1
|
Ghani F, Zubair AC. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 2025:10.1038/s41375-025-02624-4. [PMID: 40275072 DOI: 10.1038/s41375-025-02624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
With the advent of deep space exploration and ambitious plans to return humans to the Moon and journey onward to Mars, humans will face exposure to ionizing radiation beyond Earth's atmosphere and magnetosphere. This is particularly concerning for the hematopoietic system that is sensitive to galactic cosmic rays (GCRs) during interplanetary missions. Epidemiological studies and animal studies implicate that exposure to ionizing radiation can cause leukemias, with recent consensus showing that almost all types of leukemias, even chronic lymphocytic leukemia, can be caused by ionizing radiation despite previous controversies. The possible deleterious effects of deep space travel on the formation, development, etiology, and pathophysiology of hematologic malignancies, specifically leukemias, remain largely unclear. The mechanism(s) by which ionizing radiations cause leukemia differs for different leukemia types and is poorly understood in the spaceflight environment, posing a serious health risk for future astronauts. This paper provides a comprehensive review of the various studies and evidence available on Earth and in space assessing the relationship between ionizing radiation and increased risk of leukemia. We also discuss the unique characteristics of leukemia in space, ethical considerations, risk assessments and potential challenges this may bring to astronauts and healthcare professionals as humanity continues to explore the cosmos.
Collapse
Affiliation(s)
- Fay Ghani
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Kleiman NJ, Edmondson EF, Weil MM, Fallgren CM, King A, Schmidt C, Hall EJ. Radiation cataract in Heterogeneous Stock mice after γ-ray or HZE ion exposure. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:97-105. [PMID: 38245354 PMCID: PMC10800003 DOI: 10.1016/j.lssr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024]
Abstract
Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.
Collapse
Affiliation(s)
- Norman J Kleiman
- Department of Environmental Health Sciences, Eye Radiation and Environmental Research Laboratory, Columbia University, Mailman School of Public Health, 722 West 168th St., 11th Floor, New York, NY, 10032, United States.
| | - Elijah F Edmondson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, United States; Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Michael M Weil
- Department of Environment and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Christina M Fallgren
- Department of Environment and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Adam King
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, United States; MedVet Chicago, Chicago, IL, 60618, United States
| | - Catherine Schmidt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, United States; Veterinary Eye Specialists, Thornwood, NY, 10594, , United States
| | - Eric J Hall
- Center for Radiological Research, Columbia University, College of Physicians and Surgeons, 630W. 168th St., New York, NY,10032, , United States
| |
Collapse
|
3
|
Kumar K, Moon BH, Datta K, Fornace AJ, Suman S. Simulated galactic cosmic radiation (GCR)-induced expression of Spp1 coincide with mammary ductal cell proliferation and preneoplastic changes in Apc Min/+ mouse. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:116-122. [PMID: 36682820 DOI: 10.1016/j.lssr.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Female astronauts inevitably exposed to galactic cosmic radiation (GCR) are considered at a greater risk for mammary cancer development. The purpose of this study is to assess the status of mammary cancer-associated preneoplasia markers after GCR and γ-ray irradiation using a mouse model of human mammary cancer. Female ApcMin/+ mice were irradiated to 50 cGy of either γ-ray (137Cs) or full-spectrum simulated galactic cosmic radiation (GCR) (33-beam), and at 110 - 120 days post-irradiation mice were euthanized, and normal-appearing mammary tissues were analyzed for histological and molecular markers of preneoplasia. Whole-mount staining, hematoxylin and eosin-based histological assessment, and Cyclin D1 immunohistochemistry (IHC) were performed to analyze ductal outgrowth and cell proliferation. Additionally, mRNA expression of known mammary preneoplasia markers (Muc1, Exo1, Foxm1, Depdc1a, Nusap1, Spp1, and Rrm2) was analyzed using qPCR, and their respective protein expression was validated using immunohistochemistry. A significant increase in ductal outgrowth and cell proliferation in mammary tissues of GCR-irradiated mice was noted which indicates a higher risk of mammary cancer, relative to γ-rays. Increased mRNA and protein expression of Spp1 was observed in the GCR group, relative to γ-rays. This study demonstrates the plausibility of Spp1 as a preneoplasia marker in the early detection of mammary cancer after space radiation exposure.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Bo-Hyun Moon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States of America
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, United States of America.
