1
|
van Dijk A, de Bode M, Kloosterman A, van der Linden M, Tomas JM. Modeling Fallout from Nuclear Weapon Detonations: Efficient Activity and Dose Calculation of Radionuclides and Their Progeny. HEALTH PHYSICS 2024; 127:404-421. [PMID: 39023383 DOI: 10.1097/hp.0000000000001834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ABSTRACT The purpose of this paper is to present a practical method for quick determination of potential radiological doses and contaminations by fallout from nuclear detonations, or other releases, that includes the contributions from all nuclides. We precalculate individual (total) activities of all radionuclides from any initial cocktail and all their ingrowing progeny at a set of pinpoints in time with a logarithmic time-spacing. This is combined with the set of dose conversion factors (DCC) for any exposure pathway to obtain a time-dependent cocktail for the whole release as if it is one substance. An atmospheric dispersion model then provides the thinning coefficient of the released material to give local concentrations and dose rates. Progeny ingrowth is illustrated for pure 238 U and for a nuclear reactor that has been shut down. Efficient dose assessment is demonstrated for fallout from nuclear detonations and compared with the traditional approach of preselecting nuclides for specific endpoints and periods-of-interest. The compound cocktail DCC reduces the assessment of contaminations and potential dose-effects from fallout after a nuclear detonation to (the atmospheric dispersion of) only one tracer substance, representing any cocktail of nuclides and their progeny. This removes the need to follow all separate nuclides or an endpoint-specific preselection of "most important nuclides." As the cocktail DCCs can be precalculated and the atmospheric dispersion of only one tracer substance has to be modelled, our method is fast. The model for calculating cocktail DCCs is freely available, easily coupled to any regular atmospheric dispersion model, and therefore ready for operational use by others.
Collapse
Affiliation(s)
- Arjan van Dijk
- RIVM; Rijkinstitutuut voor Volksgezondheid en Milieu, A. van Leeuwenhoeklaan 9, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
2
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Simon SL, Bouville A, Hoffman FO, Anspaugh LR. Why do we study science and collaborate? Thoughts on present-day cooperations with scientists of Russia. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:034501. [PMID: 38958214 DOI: 10.1088/1361-6498/ad5b68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Steven L Simon
- National Cancer Institute, Bethesda, MD, United States of America
| | - André Bouville
- National Cancer Institute, Bethesda, MD, United States of America
| | - F Owen Hoffman
- Oak Ridge Center for Risk Analysis, Oak Ridge, TN, United States of America
| | - Lynn R Anspaugh
- University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
4
|
Anspaugh LR, Mauro J, Briggs N, Porrovecchio J, Amann W, Salame-Alfie A, Ansari A. A Methodology for Calculating Inhalation Dose to Public Health Personnel Exposed to Material Resuspended from Evacuees Following the Detonation of a Fission Device. HEALTH PHYSICS 2023; 125:289-304. [PMID: 37548561 PMCID: PMC10476581 DOI: 10.1097/hp.0000000000001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/08/2023]
Abstract
ABSTRACT Following a nuclear fission event, there likely would be a large number of contaminated persons who would seek assistance at community reception centers to be established outside the affected area. This paper provides a methodology for calculating inhalation doses to public health and other response personnel at such facilities who would be receiving and assisting potentially contaminated persons from whom particles can be resuspended. Three hypothetical facilities were considered: the Base Case is a rather small room with no forced air ventilation. The Preferred Case, which is more realistic, is a mid-sized room with an operating HVAC system with air being recirculated through a filter. The Gymnasium Case has only fresh air intake. Initial bounding calculations for the Base Case indicated the need for pre-screening of arrivals to avoid unacceptable doses to staff. The screening criterion selected was 1.67 × 10 6 Bq m -2 . Calculations are presented for radionuclide concentrations in air, dose to staff from inhalation, and how exposures and the resulting doses can be altered by air-turnover rates and the use of filters with varying efficiency. Doses are presented for various arrival times and for both plutonium- and uranium-fueled detonations. The highest calculated dose via inhalation with no respiratory protection was 0.23 mSv for the Base Case. The more important radionuclides contributing to dose with exposure starting at day D + 1 were 239 Np and 133 I. At day D + 30, 131 I and 140 Ba were the more important dosimetrically. The variable creating the highest uncertainty was the slough-off factor for resuspension of contamination from people arriving at the reception center.
