1
|
Königstein K, Dipla K, Zafeiridis A. Training the Vessels: Molecular and Clinical Effects of Exercise on Vascular Health-A Narrative Review. Cells 2023; 12:2544. [PMID: 37947622 PMCID: PMC10649652 DOI: 10.3390/cells12212544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Accelerated biological vascular ageing is still a major driver of the increasing burden of cardiovascular disease and mortality. Exercise training delays this process, known as early vascular ageing, but often lacks effectiveness due to a lack of understanding of molecular and clinical adaptations to specific stimuli. This narrative review summarizes the current knowledge about the molecular and clinical vascular adaptations to acute and chronic exercise. It further addresses how training characteristics (frequency, intensity, volume, and type) may influence these processes. Finally, practical recommendations are given for exercise training to maintain and improve vascular health. Exercise increases shear stress on the vascular wall and stimulates the endothelial release of circulating growth factors and of exerkines from the skeletal muscle and other organs. As a result, remodeling within the vascular walls leads to a better vasodilator and -constrictor responsiveness, reduced arterial stiffness, arterio- and angiogenesis, higher antioxidative capacities, and reduced oxidative stress. Although current evidence about specific aspects of exercise training, such as F-I-T-T, is limited, and exact training recommendations cannot be given, some practical implications can be extracted. As such, repeated stimuli 5-7 days per week might be necessary to use the full potential of these favorable physiological alterations, and the cumulative volume of mechanical shear stress seems more important than peak shear stress. Because of distinct short- and long-term effects of resistance and aerobic exercise, including higher and moderate intensities, both types of exercise should be implemented in a comprehensive training regimen. As vascular adaptability towards exercise remains high at any age in both healthy individuals and patients with cardiovascular diseases, individualized exercise-based vascular health prevention should be implemented in any age group from children to centenarians.
Collapse
Affiliation(s)
- Karsten Königstein
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, 4052 Basel, Switzerland
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece;
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece;
| |
Collapse
|
2
|
Järve A, Qadri F, Todiras M, Schmolke S, Bader M. Angiotensin-II receptor type Ia does not contribute to cardiac atrophy following high-thoracic spinal cord injury in mice. Exp Physiol 2020; 105:1316-1325. [PMID: 32515106 DOI: 10.1113/ep088378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/03/2020] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of the renin-angiotensin system with angiotensin II acting via its receptor AT1a in spinal cord injury-induced cardiac atrophy? What is the main finding and its importance? Knockout of AT1a did not protect mice that had undergone thoracic level 4 transection from cardiac atrophy. There were no histopathological signs but there was reduced load-dependent left ventricular function (lower stroke volume and cardiac output) with preserved ejection fraction. ABSTRACT Spinal cord injury (SCI) leads to cardiac atrophy often accompanied by functional deficits. The renin-angiotensin system (RAS) with angiotensin II (AngII) signalling via its receptor AT1a might contribute to cardiac atrophy post-SCI. We performed spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation in female wild-type mice (WT, n = 27) and mice deficient in AT1a (Agtr1a-/- , n = 27). Echocardiography (0, 7, 21 and 28 days post-SCI) and histology and gene expression analyses at 1 and 2 months post-SCI were performed. We found cardiac atrophy post-SCI: reduced heart weight, reduced estimated left ventricular mass in Agtr1a-/- , and reduced cardiomyocyte diameter in WT mice. Although, the latter as well as stroke volume (SV) and cardiac output (CO) were reduced in Agtr1a-/- mice already at baseline, cardiomyocyte diameter was even smaller in injured Agtr1a-/- mice compared to injured WT mice. SV and CO were reduced in WT mice post-SCI. Ejection fraction and fractional shortening were preserved post-SCI in both genotypes. There were no histological signs of fibrosis and pathology in the cardiac sections of either genotype post-SCI. Gene expression of Agtr1a showed a trend for up-regulation at 2 months post-SCI; angiotensinogen was up-regulated at 2 month post-SCI in both genotypes. AngII receptor type 2 (Agtr2) was up- and down-regulated at 1 and 2 months post-SCI in WT mice, respectively, and Ang-(1-7) receptor (Mas) at 1 and 2 months post-SCI. Atrogin-1/MAFbx and MuRF1, atrophy markers, were not significantly up-regulated post-SCI. Our data show that lack of AT1a does not protect from cardiac atrophy post-SCI.