| |
Collapse
|
4
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
5
|
More efficient induction of genotoxicity by high-LET Fe-particle radiation than low-LET X-ray radiation at low doses. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
6
|
Leung CN, Howell DM, de Toledo SM, Azzam EI, Howell RW. Late Effects of Heavy-Ion Space Radiation on Splenocyte Subpopulations and NK Cytotoxic Function. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2022; 9:949432. [PMID: 39554816 PMCID: PMC11566395 DOI: 10.3389/fspas.2022.949432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
With current goals of increased space exploration and travel to Mars, there has been great interest in understanding the long-term effects of high atomic number, high energy (HZE) ion exposure on various organ systems and the immune system. Little is known about late effects on the immune system after high-LET exposure. Therefore, our objective was to determine how natural killer (NK) cell populations were affected in geriatric mice that were exposed to HZE particles during middle-age, thereby representing elderly retired astronauts that undertook deep space missions. Methods 10 month old male CBA/CaJ mice were whole-body irradiated: sham (control); 150-cGy gamma-rays (delivered in 1 fraction); 40-cGy 1-GeV/nu 28Si14+ ions (delivered in 3 fractions); 40-cGy 1-GeV/nu 16O8+ ions (1 fraction); and 40-cGy 1-GeV/nu 16O8+ ions (3 fractions). The mice were sacrificed 1-1.5 yr post-exposure, and the spleens harvested. Splenocyte effector (E) cells were harvested and added to 51Cr-labeled Yac-1 target (T) cells in E:T ratios of 12:1, 25:1, 50:1, and 100:1. NK cytotoxicity was measured with 51Cr release. In addition, 2 million splenocytes were aliquoted and stained with a seven-antibody cocktail, and flow cytometry was used to determine the percentage of NK, B lymphocytes, and T lymphocytes in the splenocyte population. Results Mice exposed to either a single fraction of 150-cGy gamma rays or 40-cGy 16O8+ ions in 3 fractions were found to have significant decreases in NK cytotoxicity of approximately 30% and 25%, respectively. No significant differences were observed in NK cytotoxicity for 40-cGy 16O8+ ions delivered in 1 fraction, or 40-cGy 28Si14+ ions delivered in 3 fractions. No significant differences were observed in the percentage of spleen cells that were NK (%NK) amongst the groups. Conclusion Fractionated HZE ion exposure has the potential to affect the innate arm of the immune system long after exposure, leading to decreases in NK cell function. Therefore, protective countermeasures may need to be considered to decrease the risk of reduced long-term immune function in elderly retired astronauts that undertook deep space missions.
Collapse
Affiliation(s)
- Calvin N. Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Donna M. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Natural Sciences Department, Middlesex College, Edison, NJ, USA
| | - Sonia M. de Toledo
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Health Sciences, Canadian Nuclear Laboratories, Chalk River, OT, Canada
| | - Roger W. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
7
|
Cao X, Weil MM, Wu JC. Clinical Trial in a Dish for Space Radiation Countermeasure Discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:140-149. [PMID: 36336359 PMCID: PMC10947779 DOI: 10.1016/j.lssr.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
NASA aims to return humans to the moon within the next five years and to land humans on Mars in a few decades. Space radiation exposure represents a major challenge to astronauts' health during long-duration missions, as it is linked to increased risks of cancer, cardiovascular dysfunctions, central nervous system (CNS) impairment, and other negative outcomes. Characterization of radiation health effects and developing corresponding countermeasures are high priorities for the preparation of long duration space travel. Due to limitations of animal and cell models, the development of novel physiologically relevant radiation models is needed to better predict these individual risks and bridge gaps between preclinical testing and clinical trials in drug development. "Clinical Trial in a Dish" (CTiD) is now possible with the use of human induced pluripotent stem cells (hiPSCs), offering a powerful tool for drug safety or efficacy testing using patient-specific cell models. Here we review the development and applications of CTiD for space radiation biology and countermeasure studies, focusing on progress made in the past decade.
