm nestin involvement in complex changes during myocardial hypertrophy and progressive aging.
Collapse
Affiliation(s)
- Dana Cizkova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Lucie Gerykova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Alexandros Kouvelas
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mario Heles
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Cooperation of augmented calcium sensitization and increased calcium entry contributes to high blood pressure in salt-sensitive Dahl rats. Hypertens Res 2021; 44:1067-1078. [PMID: 33875859 DOI: 10.1038/s41440-021-00659-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 03/14/2021] [Indexed: 11/09/2022]
Abstract
Salt hypertensive Dahl rats are characterized by sympathoexcitation and relative NO deficiency. We tested the hypothesis that the increased blood pressure (BP) response to fasudil in salt hypertensive Dahl rats is due to augmented calcium sensitization in the salt-sensitive strain and/or due to their decreased baroreflex efficiency. BP reduction after acute administration of nifedipine (an L-type voltage-dependent calcium channel blocker) or fasudil (a Rho kinase inhibitor) was studied in conscious intact rats and in rats subjected to acute NO synthase inhibition or combined blockade of the renin-angiotensin system (captopril), sympathetic nervous system (pentolinium), and NO synthase (L-NAME). Intact salt-sensitive (SS) Dahl rats fed a low-salt diet had greater BP responses to nifedipine (-31 ± 6 mmHg) or fasudil (-34 ± 7 mmHg) than salt-resistant (SR) Dahl rats (-16 ± 4 and -17 ± 2 mmHg, respectively), and a high-salt intake augmented the BP response only in SS rats. These BP responses were doubled after acute NO synthase inhibition, indicating that endogenous NO attenuates both calcium entry and calcium sensitization. Additional pentolinium administration, which minimized sympathetic compensation for the drug-induced BP reduction, magnified the BP responses to nifedipine or fasudil in all groups except for salt hypertensive SS rats due to their lower baroreflex efficiency. The BP response to the calcium channel blocker nifedipine can distinguish SS and SR rats even after calcium sensitization inhibition by fasudil, which was not seen when fasudil was administered to nifedipine-pretreated rats. Thus, enhanced calcium entry (potentiated by sympathoexcitation) in salt hypertensive Dahl rats is the abnormality that is essential for their BP increase, which was further augmented by increased calcium sensitization in salt-sensitive Dahl rats.
Collapse
|
3
|
Puzserova A, Bernatova I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res 2017; 65:S309-S342. [PMID: 27775419 DOI: 10.33549/physiolres.933442] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stress is considered a risk factor associated with the development of various civilization diseases including cardiovascular diseases, malignant tumors and mental disorders. Research investigating mechanisms involved in stress-induced hypertension have attracted much attention of physicians and researchers, however, there are still ambiguous results concerning a causal relationship between stress and long-term elevation of blood pressure (BP). Several studies have observed that mechanisms involved in the development of stress-induced hypertension include increased activity of sympathetic nervous system (SNS), glucocorticoid (GC) overload and altered endothelial function including decreased nitric oxide (NO) bioavailability. Nitric oxide is well known neurotransmitter, neuromodulator and vasodilator involved in regulation of neuroendocrine mechanisms and cardiovascular responses to stressors. Thus NO plays a crucial role in the regulation of the stress systems and thereby in the BP regulation in stress. Elevated NO synthesis, especially in the initial phase of stress, may be considered a stress-limiting mechanism, facilitating the recovery from stress to the resting levels via attenuation of both GC release and SNS activity as well as by increased NO-dependent vasorelaxation. On the other hand, reduced levels of NO were observed in the later phases of stress and in subjects with genetic predisposition to hypertension, irrespectively, in which reduced NO bioavailability may account for disruption of NO-mediated BP regulatory mechanisms and accentuated SNS and GC effects. This review summarizes current knowledge on the role of stress in development of hypertension with a special focus on the interactions among NO and other biological systems affecting blood pressure and vascular function.
