1
|
Miciaccia M, Baldelli OM, Fortuna CG, Cavallaro G, Armenise D, Liturri A, Ferorelli S, Muñoz DP, Bonifazi A, Rizzo F, Cormio A, Filieri S, Micalizzi G, Dugo P, Mondello L, Sardanelli AM, Bruni F, Loguercio Polosa P, Perrone MG, Scilimati A. ONC201-Derived Tetrahydropyridopyrimidindiones as Powerful ClpP Protease Activators to Tackle Diffuse Midline Glioma. J Med Chem 2025; 68:5190-5210. [PMID: 39973170 DOI: 10.1021/acs.jmedchem.4c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pediatric diffuse intrinsic pontine glioma (DIPG), classified under diffuse midline glioma, is a deadly tumor, with no effective treatments. The human mitochondrial protease hClpP is a potential DIPG therapeutic target, and this study describes the synthesis of two new series of tetrahydropyridopyrimidindiones (THPPDs) as hClpP activators. Among the tested compounds, we have identified 36 (THX6) that shows a strong hClpP activation (EC50 = 1.18 μM) and good cytotoxicity in ONC201-resistant cells (IC50 = 0.13 μM). Studying the oxidation mechanisms on cell membranes, the treatment of DIPG cells with 36 (THX6) causes a change in levels of fatty acids (PUFAs, MUFAs, and SFAs) compared to untreated cells and dysregulates the level of proteins involved in oxidative phosphorylation, biogenesis, and mitophagy that lead to a global collapse of mitochondrial integrity and function suggesting this as the mechanism through which 36 (THX6) accomplishes its antitumor activity in DIPG cell lines.
Collapse
Affiliation(s)
- Morena Miciaccia
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Olga Maria Baldelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cosimo G Fortuna
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Gianfranco Cavallaro
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Domenico Armenise
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Anselma Liturri
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Savina Ferorelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Denise P Muñoz
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Dr., Baltimore, Maryland 21224, United States
| | - Francesca Rizzo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvana Filieri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe Micalizzi
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Messina 98168, Italy
| | - Paola Dugo
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Messina 98168, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Messina 98168, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Messina 98168, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Messina 98168, Italy
| | - Anna Maria Sardanelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
2
|
Coppola MA, Pusch M, Imbrici P, Liantonio A. Small Molecules Targeting Kidney ClC-K Chloride Channels: Applications in Rare Tubulopathies and Common Cardiovascular Diseases. Biomolecules 2023; 13:biom13040710. [PMID: 37189456 DOI: 10.3390/biom13040710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Given the key role played by ClC-K chloride channels in kidney and inner ear physiology and pathology, they can be considered important targets for drug discovery. Indeed, ClC-Ka and ClC-Kb inhibition would interfere with the urine countercurrent concentration mechanism in Henle's loop, which is responsible for the reabsorption of water and electrolytes from the collecting duct, producing a diuretic and antihypertensive effect. On the other hand, ClC-K/barttin channel dysfunctions in Bartter Syndrome with or without deafness will require the pharmacological recovery of channel expression and/or activity. In these cases, a channel activator or chaperone would be appealing. Starting from a brief description of the physio-pathological role of ClC-K channels in renal function, this review aims to provide an overview of the recent progress in the discovery of ClC-K channel modulators.
Collapse
Affiliation(s)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
3
|
Management of edema in pediatric nephrotic syndrome – Underfill or overfill? CURRENT PEDIATRICS REPORTS 2022. [DOI: 10.1007/s40124-022-00270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Gerbino A, De Zio R, Russo D, Milella L, Milano S, Procino G, Pusch M, Svelto M, Carmosino M. Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka. Sci Rep 2020; 10:10268. [PMID: 32581267 PMCID: PMC7314819 DOI: 10.1038/s41598-020-67219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
The physiological role of the renal ClC-Ka/ClC-K1 channels is to confer a high Cl- permeability to the thin Ascending Limb of Henle (tAL), which in turn is essential for establishing the high osmolarity of the renal medulla that drives water reabsorption from collecting ducts. Here, we investigated by whole-cell patch-clamp measurements on HEK293 cells co-expressing ClC-Ka (tagged with GFP) and the accessory subunit barttin (tagged with m-Cherry) the effect of a natural diuretic extract from roots of Dandelion (DRE), and other compounds activating PKC, such as ATP, on ClC-Ka activity and its membrane localization. Treatment with 400 µg/ml DRE significantly inhibited Cl- currents time-dependently within several minutes. Of note, the same effect on Cl- currents was obtained upon treatment with 100 µM ATP. Pretreatment of cells with either the intracellular Ca2+ chelator BAPTA-AM (30 μM) or the PKC inhibitor Calphostin C (100 nM) reduced the inhibitory effect of DRE. Conversely, 1 µM of phorbol meristate acetate (PMA), a specific PKC activator, mimicked the inhibitory effect of DRE on ClC-Ka. Finally, we found that pretreatment with 30 µM Heclin, an E3 ubiquitin ligase inhibitor, did not revert DRE-induced Cl- current inhibition. In agreement with this, live-cell confocal analysis showed that DRE treatment did not induce ClC-Ka internalization. In conclusion, we demonstrate for the first time that the activity of ClC-Ka in renal cells could be significantly inhibited by the activation of PKC elicited by classical maneuvers, such as activation of purinergic receptors, or by exposure to herbal extracts that activates a PKC-dependent pathway. Overall, we provide both new information regarding the regulation of ClC-Ka and a proof-of-concept study for the use of DRE as new diuretic.