Collapse
Affiliation(s)
- Xu Cao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Chang PY, Bakke J, Rosen CJ, Bjornstad KA, Mao JH, Blakely EA. Heavy-Ion-Induced Lung Tumors: Dose- & LET-Dependence. Life (Basel) 2022; 12:907. [PMID: 35743938 PMCID: PMC9225356 DOI: 10.3390/life12060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
There is a limited published literature reporting dose-dependent data for in vivo tumorigenesis prevalence in different organs of various rodent models after exposure to low, single doses of charged particle beams. The goal of this study is to reduce uncertainties in estimating particle-radiation-induced risk of lung tumorigenesis for manned travel into deep space by improving our understanding of the high-LET-dependent dose-response from exposure to individual ion beams after low particle doses (0.03-0.80 Gy). Female CB6F1 mice were irradiated with low single doses of either oxygen, silicon, titanium, or iron ions at various energies to cover a range of dose-averaged LET values from 0.2-193 keV/µm, using 137Cs γ-rays as the reference radiation. Sham-treated controls were included in each individual experiment totally 398 animals across the 5 studies reported. Based on power calculations, between 40-156 mice were included in each of the treatment groups. Tumor prevalence at 16 months after radiation exposure was determined and compared to the age-matched, sham-treated animals. Results indicate that lung tumor prevalence is non-linear as a function of dose with suggestions of threshold doses depending on the LET of the beams. Histopathological evaluations of the tumors showed that the majority of tumors were benign bronchioloalveolar adenomas with occasional carcinomas or lymphosarcomas which may have resulted from metastases from other sites.
Collapse
Affiliation(s)
- Polly Y. Chang
- Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (P.Y.C.); (J.B.)
| | - James Bakke
- Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (P.Y.C.); (J.B.)
| | - Chris J. Rosen
- Biological Systems & Engineering Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA; (C.J.R.); (K.A.B.); (J.-H.M.)
| | - Kathleen A. Bjornstad
- Biological Systems & Engineering Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA; (C.J.R.); (K.A.B.); (J.-H.M.)
| | - Jian-Hua Mao
- Biological Systems & Engineering Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA; (C.J.R.); (K.A.B.); (J.-H.M.)
| | - Eleanor A. Blakely
- Biological Systems & Engineering Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA; (C.J.R.); (K.A.B.); (J.-H.M.)
| |
Collapse
|
9
|
Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021; 10:biomedicines10010025. [PMID: 35052703 PMCID: PMC8773191 DOI: 10.3390/biomedicines10010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
| | - Jonas Callant
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (J.C.); (B.B.); (S.B.)
- Department Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (M.K.); (A.K.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
10
|
Bennett PV, Johnson AM, Ackerman SE, Chaudhary P, Keszenman DJ, Wilson PF. Dose-Rate Effects of Protons and Light Ions for DNA Damage Induction, Survival and Transformation in Apparently Normal Primary Human Fibroblasts. Radiat Res 2021; 197:298-313. [PMID: 34910217 DOI: 10.1667/rade-21-00138.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/09/2021] [Indexed: 11/03/2022]
Abstract
We report on effects of low-dose exposures of accelerated protons delivered at high-dose rate (HDR) or a simulated solar-particle event (SPE) like low-dose rate (LDR) on immediate DNA damage induction and processing, survival and in vitro transformation of low passage NFF28 apparently normal primary human fibroblasts. Cultures were exposed to 50, 100 and 1,000 MeV monoenergetic protons in the Bragg entrance/plateau region and cesium-137 γ rays at 20 Gy/h (HDR) or 1 Gy/h (LDR). DNA double-strand breaks (DSB) and clustered DNA damages (containing oxypurines and abasic sites) were measured using transverse alternating gel electrophoresis (TAFE) and immunocytochemical detection/scoring of colocalized γ-H2AX pS139/53BP1 foci, with their induction being linear energy transfer (LET) dependent and dose-rate sparing observed for the different damage classes. Relative biological effectiveness (RBE) values for cell survival after proton irradiation at both dose-rates ranged from 0.61-0.73. Transformation RBE values were dose-rate dependent, ranging from ∼1.8-3.1 and ∼0.6-1.0 at low doses (≤30 cGy) for HDR and LDR irradiations, respectively. However peak transformation frequencies were significantly higher (1.3-7.3-fold) for higher doses of 0.5-1 Gy delivered at SPE-like LDR. Cell survival and transformation frequencies measured after low-dose 500 MeV/n He-4, 290 MeV/n C-12 and 600 MeV/n Si-28 ion irradiations also showed an inverse dose-rate effect for transformation at SPE-like LDR. This work demonstrates the existence of inverse dose-rate effects for proton and light-ion-induced postirradiation cell survival and in vitro transformation for space mission-relevant doses and dose rates.