Collapse
Affiliation(s)
- A Puzserova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
4
|
Mancini M, Scavone A, Sartorio CL, Baccaro R, Kleinert C, Pernazza A, Buia V, Leopizzi M, d'Amati G, Camici PG. Effect of different drug classes on reverse remodeling of intramural coronary arterioles in the spontaneously hypertensive rat. Microcirculation 2017; 24. [DOI: 10.1111/micc.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Angela Scavone
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | | | - Rocco Baccaro
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Christina Kleinert
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Angelina Pernazza
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Veronica Buia
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| | - Martina Leopizzi
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Giulia d'Amati
- Department of Radiology; Oncology and Pathology; “Sapienza” University; Rome Italy
| | - Paolo G. Camici
- Vita Salute University and Scientific Institute San Raffaele; Milan Italy
| |
Collapse
|
5
|
Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8029728. [PMID: 28197417 PMCID: PMC5288518 DOI: 10.1155/2017/8029728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
Abstract
Calcium sensitization mediated by RhoA/Rho kinase pathway can be evaluated either in the absence (basal calcium sensitization) or in the presence of endogenous vasoconstrictor systems (activated calcium sensitization). Our aim was to compare basal and activated calcium sensitization in three forms of experimental hypertension with increased sympathetic tone and enhanced calcium entry—spontaneously hypertensive rats (SHR), heterozygous Ren-2 transgenic rats (TGR), and salt hypertensive Dahl rats. Activated calcium sensitization was determined as blood pressure reduction induced by acute administration of Rho kinase inhibitor fasudil in conscious rats with intact sympathetic nervous system (SNS) and renin-angiotensin system (RAS). Basal calcium sensitization was studied as fasudil-dependent difference in blood pressure response to calcium channel opener BAY K8644 in rats subjected to RAS and SNS blockade. Calcium sensitization was also estimated from reduced development of isolated artery contraction by Rho kinase inhibitor Y-27632. Activated calcium sensitization was enhanced in all three hypertensive models (due to the hyperactivity of vasoconstrictor systems). In contrast, basal calcium sensitization was reduced in SHR and TGR relative to their controls, whereas it was augmented in salt-sensitive Dahl rats relative to their salt-resistant controls. Similar differences in calcium sensitization were seen in femoral arteries of SHR and Dahl rats.
Collapse
|
6
|
Bencze M, Behuliak M, Vavřínová A, Zicha J. Altered contractile responses of arteries from spontaneously hypertensive rat: The role of endogenous mediators and membrane depolarization. Life Sci 2016; 166:46-53. [DOI: 10.1016/j.lfs.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022]
|
7
|
MISÁRKOVÁ E, BEHULIAK M, BENCZE M, ZICHA J. Excitation-Contraction Coupling and Excitation-Transcription Coupling in Blood Vessels: Their Possible Interactions in Hypertensive Vascular Remodeling. Physiol Res 2016; 65:173-91. [DOI: 10.33549/physiolres.933317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) display considerable phenotype plasticity which can be studied in vivo on vascular remodeling which occurs during acute or chronic vascular injury. In differentiated cells, which represent contractile phenotype, there are characteristic rapid transient changes of intracellular Ca2+ concentration ([Ca2+]i), while the resting cytosolic [Ca2+]i concentration is low. It is mainly caused by two components of the Ca2+ signaling pathways: Ca2+ entry via L-type voltage-dependent Ca2+ channels and dynamic involvement of intracellular stores. Proliferative VSMC phenotype is characterized by long-lasting [Ca2+]i oscillations accompanied by sustained elevation of basal [Ca2+]i. During the switch from contractile to proliferative phenotype there is a general transition from voltage-dependent Ca2+ entry to voltage-independent Ca2+ entry into the cell. These changes are due to the altered gene expression which is dependent on specific transcription factors activated by various stimuli. It is an open question whether abnormal VSMC phenotype reported in rats with genetic hypertension (such as spontaneously hypertensive rats) might be partially caused by a shift from contractile to proliferative VSMC phenotype.