Collapse
Affiliation(s)
- Lynn R. Anspaugh
- Department of Radiology, University of Utah, Emeritus, Henderson, NV
- Associate, SC&A, Inc., Arlington, VA
| | | | | | - Joseph Porrovecchio
- Associate, SC&A, Inc., Arlington, VA
- Lt. Col., U.S. Army, Retired, Valley Cottage, NY
- Rockland County Sheriff’s Department, New City, NY
| | | | - Adela Salame-Alfie
- Radiation Studies Section, Division of Environmental Health Science and Practice, Centers for Disease Control and Prevention, Atlanta, GA
| | - Armin Ansari
- Radiation Studies Section, Division of Environmental Health Science and Practice, Centers for Disease Control and Prevention, Atlanta, GA
- Currently at Radiation Protection Division, Environmental Protection Agency, Washington, DC
| |
Collapse
|
5
|
DiCarlo AL, Carnell LS, Rios CI, Prasanna PG. Inter-agency perspective: Translating advances in biomarker discovery and medical countermeasures development between terrestrial and space radiation environments. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:9-19. [PMID: 36336375 PMCID: PMC9832585 DOI: 10.1016/j.lssr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 05/22/2023]
Abstract
Over the past 20+ years, the U.S. Government has made significant strides in establishing research funding and initiating a portfolio consisting of subject matter experts on radiation-induced biological effects in normal tissues. Research supported by the National Cancer Institute (NCI) provided much of the early findings on identifying cellular pathways involved in radiation injuries, due to the need to push the boundaries to kill tumor cells while minimizing damage to intervening normal tissues. By protecting normal tissue surrounding the tumors, physicians can deliver a higher radiation dose to tumors and reduce adverse effects related to the treatment. Initially relying on this critical NCI research, the National Institute of Allergy and Infectious Diseases (NIAID), first tasked with developing radiation medical countermeasures in 2004, has provided bridge funding to move basic research toward advanced development and translation. The goal of the NIAID program is to fund approaches that can one day be employed to protect civilian populations during a radiological or nuclear incident. In addition, with the reality of long-term space flights and the possibility of radiation exposures to both acute, high-intensity, and chronic lower-dose levels, the National Aeronautics and Space Administration (NASA) has identified requirements to discover and develop radioprotectors and mitigators to protect their astronauts during space missions. In sustained partnership with sister agencies, these three organizations must continue to leverage funding and findings in their overlapping research areas to accelerate biomarker identification and product development to help safeguard these different and yet undeniably similar human populations - cancer patients, public citizens, and astronauts.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America.
| | - Lisa S Carnell
- Biological and Physical Sciences Division, National Aeronautics and Space Administration (NASA), 300 E Street SW, Washington, DC, 20546 United States of America
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America
| | - Pataje G Prasanna
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Bethesda, MD, 20892 United States of America
| |
Collapse
|
6
|
Hoshi M. The overview of neutron-induced 56Mn radioactive microparticle effects in experimental animals and related studies. JOURNAL OF RADIATION RESEARCH 2022; 63:i1-i7. [PMID: 35968985 PMCID: PMC9377033 DOI: 10.1093/jrr/rrac020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Indexed: 05/28/2023]
Abstract
Investigation into the risks associated with radiation exposure has been carried out on those exposed to radiation in Hiroshima and Nagasaki, Semipalatinsk and other parts of the world. These risks are used as a guidance standard for the protection for radiation workers and the general public when exposed to radiation, and it sets upper regulatory limits for the amount of radiation exposure. However, the effects of internal exposure to radioactive microparticles have not been considered in these studies. These effects cannot be ignored since the exposure dose increases are inversely proportional to the square of the distance to the vicinity of the particles and can exceed tens of thousands of mGy. So far, only retrospective studies of people who have been exposed to radiation have been conducted, therefore we hypothesized that animal experiments would be necessary to investigate these effects. As a result, we found specific effects of radioactive microparticles. One particularly noteworthy finding was that internal exposure to radioactive microparticles resulted in pathological changes that were more than 20 times greater than those caused by the same level of external exposure. In contrast, there were other results that showed no such effects, and the reasons for this discrepancy need to be clarified. We also conducted RNA expression experiments and found that there was a difference between external exposure to 60Co gamma rays and internal exposure to 56Mn microparticles. In the future, we will need to study the mechanisms behind these findings. If the mechanism can be confirmed, it is expected to lead to the development of protective and therapeutic methods.