Collapse
Affiliation(s)
- Anne Järve
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Shirley Schmolke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Järve A, Qadri F, Todiras M, Schmolke S, Alenina N, Bader M. Angiotensin-(1-7) Receptor Mas Deficiency Does Not Exacerbate Cardiac Atrophy Following High-Level Spinal Cord Injury in Mice. Front Physiol 2020; 11:203. [PMID: 32226394 PMCID: PMC7080696 DOI: 10.3389/fphys.2020.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/21/2020] [Indexed: 11/13/2022] Open
Abstract
Experimental spinal cord injury (SCI) causes a morphological and functional deterioration of the heart, in which the renin–angiotensin system (RAS) might play a role. The recently discovered non-canonical axis of RAS with angiotensin-(1–7) and its receptor Mas, which is associated with cardioprotection could be essential to prevent damage to the heart following SCI. We investigated the cardiac consequences of SCI and the role of Mas in female wild-type (WT, n = 22) and mice deficient of Mas (Mas–/–, n = 25) which underwent spinal cord transection at thoracic level T4 (T4-Tx) or sham-operation by echocardiography (0, 7, 21, and 28 days post-SCI), histology and gene expression analysis at 1 or 2 months post-SCI. We found left ventricular mass reduction with preserved ejection fraction (EF) and fractional shortening in WT as well as Mas–/– mice. Cardiac output was reduced in Mas–/– mice, whereas stroke volume (SV) was reduced in WT T4-Tx mice. Echocardiographic indices did not differ between the genotypes. Smaller heart weight (HW) and smaller cardiomyocyte diameter at 1 month post-SCI compared to sham mice was independent of genotype. The muscle-specific E3 ubiquitin ligases Atrogin-1/MAFbx and MuRF1 were upregulated or showed a trend for upregulation in WT mice at 2 months post-SCI, respectively. Angiotensinogen gene expression was upregulated at 1 month post-SCI and angiotensin II receptor type 2 downregulated at 2 month post-SCI in Mas–/– mice. Mas was downregulated post-SCI. Cardiac atrophy following SCI, not exacerbated by lack of Mas, is a physiological reaction as there were no signs of cardiac pathology and dysfunction.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chişinãu, Moldova
| | - Shirley Schmolke
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers, Berlin, Germany.,Partner Site Berlin, German Center for Cardiovascular Research, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
West CR, Poormasjedi-Meibod MS, Manouchehri N, Williams AM, Erskine EL, Webster M, Fisk S, Morrison C, Short K, So K, Cheung A, Streijger F, Kwon BK. A porcine model for studying the cardiovascular consequences of high-thoracic spinal cord injury. J Physiol 2020; 598:929-942. [PMID: 31876952 DOI: 10.1113/jp278451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/24/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We have developed a novel porcine model of high-thoracic midline contusion spinal cord injury (SCI) at the T2 spinal level. We describe this model and the ensuing cardiovascular and neurohormonal responses, and demonstrate the model is efficacious for studying clinically relevant cardiovascular dysfunction post-SCI. We demonstrate that the high-thoracic SCI model, but not a low-thoracic SCI model, induces persistent hypotension along with a gradual reduction in plasma noradrenaline and increases in plasma aldosterone and angiotensin II. We additionally conducted a proof-of-concept long-term (12 weeks) survival study in animals with T2 contusion SCI demonstrating the potential utility of this model for not only acute experimentation but also long-term drug studies prior to translation to the clinic. ABSTRACT Cardiovascular disease is a leading cause of morbidity and mortality in the spinal cord injury (SCI) population, especially in those with high-thoracic or cervical SCI. With this in mind, we aimed to develop a large animal (porcine) model of high-thoracic (T2 level) contusion SCI and compare the haemodynamic and neurohormonal responses of this injury against a low-thoracic (T10 level) model. Ten Yorkshire pigs were randomly subjected to 20 cm weight drop contusion SCI at either the T2 or the T10 spinal level. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were continuously monitored until 4 h post-SCI. Plasma noradrenaline (NA), aldosterone and angiotensin II (ANGII) were measured pre-SCI and at 30, 60, 120 and 240 min post-SCI. Additionally, two Yucatan pigs were subjected to T2-SCI and survived up to 12 weeks post-injury to demonstrate the efficacy of this model for long-term survival studies. Immediately after T2-SCI, SBP, MAP and HR increased (P < 0.0001). Between decompression (5 min post-SCI) and 30 min post-decompression in T2-SCI, SBP and MAP were lower than pre-SCI (P < 0.038). At 3 and 4 h after T2-SCI, SBP remained lower than pre-SCI (P = 0.048). After T10-SCI, haemodynamic indices remained largely unaffected. Plasma NA was lower in T2- vs. T10-SCI post-SCI, whilst aldosterone and ANGII were higher. Both chronically injured pigs demonstrated a vast reduction in SBP at 12 weeks post-SCI. Our model of T2-SCI causes a rapid and sustained alteration in neurohormonal control and cardiovascular function, which does not occur in the T10 model.