Collapse
Affiliation(s)
| | | | | | - J. ZICHA
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Zicha J. Central Gαi2 proteins, sympathetic nervous system and blood pressure regulation. Acta Physiol (Oxf) 2016; 216:258-9. [PMID: 26609797 DOI: 10.1111/apha.12634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. Zicha
- Institute of Physiology; Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
9
|
Endothelin A receptor blocker atrasentan lowers blood pressure by the reduction of nifedipine-sensitive calcium influx in Ren-2 transgenic rats fed a high-salt diet. J Hypertens 2015; 33:161-9. [DOI: 10.1097/hjh.0000000000000357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Enhanced vascular PI3K/Akt-NOX signaling underlies the peripheral NMDAR-mediated pressor response in conscious rats. J Cardiovasc Pharmacol 2014; 63:395-405. [PMID: 24336015 DOI: 10.1097/fjc.0000000000000059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms for peripheral N-methyl-D-aspartate receptor (NMDAR)-mediated vascular oxidative stress and pressor response are not known. We conducted integrative (in vivo) and ex vivo biochemical studies to test the hypothesis that reactive oxygen species (ROS)-dependent calcium influx, triggered by the activation of vascular kinases, underlies the NMDAR-mediated pressor response. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K)/Akt (wortmannin, 15 μg/kg), protein kinase C (chelerythrine: 5 mg/kg, intravenous), Ca²⁺ influx (nifedipine, 0.35 or 0.75 mg/kg), or NADPH oxidase (NOX: apocynin, 5 mg/kg) attenuated the peripheral NMDAR-mediated pressor response in conscious male Sprague-Dawley rats. NMDAR activation enhanced the phosphorylation of Akt, ERK1, JNK and p38 (Western blot), and NOX activity in vascular tissues collected during the pressor response caused by NMDA infusion (180 μg·kg⁻¹·min⁻¹, 30 minutes). Furthermore, ex vivo studies showed that wortmannin, chelerythrine, or apocynin abrogated the NMDAR-mediated vascular nitric oxide (NO) and ROS generation and NOX activation in the vasculature. These findings implicate vascular PI3K/Akt-protein kinase C signaling in the peripheral NMDAR-mediated increases in vascular NO and NOX activation (ROS), which ultimately lead to calcium influx and pressor response in conscious rats.
Collapse
|
11
|
Zicha J, Behuliak M, Pintérová M, Bencze M, Kuneš J, Vaněčková I. The interaction of calcium entry and calcium sensitization in the control of vascular tone and blood pressure of normotensive and hypertensive rats. Physiol Res 2014; 63:S19-27. [PMID: 24564658 DOI: 10.33549/physiolres.932639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased systemic vascular resistance is responsible for blood pressure (BP) elevation in most forms of human or experimental hypertension. The enhanced contractility of structurally remodeled resistance arterioles is mediated by enhanced calcium entry (through L type voltage-dependent calcium channels - L-VDCC) and/or augmented calcium sensitization (mediated by RhoA/Rho kinase pathway). It is rather difficult to evaluate separately the role of these two pathways in BP control because BP response to the blockade of either pathway is always dependent on the concomitant activity of the complementary pathway. Moreover, vasoconstrictor systems enhance the activity of both pathways, while vasodilators attenuate them. The basal fasudil-sensitive calcium sensitization determined in rats deprived of endogenous renin-angiotensin system (RAS) and sympathetic nervous system (SNS) in which calcium entry was dose-dependently increased by L-VDCC opener BAY K8644, is smaller in spontaneously hypertensive rats (SHR) than in normotensive Wistar-Kyoto (WKY) rats. In contrast, if endogenous RAS and SNS were present in intact rats, fasudil caused a greater BP fall in SHR than WKY rats. Our in vivo experiments indicated that the endogenous pressor systems (RAS and SNS) augment calcium sensitization mediated by RhoA/Rho kinase pathway, whereas the endogenous vasodilator systems (such as nitric oxide) attenuate this pathway. However, the modulation of calcium entry and calcium sensitization by nitric oxide is strain-dependent because NO deficiency significantly augments low calcium entry in WKY and low calcium sensitization in SHR. Further in vivo and in vitro experiments should clarify the interrelationships between endogenous vasoactive systems and the contribution of calcium entry and/or calcium sensitization to BP maintenance in various forms of experimental hypertension.