Collapse
Affiliation(s)
- Paula V Bennett
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Alicia M Johnson
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Sarah E Ackerman
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | - Pankaj Chaudhary
- Biology Department, Brookhaven National Laboratory, Upton, New York
| | | | - Paul F Wilson
- Biology Department, Brookhaven National Laboratory, Upton, New York
| |
Collapse
|
11
|
Udho EB, Huebner SM, Albrecht DM, Matkowskyj KA, Clipson L, Hedican CA, Koth R, Snow SM, Eberhardt EL, Miller D, Van Doorn R, Gjyzeli G, Spengler EK, Storts DR, Thamm DH, Edmondson EF, Weil MM, Halberg RB, Bacher JW. Tumor aggressiveness is independent of radiation quality in murine hepatocellular carcinoma and mammary tumor models. Int J Radiat Biol 2021; 97:1140-1151. [PMID: 33720813 DOI: 10.1080/09553002.2021.1900946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Estimating cancer risk associated with interplanetary space travel is complicated. Human exposure data to high atomic number, high-energy (HZE) radiation is lacking, so data from low linear energy transfer (low-LET) γ-ray radiation is used in risk models, with the assumption that HZE and γ-ray radiation have comparable biological effects. This assumption has been challenged by reports indicating that HZE radiation might produce more aggressive tumors. The goal of this research is to test whether high-LET HZE radiation induced tumors are more aggressive. MATERIALS AND METHODS Murine models of mammary and liver cancer were used to compare the impact of exposure to 0.2Gy of 300MeV/n silicon ions, 3 Gy of γ-rays or no radiation. Numerous measures of tumor aggressiveness were assessed. RESULTS For the mammary cancer models, there was no significant change in the tumor latency or metastasis in silicon-irradiated mice compared to controls. For the liver cancer models, we observed an increase in tumor incidence but not tumor aggressiveness in irradiated mice. CONCLUSION Tumors in the HZE-irradiated mice were not more aggressive than those arising from exposure to low-LET γ-rays or spontaneously. Thus, enhanced aggressiveness does not appear to be a uniform characteristic of all tumors in HZE-irradiated animals.
Collapse
Affiliation(s)
| | - Shane M Huebner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Dawn M Albrecht
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Kristina A Matkowskyj
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Medical Center, Madison, WI, USA
| | - Linda Clipson
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | | | | | - Santina M Snow
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Emily L Eberhardt
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Devon Miller
- Promega Corporation, Madison, WI, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Rachel Van Doorn
- Promega Corporation, Madison, WI, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Genti Gjyzeli
- Promega Corporation, Madison, WI, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Erin K Spengler
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Douglas H Thamm
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Elijah F Edmondson
- Molecular Histopathology Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Richard B Halberg
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Jeffery W Bacher
- Promega Corporation, Madison, WI, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020; 183:1162-1184. [PMID: 33242416 PMCID: PMC8441988 DOI: 10.1016/j.cell.2020.10.050] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eloise Pariset
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sara R Zwart
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mayra Nelman-Gonzalez
- KBR, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Sergey A Ponomarev
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Oleg I Orlov
- Institute for the Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Stephanie E Richards
- Bionetics, NASA Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Parag A Vaishampayan
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jacqueline Myrrhe
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Eric Istasse
- European Space Agency, Research and Payloads Group, Data Exploitation and Utilisation Strategy Office, 2200 AG Noordwijk, the Netherlands
| | - Nitin Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jessica A Keune
- Space Medicine Operations Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Hami E Ray
- ASRC Federal Space and Defense, Inc., Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mathias Basner
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jack Miller
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Deanne M Taylor
- Department of Biomedical Informatics, The Children's Hospital of Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Rubins
- Astronaut Office, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Peter Grabham
- Center for Radiological Research, Department of Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Coutinho JVDS, Ferreira PS, Soares J, Passamai JL, D'Azeredo Orlando MT, Gouvea SA. Evaluation of induced biological effects in rats by continuous and natural gamma radiation using a physical simulator. Int J Radiat Biol 2020; 96:1473-1485. [PMID: 32845812 DOI: 10.1080/09553002.2020.1812760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The effects of radioactivity on human health have been debated for many years but there are still important gaps that need to be addressed especially related to the effects of high natural background radiation on the local population. The beach of Meaípe, in the city of Guarapari (Brazil), emits natural gamma radiation due to the presence of monazite sands. We aimed to investigate the effects of gamma radiation doses on the biological system of wistar rats using a physical simulator of gamma radiation designed using Meaípe monazite sands. METHODS Female Wistar rats were divided into three groups, submitted to no radiation (control group) and to continuous radiation levels, one of very high level (20 μSv h-1) and another of high level (3.6 μSv h-1). The three group of animals were monitored weekly for 3 months and at the end of the study the animals were sacrificed, and the organs were extracted and weighed for anthropometric, oxidative stress and histological evaluations. RESULTS Exposure to radiation released by the monazite sands did not cause anthropometric alterations or blood pressure change in the animals. Similarly, there was no change in the quantification of ovarian follicles between the radiation groups and the control group. There was no difference in the oxidative stress quantification by the thiobarbituric acid reactive substance and advanced oxidation protein product methods in the ovaries. There were no evidenced damages in the structure of the renal tissue. It was observed the presence of granulomas in the hepatic tissue and alterations in the nuclei of the hepatocytes. CONCLUSIONS Our results suggest that the continuous exposure of females rats to 3.6 and 20 μSv h-1 doses of gamma radiation slightly affected the hepatic tissue, but did not alter the histological parameters in the kidneys and ovaries and oxidative stress.