Collapse
Affiliation(s)
- Andrea Gerbino
- National Research Council, Institute of Biomembrane and Bioenergetics, Bari, IT, Italy.,Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Potenza, IT, Italy
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Potenza, IT, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Michael Pusch
- National Research Council, Institute of Biophysics, Genova, IT, Italy
| | - Maria Svelto
- National Research Council, Institute of Biomembrane and Bioenergetics, Bari, IT, Italy.,Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, IT, Italy. .,Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy.
| |
Collapse
|
5
|
Sahbani D, Strumbo B, Tedeschi S, Conte E, Camerino GM, Benetti E, Montini G, Aceto G, Procino G, Imbrici P, Liantonio A. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Front Pharmacol 2020; 11:327. [PMID: 32256370 PMCID: PMC7092721 DOI: 10.3389/fphar.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type III and IV Bartter syndromes (BS) are rare kidney tubulopathies caused by loss-of-function mutations in the CLCNKB and BSND genes coding respectively for the ClC-Kb chloride channels and accessory subunit barttin. ClC-K channels are expressed in the Henle's loop, distal convoluted tubule, and cortical collecting ducts of the kidney and contribute to chloride absorption and urine concentration. In our Italian cohort, we identified two new mutations in CLCNKB, G167V and G289R, in children affected by BS and previously reported genetic variants, A242E, a chimeric gene and the deletion of the whole CLCNKB. All the patients had hypokalemia and metabolic alkalosis, increased serum renin and aldosterone levels and were treated with a symptomatic therapy. In order to define the molecular mechanisms responsible for BS, we co-expressed ClC-Kb wild type and channels with point mutations with barttin in HEK 293 cells and characterized chloride currents through the patch-clamp technique. In addition, we attempted to revert the functional defect caused by BS mutations through barttin overexpression. G167V and A242E channels showed a drastic current reduction compared to wild type, likely suggesting compromised expression of mutant channels at the plasma membrane. Conversely, G289R channel was similar to wild type raising the doubt that an additional mutation in another gene or other mechanisms could account for the clinical phenotype. Interestingly, increasing ClC-K/barttin ratio augmented G167V and A242E mutants' chloride current amplitudes towards wild type levels. These results confirm a genotype-phenotype correlation in BS and represent a preliminary proof of concept that molecules functioning as molecular chaperones can restore channel function in expression-defective ClC-Kb mutants.
Collapse
Affiliation(s)
- Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Bice Strumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Elisa Benetti
- Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis, and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Rosato A, Carocci A, Catalano A, Clodoveo ML, Franchini C, Corbo F, Carbonara GG, Carrieri A, Fracchiolla G. Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials. PLoS One 2018; 13:e0200902. [PMID: 30067803 PMCID: PMC6070247 DOI: 10.1371/journal.pone.0200902] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
Mentha piperita L. essential oil (EO) is employed for external use as antipruritic, astringent, rubefacient and antiseptic. Several studies demonstrated its significant antiviral, antifungal and antibacterial properties. The aim of this work is the study of the synergistic effects of M. piperita EO with antibacterials and antifungals that are widely available and currently prescribed in therapies against infections. The observed strong synergy may constitute a potential new approach to counter the increasing phenomenon of multidrug resistant bacteria and fungi. In vitro efficacy of the association M. piperita EO/drugs was evaluated against a large panel of Gram-positive and Gram-negative bacteria and yeast strains. The antimicrobial effects were studied by checkerboard microdilution method. The synergistic effect of M. piperita EO with gentamicin resulted in a strong growth inhibition for all the bacterial species under study. The synergistic effect observed for M. piperita EO and antifungals was less pronounced.