Collapse
Affiliation(s)
- Masaharu Hoshi
- Corresponding author. The Center for Peace, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730-0053, Japan. E-mail: , , Fax: +81-82-284-6636
| |
Collapse
|
7
|
Anspaugh LR, Bouville A, Thiessen KM, Hoffman FO, Beck HL, Gordeev KI, Simon SL. A Methodology for Calculation of Internal Dose Following Exposure to Radioactive Fallout from the Detonation of a Nuclear Fission Device. HEALTH PHYSICS 2022; 122:84-124. [PMID: 34898517 PMCID: PMC8677618 DOI: 10.1097/hp.0000000000001503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT The purpose of this paper is to provide a methodology for the calculation of internal doses of radiation following exposure to radioactive fallout from the detonation of a nuclear fission device. Reliance is on methodology previously published in the open literature or in reports not readily available, though some new analysis is also included. Herein, we present two methodologic variations: one simpler to implement, the other more difficult but more flexible. The intention is to provide in one place a comprehensive methodology. Pathways considered are (1) the ingestion of vegetables and fruits contaminated by fallout directly, (2) the ingestion of vegetables and fruits contaminated by continuing deposition by rain- or irrigation-splash and resuspension, (3) the ingestion of vegetables and fruits contaminated by absorption of radionuclides by roots after tillage of soil, (4) the non-equilibrium transfer of short-lived radionuclides through the cow-milk and goat-milk food chains, (5) the equilibrium transfer of long lived radionuclides through milk and meat food chains, and (6) inhalation of descending fallout. Uncertainty in calculated results is considered. This is one of six companion papers that describe a comprehensive methodology for assessing both external and internal dose following exposures to fallout from a nuclear detonation. Input required to implement the dose-estimation model for any particular location consists of an estimate of the post-detonation external gamma-exposure rate and an estimate of the time of arrival of the fallout cloud. The additional data required to make such calculations are included in the six companion papers.
Collapse
Affiliation(s)
- Lynn R. Anspaugh
- Department of Radiology, University of Utah, Emeritus, Henderson, NV
| | | | | | | | | | | | | |
Collapse
|
8
|
Melo DR, Bertelli L, Ibrahim SA, Anspaugh LR, Bouville A, Simon SL. Dose Coefficients for Internal Dose Assessments for Exposure to Radioactive Fallout. HEALTH PHYSICS 2022; 122:125-235. [PMID: 34898518 PMCID: PMC8677615 DOI: 10.1097/hp.0000000000001500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT This paper presents values as well as the bases for calculating internal dose coefficients suitable for estimating organ doses from the exposure to radioactive fallout that could result from the detonation of a nuclear fission device. The 34 radionuclides discussed are the same as those given in a priority list of radionuclides for fallout dose assessments presented in a companion overview paper. The radionuclides discussed are those that are believed to account for a preponderance of the organ doses that might be received by intake by persons of all ages (including in utero and via breast feeding for infants) following exposure to radioactive fallout. The presented dose coefficients for ingestion account for age and include modifications for variations in solubility with distance as discussed previously in the literature, and those for inhalation similarly account for age, solubility, and particle sizes that would be relevant at various distances of exposure as discussed in a companion paper on ingestion dose methods. The proposed modifications peculiar to radioactive fallout account for systematic changes in solubility and particle sizes with distance from the site of detonation, termed here as the region of "local fallout" and the region "beyond local fallout." Brief definitions of these regions are provided here with more detailed discussion in a companion paper on estimating deposition of fallout radionuclides. This paper provides the dose coefficients for ingestion and inhalation (for particle sizes of 1 μm, 5 μm, 10 μm, and 20 μm) for the region "local fallout." These dose coefficients for "local fallout" are specific for particles formed in a nuclear explosion that can be large and have radionuclides, particularly the more refractory ones, distributed throughout the volume where the radionuclide has reduced solubility. The dose coefficients for the region "beyond local fallout" are assumed to be the ones published by the International Commission on Radiological Protection (ICRP) in 1995. Comparisons of the presented dose coefficients are made with values published by the ICRP.
Collapse
Affiliation(s)
| | | | - Shawki A. Ibrahim
- Colorado State University, Department of Environmental and Radiological Health Sciences (Emeritus), CO
| | | | - André Bouville
- National Cancer Institute, National Institutes of Health (ret.), MD
| | - Steven L. Simon
- National Cancer Institute, National Institutes of Health, MD
| |
Collapse
|
9
|
Bouville A, Beck HL, Anspaugh LR, Gordeev K, Shinkarev S, Thiessen KM, Hoffman FO, Simon SL. A Methodology for Estimating External Doses to Individuals and Populations Exposed to Radioactive Fallout from Nuclear Detonations. HEALTH PHYSICS 2022; 122:54-83. [PMID: 34898516 PMCID: PMC8677613 DOI: 10.1097/hp.0000000000001504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT A methodology of assessment of the doses from external irradiation resulting from the ground deposition of radioactive debris (fallout) from a nuclear detonation is proposed in this paper. The input data used to apply this methodology for a particular location are the outdoor exposure rate at any time after deposition of fallout and the time-of-arrival of fallout, as indicated and discussed in a companion paper titled "A Method for Estimating the Deposition Density of Fallout on the Ground and on Vegetation from a Low-yield Low-altitude Nuclear Detonation." Example doses are estimated for several age categories and for all radiosensitive organs and tissues identified in the most recent ICRP publications. Doses are calculated for the first year after the detonation, when more than 90% of the external dose is delivered for populations close to the detonation site over a time period of 70 y, which is intended to represent the lifetime dose. Modeled doses in their simplest form assume no environmental remediation, though modifications can be introduced. Two types of dose assessment are considered: (1) initial, for a rapid but only approximate dose estimation soon after the nuclear detonation; and (2) improved, for a later, more accurate, dose assessment following the analysis of post-detonation measurements of radiation exposure and fallout deposition and the access of information on the lifestyle of the exposed population.