Collapse
Affiliation(s)
| | - Priscila Santos Ferreira
- Postgraduate Program in Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Jacyra Soares
- Department of Atmospheric Science, IAG, University of Sao Paulo, Sao Paulo, Brazil
| | - José Luis Passamai
- Department of Physics, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Sonia Alves Gouvea
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
14
|
Patel R, Zhang L, Desai A, Hoenerhoff MJ, Kennedy LH, Radivoyevitch T, La Tessa C, Gerson SL, Welford SM. Protons and High-Linear Energy Transfer Radiation Induce Genetically Similar Lymphomas With High Penetrance in a Mouse Model of the Aging Human Hematopoietic System. Int J Radiat Oncol Biol Phys 2020; 108:1091-1102. [PMID: 32629081 DOI: 10.1016/j.ijrobp.2020.06.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Humans are exposed to charged particles in different scenarios. The use of protons and high-linear energy transfer (LET) in cancer treatment is steadily growing. In outer space, astronauts will be exposed to a mixed radiation field composed of both protons and heavy ions, in particularly the long-term space missions outside of earth's magnetosphere. Thus, understanding the radiobiology and transforming potential of these types of ionizing radiation are of paramount importance. METHODS AND MATERIALS We examined the effect of 10 or 100 cGy of whole-body doses of protons or 28Si ions on the hematopoietic system of a genetic model of aging based on recent studies that showed selective loss of the MLH1 protein in human hematopoietic stems with age. RESULTS We found that Mlh1 deficient animals are highly prone to develop lymphomas when exposed to either low doses of protons or 28Si ions. The lymphomas that develop are genetically indistinguishable, in spite of different types of damage elicited by low- and high-LET radiation. RNA sequencing analyses reveal similar gene expression patterns, similar numbers of altered genes, similar numbers of single nucleotide variants and insertions and deletions, and similar activation of known leukemogenic loci. CONCLUSIONS Although the incidence of malignancy is related to radiation quality, and increased due to loss of Mlh1, the phenotype of the tumors is independent of LET.
Collapse
Affiliation(s)
- Rutulkumar Patel
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Luchang Zhang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Amar Desai
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lucy H Kennedy
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Chiara La Tessa
- University of Trento, Trento, Italy; Trento Institute for Fundamental Physics and Applications TIFPA-INFN, Trento, Italy
| | - Stanton L Gerson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Scott M Welford
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida; Department of Radiation Oncology, University of Miami, Miami, Florida.
| |
Collapse
|
15
|
Kiffer F, Alexander T, Anderson J, Groves T, McElroy T, Wang J, Sridharan V, Bauer M, Boerma M, Allen A. Late Effects of 1H + 16O on Short-Term and Object Memory, Hippocampal Dendritic Morphology and Mutagenesis. Front Behav Neurosci 2020; 14:96. [PMID: 32670032 PMCID: PMC7332779 DOI: 10.3389/fnbeh.2020.00096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
The space extending beyond Earth’s magnetosphere is subject to a complex field of high-energy charged nuclei, which are capable of traversing spacecraft shielding and human tissues, inducing dense ionization events. The central nervous system is a major area of concern for astronauts who will be exposed to the deep-space radiation environment on a mission to Mars, as charged-particle radiation has been shown to elicit changes to the dendritic arbor within the hippocampus of rodents, and related cognitive-behavioral deficits. We exposed 6-month-old male mice to whole-body 1H (0.5 Gy; 150 MeV/n; 18–19 cGy/minute) and an hour later to 16O (0.1Gy; 600 MeV/n; 18–33 Gy/min) at NASA’s Space Radiation Laboratory as a galactic cosmic ray-relevant model. Animals were housed with bedding which provides cognitive enrichment. Mice were tested for cognitive behavior 9 months after exposure to elucidate late radiation effects. Radiation induced significant deficits in novel object recognition and short-term spatial memory (Y-maze). Additionally, we observed opposing morphological differences between the mature granular and pyramidal neurons throughout the hippocampus, with increased dendritic length in the dorsal dentate gyrus and reduced length and complexity in the CA1 subregion of the hippocampus. Dendritic spine analyses revealed a severe reduction in mushroom spine density throughout the hippocampus of irradiated animals. Finally, we detected no general effect of radiation on single-nucleotide polymorphisms in immediate early genes, and genes involved in inflammation but found a higher variant allele frequency in the antioxidants thioredoxin reductase 2 and 3 loci.