Collapse
Affiliation(s)
- Antonio Rosato
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Maria Lisa Clodoveo
- Department of Agro-Environmental and Territorial Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | | | - Antonio Carrieri
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari “A. Moro”, Bari, Italy
- * E-mail:
| |
Collapse
|
9
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
10
|
Taming unruly chloride channel inhibitors with rational design. Proc Natl Acad Sci U S A 2018; 115:5311-5313. [PMID: 29735705 DOI: 10.1073/pnas.1805589115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Cheng CJ, Rodan AR, Huang CL. Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther 2017; 102:420-435. [PMID: 28560800 DOI: 10.1002/cpt.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
Diuretics are commonly prescribed for treatment in patients with hypertension, edema, or heart failure. Studies on hypertensive and salt-losing disorders and on urea transporters have contributed to better understanding of mechanisms of renal salt and water reabsorption and their regulation. Proteins involved in the regulatory pathways are emerging targets for diuretic and aquaretic therapy. Integrative high-throughput screening, protein structure analysis, and chemical modification have identified promising agents for preclinical testing in animals. These include WNK-SPAK inhibitors, ClC-K channel antagonists, ROMK channel antagonists, and pendrin and urea transporter inhibitors. We discuss the potential advantages and side effects of these potential diuretics.
Collapse
Affiliation(s)
- C-J Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - A R Rodan
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - C-L Huang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Imbrici P, Tricarico D, Mangiatordi GF, Nicolotti O, Lograno MD, Conte D, Liantonio A. Pharmacovigilance database search discloses ClC-K channels as a novel target of the AT 1 receptor blockers valsartan and olmesartan. Br J Pharmacol 2017; 174:1972-1983. [PMID: 28334417 DOI: 10.1111/bph.13794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Human ClC-K chloride channels are highly attractive targets for drug discovery as they have a variety of important physiological functions and are associated with genetic disorders. These channels are crucial in the kidney as they control chloride reabsorption and water diuresis. In addition, loss-of-function mutations of CLCNKB and BSND genes cause Bartter's syndrome (BS), whereas CLCNKA and CLCNKB gain-of-function polymorphisms predispose to a rare form of salt sensitive hypertension. Both disorders lack a personalized therapy that is in most cases only symptomatic. The aim of this study was to identify novel ClC-K ligands from drugs already on the market, by exploiting the pharmacological side activity of drug molecules available from the FDA Adverse Effects Reporting System database. EXPERIMENTAL APPROACH We searched for drugs having a Bartter-like syndrome as a reported side effect, with the assumption that BS could be causatively related to the block of ClC-K channels. The ability of the selected BS-causing drugs to bind and block ClC-K channels was then validated through an integrated experimental and computational approach based on patch clamp electrophysiology in HEK293 cells and molecular docking simulations. KEY RESULTS Valsartan and olmesartan were able to block ClC-Ka channels and the molecular requirements for effective inhibition of these channels have been identified. CONCLUSION AND IMPLICATIONS These results suggest additional mechanisms of action for these sartans further to their primary AT1 receptor antagonism and propose these compounds as leads for designing new potent ClC-K ligands.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Orazio Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
13
|
Camerino GM, De Bellis M, Conte E, Liantonio A, Musaraj K, Cannone M, Fonzino A, Giustino A, De Luca A, Romano R, Camerino C, Laghezza A, Loiodice F, Desaphy JF, Conte Camerino D, Pierno S. Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin. Toxicol Appl Pharmacol 2016; 306:36-46. [PMID: 27377005 DOI: 10.1016/j.taap.2016.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023]
Abstract
Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Kejla Musaraj
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari - Aldo Moro, Medical School, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Rossella Romano
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Claudia Camerino
- Department of Medical Sciences, Neurosciences and Sense Organs, University of Bari - Aldo Moro, Bari, Italy
| | - Antonio Laghezza
- Section of Medicinal Chemistry, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Fulvio Loiodice
- Section of Medicinal Chemistry, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari - Aldo Moro, Medical School, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy.
| |
Collapse
|
14
|
Zaika O, Tomilin V, Mamenko M, Bhalla V, Pochynyuk O. New perspective of ClC-Kb/2 Cl- channel physiology in the distal renal tubule. Am J Physiol Renal Physiol 2016; 310:F923-30. [PMID: 26792067 PMCID: PMC5002062 DOI: 10.1152/ajprenal.00577.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Since its identification as the underlying molecular cause of Bartter's syndrome type 3, ClC-Kb (ClC-K2 in rodents, henceforth it will be referred as ClC-Kb/2) is proposed to play an important role in systemic electrolyte balance and blood pressure regulation by controlling basolateral Cl(-) exit in the distal renal tubular segments from the cortical thick ascending limb to the outer medullary collecting duct. Considerable experimental and clinical effort has been devoted to the identification and characterization of disease-causing mutations as well as control of the channel by its cofactor, barttin. However, we have only begun to unravel the role of ClC-Kb/2 in different tubular segments and to reveal the regulators of its expression and function, e.g., insulin and IGF-1. In this review we discuss recent experimental evidence in this regard and highlight unexplored questions critical to understanding ClC-Kb/2 physiology in the kidney.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University, Stanford, California
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas; and
| |
Collapse
|
15
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
16
|
|
17
|
Zaika O, Mamenko M, Boukelmoune N, Pochynyuk O. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts. Am J Physiol Renal Physiol 2015; 308:F39-F48. [PMID: 25339702 PMCID: PMC4281695 DOI: 10.1152/ajprenal.00545.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023] Open
Abstract
Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
18
|
Stölting G, Fischer M, Fahlke C. CLC channel function and dysfunction in health and disease. Front Physiol 2014; 5:378. [PMID: 25339907 PMCID: PMC4188032 DOI: 10.3389/fphys.2014.00378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies.