Collapse
Affiliation(s)
- J Zicha
- Department of Experimental Hypertension, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
12
|
Ca2+ sensitization and Ca2+ entry in the control of blood pressure and adrenergic vasoconstriction in conscious Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens 2014; 31:2025-35. [PMID: 24107733 DOI: 10.1097/hjh.0b013e328362adb3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Calcium entry through nifedipine-sensitive L-type voltage-dependent calcium channels (L-VDCC) is augmented in spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. However, the changes of calcium sensitization mediated by RhoA/Rho kinase pathway are less understood. METHODS AND RESULTS The participation of calcium entry and calcium sensitization in the control of blood pressure (BP) and vascular contraction was studied in SHR and normotensive Wistar-Kyoto (WKY) rats. The acute administration of fasudil (Rho kinase inhibitor) caused BP decrease which lasted longer in SHR. Fasudil also attenuated adrenergic contraction in femoral or mesenteric arteries of WKY and SHR. BP reduction elicited by fasudil in WKY was more pronounced than that induced by L-VDCC blocker nifedipine (-33±2 vs. -15±3% of baseline BP, P<0.001), whereas both inhibitors were similarly effective in SHR (-36±4 vs. -41±2%). Fasudil pretreatment also attenuated BP elevation elicited by L-VDCC agonist BAY K8644 more in WKY than in SHR (-63±4 vs. -42±5%, P<0.001), indicating reduced calcium sensitization in SHR. Moreover, fasudil pretreatment shifted norepinephrine dose-response curves to the right more in WKY than in SHR. The additional nifedipine pretreatment shifted these curves further to the right but this shift was more pronounced in SHR than in WKY. Thus adrenergic vasoconstriction is more dependent on L-VDCC in SHR and on RhoA/Rho kinase pathway in WKY rats. CONCLUSION Ca sensitization mediated by RhoA/Rho kinase pathway is attenuated in SHR compared with normotensive WKY rats. This might be a part of the compensation for enhanced Ca entry through L-VDCC in genetic hypertension.
Collapse
|
13
|
Contribution of Ca²⁺-dependent Cl⁻ channels to norepinephrine-induced contraction of femoral artery is replaced by increasing EDCF contribution during ageing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:289361. [PMID: 24707479 PMCID: PMC3953470 DOI: 10.1155/2014/289361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/16/2014] [Indexed: 12/04/2022]
Abstract
The activation of Ca2+-dependent Cl− channels during norepinephrine-induced contraction of vascular smooth muscle was suggested to depolarize cell membrane and to increase Ca2+ entry. Hypertension and ageing are associated with altered Ca2+ handling including possible activation of Ca2+-dependent Cl− channels. Our study was aimed to determine Ca2+-dependent Cl− channels contribution to norepinephrine-induced contraction during hypertension and ageing. Norepinephrine-induced concentration-response curves of femoral arteries from 6- and 12-month-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were recorded using wire myograph. Pretreatment with Ca2+-dependent Cl- channel inhibitor indanyloxyacetic acid 94 [R(+)-IAA-94](IAA) attenuated norepinephrine-induced contraction in all groups, but relatively more in WKY than SHR arteries. The attenuation of norepinephrine-induced contraction after Ca2+-dependent Cl− channels blockade was partially reduced in 12-month-old WKY rats, but substantially diminished in 12-month-old SHR. IAA effect was enhanced after NO synthase inhibition but decreased by ageing. In 20-month-old WKY rats norepinephrine-induced contraction was not affected by IAA but was almost abolished after cyclooxygenase inhibition by indomethacin or niflumic acid. In conclusion, contribution of Ca2+-dependent Cl− channels to norepinephrine-induced contraction diminished with age, hypertension development, and/or NO synthesis inhibition. Ca2+-dependent Cl− channels are important for maintenance of normal vascular tone while their inactivation/closing might be a pathological mechanism.
Collapse
|
14
|
ZICHA J, DOBEŠOVÁ Z, BEHULIAK M, PINTÉROVÁ M, KUNEŠ J, VANĚČKOVÁ I. Nifedipine-Sensitive Blood Pressure Component in Hypertensive Models Characterized by High Activity of Either Sympathetic Nervous System or Renin-Angiotensin System. Physiol Res 2014; 63:13-26. [DOI: 10.33549/physiolres.932717] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High blood pressure (BP) of spontaneously hypertensive rats (SHR) is maintained by enhanced activity of sympathetic nervous system (SNS), whereas that of Ren-2 transgenic rats (Ren-2 TGR) by increased activity of renin-angiotensin system (RAS). However, both types of hypertension are effectively attenuated by chronic blockade of L-type voltage-dependent calcium channel (L-VDCC). The aim of our study was to evaluate whether the magnitude of BP response elicited by acute nifedipine administration is proportional to the alterations of particular vasoactive systems (SNS, RAS, NO) known to modulate L-VDCC activity. We therefore studied these relationships not only in SHR, in which mean arterial pressure was modified in a wide range of 100-210 mm Hg by chronic antihypertensive treatment (captopril or hydralazine) or its withdrawal, but also in rats with augmented RAS activity such as homozygous Ren-2 TGR, pertussis toxin-treated SHR or L-NAME-treated SHR. In all studied groups the magnitude of BP response to nifedipine was proportional to actual BP level and it closely correlated with BP changes induced by acute combined blockade of RAS and SNS. BP response to nifedipine is also closely related to the degree of relative NO deficiency. This was true for both SNS- and RAS-dependent forms of genetic hypertension, suggesting common mechanisms responsible for enhanced L-VDCC opening and/or their upregulation in hypertensive animals. In conclusions, BP response to nifedipine is proportional to the vasoconstrictor activity exerted by both SNS and RAS, indicating a key importance of these two pressor systems for actual L-VDCC opening necessary for BP maintenance.