Collapse
Affiliation(s)
- Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Julie Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
16
|
Edmondson EF, Gatti DM, Ray FA, Garcia EL, Fallgren CM, Kamstock DA, Weil MM. Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion- and γ-ray-induced tumors. SCIENCE ADVANCES 2020; 6:eaax5940. [PMID: 32494593 PMCID: PMC7159905 DOI: 10.1126/sciadv.aax5940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/14/2020] [Indexed: 05/02/2023]
Abstract
Cancer risk from galactic cosmic radiation exposure is considered a potential "showstopper" for a manned mission to Mars. Calculating the actual risks confronted by spaceflight crews is complicated by our limited understanding of the carcinogenic effects of high-charge, high-energy (HZE) ions, a radiation type for which no human exposure data exist. Using a mouse model of genetic diversity, we find that the histotype spectrum of HZE ion-induced tumors is similar to the spectra of spontaneous and γ-ray-induced tumors and that the genomic loci controlling susceptibilities overlap between groups for some tumor types. Where it occurs, this overlap indicates shared tumorigenesis mechanisms regardless of the type of radiation exposure and supports the use of human epidemiological data from γ-ray exposures to predict cancer risks from galactic cosmic rays.
Collapse
Affiliation(s)
- E. F. Edmondson
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Colorado State University, Fort Collins, CO 80523, USA
| | - D. M. Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - F. A. Ray
- Colorado State University, Fort Collins, CO 80523, USA
| | - E. L. Garcia
- Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - M. M. Weil
- Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Perez RE, Younger S, Bertheau E, Fallgren CM, Weil MM, Raber J. Effects of chronic exposure to a mixed field of neutrons and photons on behavioral and cognitive performance in mice. Behav Brain Res 2019; 379:112377. [PMID: 31765722 DOI: 10.1016/j.bbr.2019.112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/28/2023]
Abstract
To simulate the space radiation environment astronauts are exposed to, most studies involve acute exposures but during a space mission there will be chronic (long-lasting) exposures. To address this knowledge gap, a neutron irradiator using a 252Cf (252Californium) source was used to generate a mixed field of neutrons and photons to simulate chronic, low dose rate exposures to high LET radiation. In the present study, we assessed the effects chronic neutron exposure starting at 60 days of age on behavioral and cognitive performance of BALB/c female and C3H male mice at 600 and 700 days of age as part of an opportunistic study that took advantage of the availability of neutron and sham-irradiated mice from a radiation carcinogenesis experiment. There were profound dose- and time point-dependent effects of chronic neutron exposure. At the 600-day time point, irradiated BALB/c female mice showed improved nest building at all three doses. At the 700-day, but not 600-day, time point slightly but significantly increased body weights were seen in C3H male mice exposed to 0.118 Gy. At the 600-day time point BALB/c female mice irradiated with 0.2 Gy did, like sham-irradiated, not show preferential exploration of the novel object that was seen in mice irradiated with 0.118 or 0.4 Gy. In C3H male mice exposed to 0.4 Gy and at the 600-day time point, increased measures of anxiety were observed on days 1 and 2 in the open field. Thus, different outcome measures show distinct dose-response relationships, with some anticipated to worsen performance during space missions, like increased measures of anxiety, while other anticipated to enhance performance, such as increased nest building and object recognition.