Collapse
Affiliation(s)
- Gabriel Stölting
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| | - Martin Fischer
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| |
Collapse
|
19
|
Liantonio A, Camerino GM, Scaramuzzi A, Cannone M, Pierno S, De Bellis M, Conte E, Fraysse B, Tricarico D, Conte Camerino D. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2803-15. [PMID: 25084345 DOI: 10.1016/j.ajpath.2014.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022]
Abstract
Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.
Collapse
Affiliation(s)
- Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.
| | - Giulia M Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Antonia Scaramuzzi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Maria Cannone
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Bodvael Fraysse
- INRA UMR703, LUNAM Université, Oniris, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique, Nantes, France
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| |
Collapse
|
20
|
Abstract
Specific channels permit movement of selected ions through cellular membranes, and are of vital importance in a number of physiological processes, particularly in excitable tissues such as nerve and muscle, but also in endocrine organs and in epithelial biology. Disorders of channel proteins are termed channelopathies, and their importance is increasingly recognised within medicine. In the kidney, ion channels have critical roles enabling sodium and potassium reuptake or excretion along the nephron, in magnesium homeostasis, in the control of water reabsorption in the collecting duct, and in determining glomerular permeability. In this review, we assess the channelopathies encountered in each nephron segment, and see how their molecular and genetic characterisation in the past 20–30 years has furthered our understanding of normal kidney physiology and disease processes, aids correct diagnosis and promises future therapeutic opportunities.
Collapse
Affiliation(s)
- KW Loudon
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - AC Fry
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
21
|
Denton JS, Pao AC, Maduke M. Novel diuretic targets. Am J Physiol Renal Physiol 2013; 305:F931-42. [PMID: 23863472 PMCID: PMC3798746 DOI: 10.1152/ajprenal.00230.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023] Open
Abstract
As the molecular revolution continues to inform a deeper understanding of disease mechanisms and pathways, there exist unprecedented opportunities for translating discoveries at the bench into novel therapies for improving human health. Despite the availability of several different classes of antihypertensive medications, only about half of the 67 million Americans with hypertension manage their blood pressure appropriately. A broader selection of structurally diverse antihypertensive drugs acting through different mechanisms would provide clinicians with greater flexibility in developing effective treatment regimens for an increasingly diverse and aging patient population. An emerging body of physiological, genetic, and pharmacological evidence has implicated several renal ion-transport proteins, or regulators thereof, as novel, yet clinically unexploited, diuretic targets. These include the renal outer medullary potassium channel, ROMK (Kir1.1), Kir4.1/5.1 potassium channels, ClC-Ka/b chloride channels, UTA/B urea transporters, the chloride/bicarbonate exchanger pendrin, and the STE20/SPS1-related proline/alanine-rich kinase (SPAK). The molecular pharmacology of these putative targets is poorly developed or lacking altogether; however, recent efforts by a few academic and pharmaceutical laboratories have begun to lessen this critical barrier. Here, we review the evidence in support of the aforementioned proteins as novel diuretic targets and highlight examples where progress toward developing small-molecule pharmacology has been made.
Collapse
Affiliation(s)
- Jerod S Denton
- T4208 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232.
| | | | | |
Collapse
|
22
|
Abstract
The lack of small-molecule inhibitors for anion-selective transporters and channels has impeded our understanding of the complex mechanisms that underlie ion passage. The ubiquitous CLC "Chloride Channel" family represents a unique target for biophysical and biochemical studies because its distinctive protein fold supports both passive chloride channels and secondary-active chloride-proton transporters. Here, we describe the synthesis and characterization of a specific small-molecule inhibitor directed against a CLC antiporter (ClC-ec1). This compound, 4,4'-octanamidostilbene-2,2'-disulfonate (OADS), inhibits ClC-ec1 with low micromolar affinity and has no specific effect on a CLC channel (ClC-1). Inhibition of ClC-ec1 occurs by binding to two distinct intracellular sites. The location of these sites and the lipid dependence of inhibition suggest potential mechanisms of action. This compound will empower research to elucidate differences between antiporter and channel mechanisms and to develop treatments for CLC-mediated disorders.
Collapse
|
23
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|
24
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|