Collapse
Affiliation(s)
- Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Malihe-Sadat Poormasjedi-Meibod
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Alexandra M Williams
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Erin L Erskine
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Katelyn Short
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Amanda Cheung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Järve A, Todiras M, Kny M, Fischer FI, Kraemer JF, Wessel N, Plehm R, Fielitz J, Alenina N, Bader M. Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study. Front Physiol 2019; 9:1930. [PMID: 30687131 PMCID: PMC6336833 DOI: 10.3389/fphys.2018.01930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) above mid-thoracic levels leads to autonomic dysfunction affecting both the cardiovascular system and thermoregulation. The renin-angiotensin system (RAS) which is a potent regulator of blood pressure, including its novel beneficial arm with the receptor Mas could be an interesting target in post-SCI hemodynamics. To test the hypothesis that hemodynamics, activity and diurnal patterns of those are more affected in the Mas deficient mice post-SCI we used a mouse model of SCI with complete transection of spinal cord at thoracic level 4 (T4-Tx) and performed telemetric monitoring of blood pressure (BP) and heart rate (HR). Our data revealed that hypothermia deteriorated physiological BP and HR control. Preserving normothermia by keeping mice at 30°C prevented severe hypotension and bradycardia post-SCI. Moreover, it facilitated rapid return of diurnal regulation of BP, HR and activity in wild type (WT) mice. In contrast, although Mas deficient mice had comparable reacquisition of diurnal HR rhythm, they showed delayed recovery of diurnal rhythmicity in BP and significantly lower nocturnal activity. Exposing mice with T4-Tx (kept in temperature-controlled cages) to 23°C room temperature for one hour at different time-points post-SCI, demonstrated their inability to maintain core body temperature, Mas deficient mice being significantly more impaired than WT littermates. We conclude that Mas deficient mice were more resistant to acute hypotension, delayed nocturnal recovery, lower activity and more severely impaired thermoregulation. The ambient temperature had significant effect on hemodynamics and, thus it should be taken into account when assessing cardiovascular parameters post-SCI in mice.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk I Fischer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan F Kraemer
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niels Wessel
- Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Partner Site Greifswald, German Centre for Cardiovascular Research, Greifswald, Germany.,Klinik und Poliklinik für Innere Medizin B, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Partner Site Berlin, German Centre for Cardiovascular Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute of Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Järve A, Todiras M, Lian X, Filippelli-Silva R, Qadri F, Martin RP, Gollasch M, Bader M. Distinct roles of angiotensin receptors in autonomic dysreflexia following high-level spinal cord injury in mice. Exp Neurol 2018; 311:173-181. [PMID: 30315807 DOI: 10.1016/j.expneurol.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Autonomic dysreflexia (AD), a syndrome caused by loss of supraspinal control over sympathetic activity and amplified vascular reflex upon sensory stimuli below injury level, is a major health problem in high-level spinal cord injury (SCI). After supraspinal sympathetic control of the vasculature below the lesion is lost, the renin-angiotensin system (RAS) is thought to be involved in AD by regulating blood pressure and vascular reactivity. In this study, we aimed to assess the role of different RAS receptors during AD following SCI. Therefore, we induced AD by colorectal distention (CRD) in wild-type mice and mice deficient in the RAS components angiotensin (Ang) II type 1a receptor (AT1a) (Agtr1a-/-) and Ang-(1-7) receptor Mas (Mas-/-) four weeks after complete transection of spinal cord at thoracic level 4 (T4). Systemic blood pressure measurements and wire myography technique were performed to assess hemodynamics and the reactivity of peripheral arteries, respectively. CRD increased mean arterial blood pressure (MAP) and decreased heart rate (HR) in all three animal groups. However, we found less increases in MAP in Mas-/- mice compared to control mice after CRD, whereas AT1a deficiency did not affect the hemodynamic response. We found that the reactivity of wild-type and Mas-/- mesenteric arteries, which are innervated from ganglia distal but close to thoracic level T4, was diminished in response to Ang II in AD after T4-SCI, but this difference was not observed in the absence of AT1a receptors. CRD did not influence the reactivity of femoral arteries which are innervated from ganglia more distal to thoracic level T4, in response to Ang II in AD. In conclusion, we identified a specific role of the Ang-(1-7) receptor Mas in regulating the systemic blood pressure increase in AD in T4-SCI mice. Furthermore, AT1a signaling is not involved in this hemodynamic response, but underlies increased vascular reactivity in mesenteric arteries in response to Ang II, where it may contribute to adaptive changes in regional blood flow.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Xiaoming Lian
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Rafael Filippelli-Silva
- Department of Biophysics, UNIFESP Universidade Federal de São Paulo, São Paulo, São Paulo 04039-032, Brazil
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Renan P Martin
- Department of Biophysics, UNIFESP Universidade Federal de São Paulo, São Paulo, São Paulo 04039-032, Brazil; Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Nephrology/Intensive Care, Virchow Klinikum, Charité - University Medicine, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Lujan HL, DiCarlo SE. Fundamental hemodynamic mechanisms mediating the response to myocardial ischemia in conscious paraplegic mice: cardiac output versus peripheral resistance. Physiol Rep 2017; 5:5/6/e13214. [PMID: 28336819 PMCID: PMC5371571 DOI: 10.14814/phy2.13214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Autonomic dysfunction, a relative sedentary lifestyle, a reduced muscle mass and increased adiposity leads to metabolic abnormalities that accelerate the development of coronary artery disease (CAD) in individuals living with spinal cord injury (SCI). An untoward cardiac incident is related to the degree of CAD, suggesting that the occurrence of a significant cardiac event is significantly higher for individuals with SCI. Thus, understanding the fundamental hemodynamic mechanisms mediating the response to myocardial ischemia has the potential to positively impact individuals and families living with SCI. Accordingly, we systematically investigated if thoracic level 5 spinal cord transection (T5X; paraplegia) alters the arterial blood pressure response to coronary artery occlusion and if the different arterial blood pressure responses to coronary artery occlusion between intact and paraplegic mice are mediated by changes in cardiac output and or systemic peripheral resistance and whether differences in cardiac output are caused by changes in heart rate and or stroke volume. To achieve this goal, the tolerance to 3 min of coronary artery occlusion was determined in conscious intact and paraplegic mice. Paraplegic mice had an impaired ability to maintain arterial blood pressure during coronary artery occlusion as arterial pressure fell to near lethal levels by 1.38 ± 0.64 min. The lower arterial pressure was mediated by a lower cardiac output as systemic peripheral resistance was elevated in paraplegic mice. The lower cardiac output was mediated by a reduced heart rate and stroke volume. These results indicate that in paraplegic mice, the arterial pressure response to coronary artery occlusion is hemodynamically mediated primarily by cardiac output which is determined by heart rate and stroke volume.