Collapse
Affiliation(s)
- Ruby E Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Skyler Younger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elin Bertheau
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christina M Fallgren
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael M Weil
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
18
|
Borak TB, Heilbronn LH, Krumland N, Weil MM. Design and dosimetry of a facility to study health effects following exposures to fission neutrons at low dose rates for long durations. Int J Radiat Biol 2019; 97:1063-1076. [PMID: 31687872 DOI: 10.1080/09553002.2019.1688884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE During extended missions into deep space, astronauts will be exposed to a complex radiation field that includes high linear energy transfer (LET) radiation from high energy, heavy ions (HZE particles) at low dose rates of about 0.5 mGy/d for long durations. About 20% of the dose is delivered by ions with LET greater than 10 keV/µm. There are sparse empirical data in any species for carcinogenic effects from whole-body exposures to external sources of mixed or high LET radiation at this level of dose rates. For the induction of solid tumors, acute exposures to HZE ions have been shown to be substantially more effective per unit dose than low LET exposures associated with photons. To determine the health effects of high LET radiation at space-relevant dose rates on experimental animals, we developed a vivarium in which rodents could be irradiated with Californium (252Cf) neutrons for protracted periods of time. MATERIALS AND METHODS The neutron source is a panoramic irradiator containing 252Cf located in a concrete shielded vault with a footprint of 53 m2. The vault can accommodate sufficient caging to simultaneously irradiate 900 mice and 60 rats for durations up to 400 d at a dose rate of 1 mGy/d and is approved for extended animal husbandry. RESULTS The mixed field fluence is a combination of neutrons and photons emitted directly from the source and scattered particles from the concrete walls and floor. Mixed field dosimetry was performed using a miniature GM counter and CaF2:Dy thermoluminescent dosimeters (TLD) for photons and tissue-equivalent proportional counters (TEPC) for neutrons. TEPC data provided macroscopic dose rates as well as measurements of radiation quality based on lineal energy, y, and LET. The instantaneous dose rate from the source decreases with a half-life of 2.6 years. The exposure time is adjusted weekly to yield a total dose 1 mGy/d. The photon contribution is 20% of the total dose. The uncertainty in the delivered dose is estimated to be ±20% taking into account spatial variations in the room and random position of mice in each cage. The dose averaged LET for the charged particle recoil nuclei is 68 keV/µ. CONCLUSIONS We have developed a facility to perform high LET studies in mice and rats at space relevant dose rates and career-relevant doses using neutrons emitted from the spontaneous fission of 252Cf.
Collapse
Affiliation(s)
- Thomas B Borak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Nathan Krumland
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
19
|
Hoehn D, Pujol-Canadell M, Young EF, Serban G, Shuryak I, Maerki J, Xu Z, Chowdhury M, Luna AM, Vlada G, Smilenov LB. Effects of High- and Low-LET Radiation on Human Hematopoietic System Reconstituted in Immunodeficient Mice. Radiat Res 2018; 191:162-175. [PMID: 30520704 DOI: 10.1667/rr15148.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the last 50 years, a number of important physiological changes in humans who have traveled on spaceflights have been catalogued. Of major concern are the short- and long-term radiation-induced injuries to the hematopoietic system that may be induced by high-energy galactic cosmic rays encountered on interplanetary space missions. To collect data on the effects of space radiation on the human hematopoietic system in vivo, we used a humanized mouse model. In this study, we irradiated humanized mice with 0.4 Gy of 350 MeV/n 28Si ions, a dose that has been shown to induce tumors in tumor-prone mice and a reference dose that has a relative biological effectiveness of 1 (1 Gy of 250-kVp X rays). Cell counts, cell subset frequency and cytogenetic data were collected from bone marrow spleen and blood of irradiated and control mice at short-term (7, 30 and 60 days) and long-term ( 6 - 7 months) time points postirradiation. The data show a significant short-term effect on the human hematopoietic stem cell counts imparted by both high- and low-LET radiation exposure. The radiation effects on bone marrow, spleen and blood human cell counts and human cell subset frequency were complex but did not alter the functions of the hematopoietic system. The long-term data acquired from high-LET irradiated mice showed complete recovery of the human hematopoietic system in all hematopoietic compartments. The combined results demonstrate that, in spite of early perturbation, the longer term effects of high-LET radiation are not detrimental to human hematopoiesis in our system of study.