Collapse
Affiliation(s)
- J. ZICHA
- Department of Experimental Hypertension, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
15
|
Pintérová M, Behuliak M, Kuneš J, Zicha J. Involvement of BKCa and KV potassium channels in cAMP-induced vasodilatation: their insufficient function in genetic hypertension. Physiol Res 2014; 63:275-85. [PMID: 24397812 DOI: 10.33549/physiolres.932718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Spontaneously hypertensive rats (SHR) are characterized by enhanced sympathetic vasoconstriction, whereas their vasodilator mechanisms are relatively attenuated compared to their high BP. The objective of our in vivo study was to evaluate whether the impaired function of BKCa and/or KV channels is responsible for abnormal cAMP-induced vasodilatation in genetic hypertension. Using conscious SHR and normotensive WKY rats we have shown that under the basal conditions cAMP overproduction elicited by the infusion of beta-adrenoceptor agonist (isoprenaline) caused a more pronounced decrease of baseline blood pressure (BP) in SHR compared to WKY rats. Isoprenaline infusion prevented BP rises induced by acute NO synthase blockade in both strains and it also completely abolished the fully developed BP response to NO synthase blockade. These cAMP-induced vasodilator effects were diminished by the inhibition of either BKCa or KV channels in SHR but simultaneous blockade of both K(+) channel types was necessary in WKY rats. Under basal conditions, the vasodilator action of both K(+) channels was enhanced in SHR compared to WKY rats. However, the overall contribution of K(+) channels to cAMP-induced vasodilator mechanisms is insufficient in genetic hypertension since a concurrent activation of both K(+) channels by cAMP overproduction is necessary for the prevention of BP rise elicited by acute NO/cGMP deficiency in SHR. This might be caused by less effective activation of these K(+) channels by cAMP in SHR. In conclusion, K(+) channels seem to have higher activity in SHR, but their vasodilator action cannot match sufficiently the augmented vasoconstriction in this hypertensive strain.
Collapse
Affiliation(s)
- M Pintérová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Bencze M, Behuliak M, Zicha J. The impact of four different classes of anesthetics on the mechanisms of blood pressure regulation in normotensive and spontaneously hypertensive rats. Physiol Res 2013; 62:471-8. [PMID: 24020816 DOI: 10.33549/physiolres.932637] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most anesthetics induce characteristic hemodynamic changes leading to blood pressure (BP) reduction but the role of renin-angiotensin system (RAS), sympathetic nervous system (SNS) and nitric oxide (NO) synthesis in this BP reduction is unknown. We therefore studied the influence of four widely used anesthetics - pentobarbital (P), isoflurane (ISO), ketamine-xylazine (KX) and chloralose-urethane (CU) - on the participation of these vasoactive systems in BP maintenance. BP effects elicited by the acute sequential blockade of RAS (captopril), SNS (pentolinium) and NO synthase (L-NAME) were compared in conscious and anesthetized Wistar or spontaneously hypertensive rats (SHR). Except for pentobarbital all studied anesthetics evidenced by diminished BP responses to pentolinium. The absolute pentolinium-induced BP changes were always greater in SHR than Wistar rats. KX anesthesia eliminated BP response to pentolinium and considerably enhanced BP response to NO synthase inhibition in SHR. In both rat strains the anesthesia with ISO or CU augmented BP response to captopril, decreased BP response to pentolinium and attenuated BP response to NO synthase inhibition. In conclusion, pentobarbital anesthesia had a modest influence on BP level and its maintenance by the above vasoactive systems. Isoflurane and chloralose-urethane anesthesia may be used in cardiovascular experiments if substantial BP decrease due to altered contribution of RAS, SNS and NO to BP regulation does not interfere with the respective research aim. Major BP reduction (namely in SHR) due to a complete SNS absence is a major drawback of ketamine-xylazine anesthesia.