Collapse
Affiliation(s)
- Heidi L Lujan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
8
|
Schreiber R, Paim LR, de Rossi G, Matos-Souza JR, Costa e Silva ADA, Nogueira CD, Azevedo ER, Alonso KC, Palomino Z, Sposito AC, Casarini DE, Gorla JI, Cliquet A, Nadruz W. Reduced Sympathetic Stimulus and Angiotensin 1–7 Are Related to Diastolic Dysfunction in Spinal Cord–Injured Subjects. J Neurotrauma 2017; 34:2323-2328. [DOI: 10.1089/neu.2016.4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Roberto Schreiber
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Layde R. Paim
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Guilherme de Rossi
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | | | | | - Eliza R. Azevedo
- Department of Orthopedics, University of Campinas, Campinas, Brazil
| | - Karina C. Alonso
- Department of Orthopedics, University of Campinas, Campinas, Brazil
| | - Zaira Palomino
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, Brazil
| | - Andrei C. Sposito
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Dulce E. Casarini
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, Brazil
| | - José I. Gorla
- School of Physical Education, University of Campinas, Campinas, Brazil
| | - Alberto Cliquet
- Department of Orthopedics, University of Campinas, Campinas, Brazil
- Department of Electrical Engineering, University of São Paulo (USP), São Carlos, Brazil
| | - Wilson Nadruz
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
Abstract
Autonomic dysreflexia (AD) is a serious cardiovascular disorder in patients with spinal cord injury (SCI). The primary underlying cause of AD is loss of supraspinal control over sympathetic preganglionic neurons (SPNs) caudal to the injury, which renders the SPNs hyper-responsive to stimulation. Central maladaptive plasticity, including C-fiber sprouting and propriospinal fiber proliferation exaggerates noxious afferent transmission to the SPNs, causing them to release massive sympathetic discharges that result in severe hypertensive episodes. In parallel, upregulated peripheral vascular sensitivity following SCI exacerbates the hypertensive response by augmenting gastric and pelvic vasoconstriction. Currently, the majority of clinically employed treatments for AD involve anti-hypertensive medications and Botox injections to the bladder. Although these approaches mitigate the severity of AD, they only yield transient effects and target the effector organs, rather than addressing the primary issue of central sympathetic dysregulation. As such, strategies that aim to restore supraspinal reinnervation of SPNs to improve cardiovascular sympathetic regulation are likely more effective for AD. Recent pre-clinical investigations show that cell transplantation therapy is efficacious in reestablishing spinal sympathetic connections and improving hemodynamic performance, which holds promise as a potential therapeutic approach.
Collapse
Affiliation(s)
- Hisham Sharif
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Davidson R, Phillips A. Cardiovascular Physiology and Responses to Sexual Activity in Individuals Living with Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2017; 23:11-19. [PMID: 29339873 PMCID: PMC5340505 DOI: 10.1310/sci2301-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Spinal cord injury (SCI) may profoundly impact autonomic function producing a variable degree of dysfunction in cardiovascular, bronchopulmonary, sweating, bladder, bowel, and sexual function. The cardiovascular system is crucially important for sexual function, as it is responsible for blood flow shifts to cavernous and musculoskeletal tissue during sexual activity. This system is prone to 3 main abnormalities after SCI including low resting blood pressure (LRBP), orthostatic hypotension (OH), and autonomic dysreflexia (AD), all of which have important effects on sexual function. Methods: We review the current etiological mechanisms and manifestations of cardiovascular dysfunction after SCI and discuss how this is documented to impact sexual function in individuals living with SCI. Conclusions: All individuals with SCI at or above the T6 neurologic level have an increased risk of AD during sexual stimulation, with increasing risk associated with higher levels of injury and greater completeness of injury. AD can be silent, and individuals living with SCI should be aware of blood pressure values at baseline and during sexual activity. Clinicians performing vibrostimulation fertility procedures need to be aware of the risk of AD and consider pretreatment if needed. Researchers studying the cardiovascular response to sexual stimulation should consider continuous monitoring of blood pressure, as intermittent monitoring may underestimate true blood pressure values.