Collapse
Affiliation(s)
- André Bouville
- National Cancer Institute, National Institutes of Health, Bethesda, MD (retired)
| | | | - Lynn R. Anspaugh
- Department of Radiology, University of Utah (Emeritus), Henderson, NV
| | - Konstantin Gordeev
- State Research Center—Institute of Biophysics of the Ministry of Health, Moscow, Russian Federation (deceased)
| | - Sergey Shinkarev
- State Research Center—Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow, Russian Federation
| | | | | | - Steven L. Simon
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Thiessen KM, Hoffman FO, Bouville A, Anspaugh LR, Beck HL, Simon SL. Parameter Values for Estimation of Internal Doses from Ingestion of Radioactive Fallout from Nuclear Detonations. HEALTH PHYSICS 2022; 122:236-268. [PMID: 34898519 PMCID: PMC8677614 DOI: 10.1097/hp.0000000000001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ABSTRACT This paper suggests values or probability distributions for a variety of parameters used in estimating internal doses from radioactive fallout due to ingestion of food. Parameters include those needed to assess the interception and initial retention of radionuclides by vegetation, translocation of deposited radionuclides to edible plant parts, root uptake by plants, transfer of radionuclides from vegetation into milk and meat, transfer of radionuclides into non-agricultural plants and wildlife, and transfer from food and drinking water to mother's milk (human breast milk). The paper includes discussions of the weathering half-life for contamination on plant surfaces, biological half-lives of organisms, food processing (culinary factors), and contamination of drinking water. As appropriate, and as information exists, parameter values or distributions are specific for elements, chemical forms, plant types, or other relevant characteristics. Information has been obtained from the open literature and from publications of the International Atomic Energy Agency. These values and probability distributions are intended to be generic; they should be reviewed for applicability to a given location, time period, or season of the year, as appropriate. In particular, agricultural practices and dietary habits may vary considerably both with geography and over time in a given location.
Collapse
Affiliation(s)
| | - F. Owen Hoffman
- Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN 37830
| | - André Bouville
- National Cancer Institute, National Institutes of Health, Bethesda, MD (retired)
| | | | | | - Steven L. Simon
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Simon SL, Bouville A, Beck HL, Anspaugh LR, Thiessen KM, Hoffman FO, Shinkarev S. Dose Estimation for Exposure to Radioactive Fallout from Nuclear Detonations. HEALTH PHYSICS 2022; 122:1-20. [PMID: 34898514 PMCID: PMC8677604 DOI: 10.1097/hp.0000000000001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT In recent years, the prospects that a nuclear device might be detonated due to a regional or global political conflict, by violation of present nuclear weapons test ban agreements, or due to an act of terrorism, has increased. Thus, the need exists for a well conceptualized, well described, and internally consistent methodology for dose estimation that takes full advantage of the experience gained over the last 70 y in both measurement technology and dose assessment methodology. Here, the models, rationale, and data needed for a detailed state-of-the-art dose assessment for exposure to radioactive fallout from nuclear detonations discussed in five companion papers are summarized. These five papers present methods and data for estimating radionuclide deposition of fallout radionuclides, internal and external dose from the deposited fallout, and discussion of the uncertainties in the assessed doses. In addition, this paper includes a brief discussion of secondary issues related to assessments of radiation dose from fallout. The intention of this work is to provide a usable and consistent methodology for both prospective and retrospective assessments of exposure from radioactive fallout from a nuclear detonation.
Collapse
Affiliation(s)
- Steven L. Simon
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - André Bouville
- National Cancer Institute, National Institutes of Health, Bethesda, MD (retired)
| | | | - Lynn R. Anspaugh
- Department of Radiology, University of Utah (Emeritus), Henderson, NV
| | | | | | - Sergey Shinkarev
- State Research Center-Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow, Russian Federation
| |
Collapse
|