Collapse
Affiliation(s)
- M Bencze
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
17
|
Vasodilator efficiency of endogenous prostanoids, Ca2+-activated K+ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension. Hypertens Res 2011; 34:968-75. [DOI: 10.1038/hr.2011.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Pintérová M, Kuneš J, Zicha J. Altered neural and vascular mechanisms in hypertension. Physiol Res 2011; 60:381-402. [PMID: 21615201 DOI: 10.33549/physiolres.932189] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Essential hypertension is a multifactorial disorder which belongs to the main risk factors responsible for renal and cardiovascular complications. This review is focused on the experimental research of neural and vascular mechanisms involved in the high blood pressure control. The attention is paid to the abnormalities in the regulation of sympathetic nervous system activity and adrenoceptor alterations as well as the changes of membrane and intracellular processes in the vascular smooth muscle cells of spontaneously hypertensive rats. These abnormalities lead to increased vascular tone arising from altered regulation of calcium influx through L-VDCC channels, which has a crucial role for excitation-contraction coupling, as well as for so-called "calcium sensitization" mediated by the RhoA/Rho-kinase pathway. Regulation of both pathways is dependent on the complex interplay of various vasodilator and vasoconstrictor stimuli. Two major antagonistic players in the regulation of blood pressure, i.e. sympathetic nervous system (by stimulation of adrenoceptors coupled to stimulatory and inhibitory G proteins) and nitric oxide (by cGMP signaling pathway), elicit their actions via the control of calcium influx through L-VDCC. However, L-type calcium current can also be regulated by the changes in membrane potential elicited by the activation of potassium channels, the impaired function of which was detected in hypertensive animals. The dominant role of enhanced calcium influx in the pathogenesis of high blood pressure of genetically hypertensive animals is confirmed not only by therapeutic efficacy of calcium antagonists but especially by the absence of hypertension in animals in which L-type calcium current was diminished by pertussis toxin-induced inactivation of inhibitory G proteins. Although there is considerable information on the complex neural and vascular alterations in rats with established hypertension, the detailed description of their appearance during the induction of hypertension is still missing.
Collapse
Affiliation(s)
- M Pintérová
- Cardiovascular Research Center and Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
19
|
Zicha J, Dobešová Z, Behuliak M, Kuneš J, Vaněčková I. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction. Acta Physiol (Oxf) 2011; 202:29-38. [PMID: 21199401 DOI: 10.1111/j.1748-1716.2010.02248.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Increased potassium intake attenuates the development of salt-dependent hypertension, but the detailed mechanisms of blood pressure (BP) reduction are still unclear. The aims of our study were (i) to elucidate these mechanisms, (ii) to compare preventive potassium effects in immature and adult animals and (iii) to evaluate the therapeutic effects of dietary potassium supplementation in rats with established salt hypertension. METHODS Young (4-week-old) and adult (24-week-old) female salt-sensitive Dahl rats were fed a high-salt diet (5% NaCl) or a high-salt diet supplemented with 3% KCl for 5 weeks. The participation of vasoconstrictor (renin-angiotensin and sympathetic nervous systems) and vasodilator systems [prostanoids, Ca(2+) -activated K(+) channels, nitric oxide (NO)] was evaluated using a sequential blockade of these systems. RESULTS Preventive potassium supplementation attenuated the development of severe salt hypertension in young rats, whereas it had no effects on BP in adult rats with moderate hypertension. Enhanced sympathetic vasoconstriction was responsible for salt hypertension in young rats and its attenuation for potassium-induced BP reduction. Conversely, neither salt hypertension nor its potassium-induced attenuation were associated with significant changes of the vasodilator systems studied. The relative deficiency of vasodilator action of NO and Ca(2+) -activated K(+) channels in salt hypertensive Dahl rats was not improved by potassium supplementation. CONCLUSIONS The attenuation of enhanced sympathetic vasoconstriction is the principal mechanism of antihypertensive action exerted by preventive potassium supplementation in immature Dahl rats. Dietary potassium supplementation has no preventive effects on BP in adult salt-loaded animals or no therapeutic effects on established salt hypertension in young rats.
Collapse
Affiliation(s)
- J Zicha
- Cardiovascular Research Center, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|