Collapse
Affiliation(s)
- Ross Davidson
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, British Columbia, Canada
| | - Aaron Phillips
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, British Columbia, Canada
| |
Collapse
|
12
|
Brunt VE, Eymann TM, Francisco MA, Howard MJ, Minson CT. Passive heat therapy improves cutaneous microvascular function in sedentary humans via improved nitric oxide-dependent dilation. J Appl Physiol (1985) 2016; 121:716-23. [PMID: 27418688 PMCID: PMC6195670 DOI: 10.1152/japplphysiol.00424.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 11/22/2022] Open
Abstract
Passive heat therapy (repeated hot tub or sauna use) reduces cardiovascular risk, but its effects on the mechanisms underlying improvements in microvascular function have yet to be studied. We investigated the effects of heat therapy on microvascular function and whether improvements were related to changes in nitric oxide (NO) bioavailability using cutaneous microdialysis. Eighteen young, sedentary, otherwise healthy subjects participated in 8 wk of heat therapy (hot water immersion to maintain rectal temperature ≥38.5°C for 60 min/session; n = 9) or thermoneutral water immersion (sham, n = 9), and participated in experiments before and after the 8-wk intervention in which forearm cutaneous hyperemia to 39°C local heating was assessed at three microdialysis sites receiving 1) Lactated Ringer's (Control), 2) N(ω)-nitro-l-arginine (l-NNA; nonspecific NO synthase inhibitor), and 3) 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), a superoxide dismutase mimetic. The arm used for microdialysis experiments remained out of the water at all times. Data are means ± SE cutaneous vascular conductance (CVC = laser Doppler flux/mean arterial pressure), presented as percent maximal CVC (% CVCmax). Heat therapy increased local heating plateau from 42 ± 6 to 53 ± 6% CVCmax (P < 0.001) and increased NO-dependent dilation (difference in plateau between Control and l-NNA sites) from 26 ± 6 to 38 ± 4% CVCmax (P < 0.01), while no changes were observed in the sham group. When data were pooled across all subjects at 0 wk, Tempol had no effect on the local heating response (P = 0.53 vs. Control). There were no changes at the Tempol site across interventions (P = 0.58). Passive heat therapy improves cutaneous microvascular function by improving NO-dependent dilation, which may have clinical implications.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Taylor M Eymann
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Matthew J Howard
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
13
|
Rianne Ravensbergen HJ, de Groot S, Post MW, Bongers-Janssen HM, van der Woude LH, Claydon VE. Is There an Association Between Markers of Cardiovascular Autonomic Dysfunction at Discharge From Rehabilitation and Participation 1 and 5 Years Later in Individuals With Spinal Cord Injury? Arch Phys Med Rehabil 2016; 97:1431-1439. [PMID: 27084265 DOI: 10.1016/j.apmr.2016.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine whether physical activity and participation 1 and 5 years after discharge are associated with measures of cardiovascular autonomic function: prevalence of hypotension and reduced peak heart rate at discharge from initial inpatient spinal cord injury (SCI) rehabilitation. DESIGN Prospective cohort study. SETTING Rehabilitation centers. PARTICIPANTS Individuals with SCI (N=146). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES We recorded markers of cardiovascular autonomic dysfunction (resting blood pressure and peak heart rate) and personal and lesion characteristics at the time of discharge from rehabilitation. Parameters for participation (social health status dimension of the Sickness Impact Profile) and physical activity (Physical Activity Scale for Individuals with Physical Disabilities [PASIPD]) were measured 1 and 5 years after discharge. Effects of prevalence of cardiovascular autonomic dysfunction were analyzed using linear regression analysis while correcting for possible confounders. RESULTS We found no significant association between hypotension and social health status dimension of the Sickness Impact Profile or PASIPD, either at 1 or at 5 years after discharge. A significant association between peak heart rate and social health status dimension of the Sickness Impact Profile was found at 1 year after discharge, showing poorer participation in individuals with low peak heart rate (ie, cardiovascular autonomic dysfunction). The unadjusted relation between peak heart rate and the social health status dimension of the Sickness Impact Profile was significant at 5 years, but not when adjusted for confounders. We found associations between peak heart rate and PASIPD for both 1 and 5 years after discharge; however, these were not significant after correction for potential confounding factors. CONCLUSIONS Autonomic dysfunction after SCI is a crucial factor influencing quality of life. We found that cardiovascular autonomic impairment, assessed from low peak heart rate, was associated with reduced participation after 1 year. The results suggest that peak heart rate at discharge from rehabilitation after SCI should be used to identify those needing additional support to facilitate physical activity and participation after discharge.
Collapse
Affiliation(s)
- H J Rianne Ravensbergen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; International Collaboration On Repair Discoveries, Vancouver, BC, Canada; Research Institute MOVE Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Sonja de Groot
- Amsterdam Rehabilitation Research Center
- Reade, Amsterdam, The Netherlands; Center for Human Movement Sciences Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel W Post
- Brain Center Rudolf Magnus and Center of Excellence in Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat, Utrecht, The Netherlands; Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lucas H van der Woude
- Center for Human Movement Sciences Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Center for Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016; 10:98. [PMID: 27147970 PMCID: PMC4829593 DOI: 10.3389/fncel.2016.00098] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | | | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
15
|
Phillips AA, Matin N, Frias B, Zheng MMZ, Jia M, West C, Dorrance AM, Laher I, Krassioukov AV. Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection. J Physiol 2016; 594:1677-88. [PMID: 26634420 DOI: 10.1113/jp270925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
High-thoracic or cervical spinal cord injury (SCI) is associated with several critical clinical conditions related to impaired cerebrovascular health, including: 300-400% increased risk of stroke, cognitive decline and diminished cerebral blood flow regulation. The purpose of this study was to examine the influence of high-thoracic (T3 spinal segment) SCI on cerebrovascular structure and function, as well as molecular markers of profibrosis. Seven weeks after complete T3 spinal cord transection (T3-SCI, n = 15) or sham injury (Sham, n = 10), rats were sacrificed for either middle cerebral artery (MCA) structure and function assessments via ex vivo pressure myography, or immunohistochemical analyses. Myogenic tone was unchanged, but over a range of transmural pressures, inward remodelling occurred after T3-SCI with a 40% reduction in distensibility (both P < 0.05), and a 33% reduction in vasoconstrictive reactivity to 5-HT trending toward significance (P = 0.09). After T3-SCI, the MCA had more collagen I (42%), collagen III (24%), transforming growth factor β (47%) and angiotensin II receptor type 2 (132%), 27% less elastin as well as concurrent increased wall thickness and reduced lumen diameter (all P < 0.05). Sympathetic innervation (tyrosine hydroxylase-positive axon density) and endothelium-dependent dilatation (carbachol) of the MCA were not different between groups. This study demonstrates profibrosis and hypertrophic inward remodelling within the largest cerebral artery after high-thoracic SCI, leading to increased stiffness and possibly impaired reactivity. These deleterious adaptations would substantially undermine the capacity for regulation of cerebral blood flow and probably underlie several cerebrovascular clinical conditions in the SCI population.
Collapse
Affiliation(s)
- A A Phillips
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Centre for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia, Vancouver, Canada
| | - N Matin
- Pharmacology, Michigan State University, East Lansing, MI, USA
| | - B Frias
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - M M Z Zheng
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - M Jia
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - C West
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A M Dorrance
- Pharmacology, Michigan State University, East Lansing, MI, USA
| | - I Laher
- Deptartment of Pharmacology and Therapeutic, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - A V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma 2015; 32:1927-42. [PMID: 25962761 DOI: 10.1089/neu.2015.3903] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) issues after spinal cord injury (SCI) are of paramount importance considering they are the leading cause of death in this population. Disruption of autonomic pathways leads to a highly unstable CV system, with impaired blood pressure (BP) and heart rate regulation. In addition to low resting BP, on a daily basis the majority of those with SCI suffer from transient episodes of aberrantly low and high BP (termed orthostatic hypotension and autonomic dysreflexia, respectively). In fact, autonomic issues, including resolution of autonomic dysreflexia, are frequently ranked by individuals with high-level SCI to be of greater priority than walking again. Owing to a combination of these autonomic disturbances and a myriad of lifestyle factors, the pernicious process of CV disease is accelerated post-SCI. Unfortunately, these secondary consequences of SCI are only beginning to receive appropriate clinical attention. Immediately after high-level SCI, major CV abnormalities present in the form of neurogenic shock. After subsiding, new issues related to BP instability arise, including orthostatic hypotension and autonomic dysreflexia. This review describes autonomic control over the CV system before injury and the mechanisms underlying CV abnormalities post-SCI, while also detailing the end-organ consequences, including those of the heart, as well as the systemic and cerebral vasculature. The tertiary impact of CV dysfunction will also be discussed, such as the potential impediment of rehabilitation, and impaired cognitive function. In the recent past, our understanding of autonomic dysfunctions post-SCI has been greatly enhanced; however, it is vital to further develop our understanding of the long-term consequences of these conditions, which will equip us to better manage CV disease morbidity and mortality in this population.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Center for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia , Kelowna, British Columbia, Canada .,2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,4 Department of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Al Dera H, Brock JA. Spinal cord injury increases the reactivity of rat tail artery to angiotensin II. Front Neurosci 2015; 8:435. [PMID: 25610365 PMCID: PMC4285114 DOI: 10.3389/fnins.2014.00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022] Open
Abstract
Studies in individuals with spinal cord injury (SCI) suggest the vasculature is hyperreactive to angiotensin II (Ang II). In the present study, the effects of SCI on the reactivity of the rat tail and mesenteric arteries to Ang II have been investigated. In addition, the effects of SCI on the facilitatory action of Ang II on nerve-evoked contractions of these vessels were determined. Isometric contractions of artery segments from T11 (tail artery) or T4 (mesenteric arteries) spinal cord-transected rats and sham-operated rats were compared 6–7 weeks postoperatively. In both tail and mesenteric arteries, SCI increased nerve-evoked contractions. In tail arteries, SCI also greatly increased Ang II-evoked contractions and the facilitatory effect of Ang II on nerve-evoked contractions. By contrast, SCI did not detectably change the responses of mesenteric arteries to Ang II. These findings provide the first direct evidence that SCI increases the reactivity of arterial vessels to Ang II. In addition, in tail artery, the findings indicate that Ang II may contribute to modifying their responses following SCI.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia ; Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences Riyadh, Saudi Arabia
| | - James A Brock
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
18
|
Scholten RR, Spaanderman MEA, Green DJ, Hopman MTE, Thijssen DHJ. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function. Am J Physiol Heart Circ Physiol 2014; 307:H418-25. [PMID: 24906915 DOI: 10.1152/ajpheart.00128.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this relationship is altered by exercise training. Formerly PE women (32 ± 4 yr, n = 20) and controls (32 ± 4 yr, n = 20), all 6-12 mo postpartum, performed 12-wk aerobic exercise training. We measured brachial artery shear rate (SR) and endothelial function by flow-mediated dilation (FMD, echo-Doppler). We additionally performed power spectral analysis of heart rate variability and calculated low-frequency/high-frequency (LF/HF) ratio. Antegrade SR was not different between groups, while retrograde SR was significantly higher and FMD% lower in PE women compared with controls (both P < 0.05). Retrograde shear correlated strongly with FMD% in PE women and controls (P < 0.05). LF/HF ratio inversely correlated with brachial artery retrograde SR and FMD% (both P < 0.05) in PE women and controls. Exercise training reduced retrograde shear, improved FMD%, and reduced LF/HF ratios similarly in both groups (all P < 0.05). Training-induced changes in retrograde SR correlated with changes in FMD% and LF/HF ratio. A higher brachial artery retrograde SR relates to lower brachial artery endothelial function, in both controls and formerly PE women. Exercise training improves retrograde SR, while the magnitude of this change correlated strongly with improvements in FMD and reductions in LF/HF ratio. Therefore, the impact of PE and exercise training on endothelial health may, at least partly, be related to retrograde shear rate.
Collapse
Affiliation(s)
- Ralph R Scholten
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands;
| | - Marc E A Spaanderman
- Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Australia; and Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Maria T E Hopman
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
19
|
Ravensbergen HJCR, de Groot S, Post MWM, Slootman HJ, van der Woude LHV, Claydon VE. Cardiovascular function after spinal cord injury: prevalence and progression of dysfunction during inpatient rehabilitation and 5 years following discharge. Neurorehabil Neural Repair 2013; 28:219-29. [PMID: 24243916 DOI: 10.1177/1545968313504542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autonomic dysfunction after spinal cord injury (SCI) is an under-researched area when compared with motor and sensory dysfunction. Cardiovascular autonomic dysfunction is a particular concern, leading to impaired control of blood pressure and heart rate. OBJECTIVES (1) To determine the prevalence of hypotension in individuals with SCI during and after rehabilitation; (2) To investigate changes in cardiovascular variables during and after rehabilitation; (3) To evaluate the influence of personal and lesion characteristics on cardiovascular variables. METHODS Cardiovascular variables (resting systolic [SAP] and diastolic [DAP] arterial pressures and resting [HRrest] and peak heart rates [HRpeak]) were measured on 5 test occasions: start of inpatient rehabilitation, 3 months later, at discharge, and at 1 and 5 years after discharge. The time course and effects of personal and lesion characteristics on cardiovascular variables were studied using multilevel regression analyses. RESULTS The prevalence of hypotension was unchanged during rehabilitation and for 5 years after discharge. Odds for hypotension were highest in those with cervical and high thoracic lesions, younger individuals, and men. DAP increased during the 5 years after discharge. HRrest decreased during and after rehabilitation. SAP, DAP, HRrest, and HRpeak were lowest in those with cervical and high thoracic lesions. SAP and DAP increased with age; HRpeak decreased with age. CONCLUSIONS These longitudinal data provide normative values for blood pressure and heart rate changes with time after injury according to lesion and personal characteristics. These results can be used to guide clinical practice and place changes in cardiovascular function caused by interventions in perspective.
Collapse
|
20
|
West CR, AlYahya A, Laher I, Krassioukov A. Peripheral vascular function in spinal cord injury: a systematic review. Spinal Cord 2012. [DOI: 10.1038/sc.2012.136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Bakkum AJT, de Groot S, van der Woude LHV, Janssen TWJ. The effects of hybrid cycle training in inactive people with long-term spinal cord injury: design of a multicenter randomized controlled trial. Disabil Rehabil 2012; 35:1127-32. [DOI: 10.3109/09638288.2012.715719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Birk GK, Dawson EA, Timothy Cable N, Green DJ, Thijssen DHJ. Effect of unilateral forearm inactivity on endothelium-dependent vasodilator function in humans. Eur J Appl Physiol 2012; 113:933-40. [DOI: 10.1007/s00421-012-2505-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
|
23
|
Thijssen DHJ, De Groot PCE, van den Bogerd A, Veltmeijer M, Cable NT, Green DJ, Hopman MTE. Time course of arterial remodelling in diameter and wall thickness above and below the lesion after a spinal cord injury. Eur J Appl Physiol 2012; 112:4103-9. [PMID: 22526250 PMCID: PMC3496545 DOI: 10.1007/s00421-012-2400-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/02/2012] [Indexed: 11/25/2022]
Abstract
Physical inactivity in response to a spinal cord injury (SCI) represents a potent stimulus for conduit artery remodelling. Changes in conduit artery characteristics may be induced by the local effects of denervation (and consequent extreme inactivity below the level of the lesion), and also by systemic adaptations due to whole body inactivity. Therefore, we assessed the time course of carotid (i.e. above lesion) and common femoral artery (i.e. below lesion) lumen diameter and wall thickness across the first 24 weeks after an SCI. Eight male subjects (mean age 35 ± 14 years) with a traumatic motor complete spinal cord lesion between T5 and L1 (i.e. paraplegia) were included. Four subjects were measured across the first 6 weeks after SCI, whilst another four subjects were measured from 8 until 24 weeks after SCI. Ultrasound was used to examine the diameter and wall thickness from the carotid and common femoral arteries. Carotid artery diameter did not change across 24 weeks, whilst femoral artery diameter stabilised after the rapid initial decrease during the first 3 weeks after the SCI. Carotid and femoral artery wall thickness showed no change during the first few weeks, but increased both between 6 and 24 weeks (P < 0.05). In conclusion, SCI leads to a rapid and localised decrease in conduit artery diameter which is isolated to the denervated and paralyzed region, whilst wall thickness gradually increases both above and below the lesion. This distinct time course of change in conduit arterial diameter and wall thickness suggests that distinct mechanisms may contribute to these adaptations.
Collapse
Affiliation(s)
- Dick H J Thijssen
- Department of Physiology, Radboud University Nijmegen Medical Centre, Philips van Leydenlaan 15, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Thijssen DHJ, Green DJ, Hopman MTE. Blood vessel remodeling and physical inactivity in humans. J Appl Physiol (1985) 2011; 111:1836-45. [PMID: 21737819 DOI: 10.1152/japplphysiol.00394.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Physical inactivity is associated with an increase in cardiovascular risk that cannot be fully explained by traditional or novel risk factors. Inactivity is also associated with changes in hemodynamic stimuli, which exert direct effects on the vasculature leading to remodeling and a proatherogenic phenotype. In this review, we synthesize and summarize in vivo evidence relating to the impact of local and systemic models of physical inactivity on conduit arteries, resistance vessels, and the microcirculation in humans. Taken together, the literature suggests that a rapid inward structural remodeling of vessels occurs in response to physical inactivity. The magnitude of this response is dependent on the "dose" of inactivity. Moreover, changes in vascular function are found at resistance and microvessel levels in humans. In conduit arteries, a strong interaction between vascular function and structure is present, which results in conflicting data regarding the impact of inactivity on conduit artery function. While much of the cardioprotective effect of exercise is related to the nitric oxide pathway, deconditioning may primarily be associated with activation of vasoconstrictor pathways. The effects of deconditioning on the vasculature are therefore not simply the opposite of those in response to exercise training. Given the importance of sedentary behavior, future studies should provide further insight into the impact of inactivity on the vasculature and other (novel) markers of vascular health. Moreover, studies should examine the role of (hemodynamic) stimuli that underlie the characteristic vascular adaptations during deconditioning. Our review concludes with some suggestions for future research directions.
Collapse
Affiliation(s)
- Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.
| | | | | |
Collapse
|
25
|
Groothuis JT, Thijssen DHJ, Lenders JWM, Deinum J, Hopman MTE. Leg vasoconstriction during head-up tilt in patients with autonomic failure is not abolished. J Appl Physiol (1985) 2011; 110:416-22. [PMID: 21127209 DOI: 10.1152/japplphysiol.01098.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maintaining blood pressure during orthostatic challenges is primarily achieved by baroreceptor-mediated activation of the sympathetic nervous system, which can be divided into preganglionic and postganglionic parts. Despite their preganglionic autonomic failure, spinal cord-injured individuals demonstrate a preserved peripheral vasoconstriction during orthostatic challenges. Whether this also applies to patients with postganglionic autonomic failure is unknown. Therefore, we assessed leg vasoconstriction during 60° head-up tilt in five patients with pure autonomic failure (PAF) and two patients with autonomic failure due to dopamine-β-hydroxylase (DBH) deficiency. Ten healthy subjects served as controls. Leg blood flow was measured using duplex ultrasound in the right superficial femoral artery. Leg vascular resistance was calculated as the arterial-venous pressure gradient divided by blood flow. DBH-deficient patients were tested off and on the norepinephrine pro-drug l-threo-dihydroxyphenylserine (l-DOPS). During 60° head-up tilt, leg vascular resistance increased significantly in PAF patients [0.40 ± 0.38 (+30%) mmHg·ml−1·min−1]. The increase in leg vascular resistance was not significantly different from controls [0.88 ± 1.04 (+72%) mmHg·ml−1·min−1]. In DBH-deficient patients, leg vascular resistance increased by 0.49 ± 0.01 (+153%) and 1.52 ± 1.47 (+234%) mmHg·ml−1·min−1 off and on l-DOPS, respectively. Despite the increase in leg vascular resistance, orthostatic hypotension was present in PAF and DBH-deficient patients. Our results demonstrate that leg vasoconstriction during orthostatic challenges in patients with PAF or DBH deficiency is not abolished. This indicates that the sympathetic nervous system is not the sole or pivotal mechanism inducing leg vasoconstriction during orthostatic challenges. Additional vasoconstrictor mechanisms may compensate for the loss in sympathetic nervous system control.
Collapse
Affiliation(s)
- Jan T. Groothuis
- Departments of 1Physiology and
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Dick H. J. Thijssen
- Departments of 1Physiology and
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Jacques W. M. Lenders
- Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen
- Department of Medicine III, Carl Gustav Carus University Medical Center, Dresden, Germany
| | - Jaap Deinum
- Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen
| | | |
Collapse
|
26
|
Groothuis JT, Rongen GA, Geurts AC, Smits P, Hopman MT. Effect of different sympathetic stimuli-autonomic dysreflexia and head-up tilt-on leg vascular resistance in spinal cord injury. Arch Phys Med Rehabil 2011; 91:1930-5. [PMID: 21112436 DOI: 10.1016/j.apmr.2010.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/19/2010] [Accepted: 09/01/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To compare the effect of different sympathetic stimuli, that is, exaggerated sympathetic activity and orthostatic challenges, on the increase in leg vascular resistance in persons with spinal cord injury (SCI) without and controls with supraspinal sympathetic control. DESIGN Case-control intervention study. SETTING Physiology research laboratory. PARTICIPANTS Persons with SCI (N=9; motor and sensory complete spinal cord lesion above the sixth thoracic spinal segment) and able-bodied controls (N=9). INTERVENTIONS In persons with SCI, exaggerated sympathetic activity was evoked by autonomic dysreflexia, and in controls, by using a cold pressor test (CPT). A 30° head-up tilt (HUT) was performed in both groups. MAIN OUTCOME MEASURE Leg blood flow was measured by using venous occlusion plethysmography during the different sympathetic stimuli. Leg vascular resistance was calculated as the arterial-venous pressure gradient divided by blood flow. RESULTS In persons with SCI, leg vascular resistance significantly increased during autonomic dysreflexia and 30° HUT (25±20 and 24±13 arbitrary units [AU], respectively), with no difference (P=.87) between stimuli. In controls, leg vascular resistance significantly increased during CPT and 30° HUT (15±13 and 29±12AU, respectively) with no difference (P=.03) between stimuli. There were no differences (P=.22) in increase in leg vascular resistance during the different sympathetic stimuli between persons with SCI and controls. CONCLUSIONS The increase in leg vascular resistance during autonomic dysreflexia in persons with SCI is not different from that during 30° HUT, which might be caused by a limited vasoconstrictor reserve. Despite the lack of supraspinal sympathetic control in persons with SCI, the increase in leg vascular resistance during exaggerated sympathetic activity was not different from controls.
Collapse
Affiliation(s)
- Jan T Groothuis
- Department of Physiology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | |
Collapse
|