Collapse
Affiliation(s)
- Daniela Hoehn
- a Columbia University Medical Center, New York, New York
| | | | - Erik F Young
- a Columbia University Medical Center, New York, New York
| | - Geo Serban
- a Columbia University Medical Center, New York, New York
| | - Igor Shuryak
- a Columbia University Medical Center, New York, New York
| | | | - Zheng Xu
- a Columbia University Medical Center, New York, New York
| | | | - Aesis M Luna
- a Columbia University Medical Center, New York, New York
| | - George Vlada
- a Columbia University Medical Center, New York, New York
| | | |
Collapse
|
20
|
Mlh1 deficiency increases the risk of hematopoietic malignancy after simulated space radiation exposure. Leukemia 2018; 33:1135-1147. [PMID: 30275527 PMCID: PMC6443507 DOI: 10.1038/s41375-018-0269-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
Abstract
Cancer-causing genome instability is a major concern during space travel due to exposure of astronauts to potent sources of high-linear energy transfer (LET) ionizing radiation. Hematopoietic stem cells (HSCs) are particularly susceptible to genotoxic stress, and accumulation of damage can lead to HSC dysfunction and oncogenesis. Our group recently demonstrated that aging human HSCs accumulate microsatellite instability coincident with loss of MLH1, a DNA Mismatch Repair (MMR) protein, which could reasonably predispose to radiation-induced HSC malignancies. Therefore, in an effort to reduce risk uncertainty for cancer development during deep space travel, we employed an Mlh1+/− mouse model to study the effects high-LET 56Fe ion space-like radiation. Irradiated Mlh1+/− mice showed a significantly higher incidence of lymphomagenesis with 56Fe ions compared to γ-rays and unirradiated mice, and malignancy correlated with increased MSI in the tumors. In addition, whole exome sequencing analysis revealed high SNVs and INDELs in lymphomas being driven by loss of Mlh1 and frequently mutated genes had a strong correlation with human leukemias. Therefore, the data suggest that age-related MMR deficiencies could lead to HSC malignancies after space radiation, and that countermeasure strategies will be required to adequately protect the astronaut population on the journey to Mars.
Collapse
|
21
|
Exposure to galactic cosmic radiation compromises DNA repair and increases the potential for oncogenic chromosomal rearrangement in bronchial epithelial cells. Sci Rep 2018; 8:11038. [PMID: 30038404 PMCID: PMC6056477 DOI: 10.1038/s41598-018-29350-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
Participants in deep space missions face protracted exposure to galactic cosmic radiation (GCR). In this setting, lung cancer is a significant component of the overall risk of radiation-exposure induced death. Here we investigate persistent effects of GCR exposure on DNA repair capacity in lung-derived epithelial cells, using an enzyme-stimulated chromosomal rearrangement as an endpoint. Replicate cell cultures were irradiated with energetic 48Ti ions (a GCR component) or reference γ-rays. After a six-day recovery, they were challenged by expression of a Cas9/sgRNA pair that creates double-strand breaks simultaneously in the EML4 and ALK loci, misjoining of which creates an EML4-ALK fusion oncogene. Misjoining was significantly elevated in 48Ti-irradiated populations, relative to the baseline rate in mock-irradiated controls. The effect was not seen in γ-ray irradiated populations exposed to equal or higher radiation doses. Sequence analysis of the EML4-ALK joints from 48Ti-irradiated cultures showed that they were far more likely to contain deletions, sometimes flanked by short microhomologies, than equivalent samples from mock-irradiated cultures, consistent with a shift toward error-prone alternative nonhomologous end joining repair. Results suggest a potential mechanism by which a persistent physiological effect of GCR exposure may increase lung cancer risk.
Collapse
|
22
|
Mishra B, Lawson GW, Ripperdan R, Ortiz L, Luderer U. Charged-Iron-Particles Found in Galactic Cosmic Rays are Potent Inducers of Epithelial Ovarian Tumors. Radiat Res 2018; 190:142-150. [PMID: 29781764 DOI: 10.1667/rr15028.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Astronauts traveling in deep space are exposed to high-charge and energy (HZE) particles from galactic cosmic rays. We have previously determined that irradiation of adult female mice with iron HZE particles induces DNA double-strand breaks, oxidative damage and apoptosis in ovarian follicles, causing premature ovarian failure. These effects occur at lower doses than with conventional photon irradiation. Ovarian failure with resultant loss of negative feedback and elevated levels of gonadotropin hormones is thought to play a role in the pathophysiology of ovarian cancer. Therefore, we hypothesized that charged-iron-particle irradiation induces ovarian tumorigenesis in mice. In this study, three-month-old female mice were exposed to 0 cGy (sham) or 50 cGy iron ions and aged to 18 months. The 50 cGy irradiated mice had increased weight gain with age and lack of estrous cycling, consistent with ovarian failure. A total of 47% and 7% of mice irradiated with 50 cGy had unilateral and bilateral ovarian tumors, respectively, whereas 14% of mice in the 0 cGy group had unilateral tumors. The tumors contained multiple tubular structures, which were lined with cells positive for the epithelial marker cytokeratin, and had few proliferating cells. In some tumors, packets of cells between the tubular structures were immunopositive for the granulosa cell marker FOXL2. Based on these findings, tumors were diagnosed as tubular adenomas or mixed tubular adenoma/granulosa cell tumors. In conclusion, charged-iron-particle-radiation induces ovarian tumors in mice, raising concerns about ovarian tumors as late sequelae of deep space travel in female astronauts.
Collapse
Affiliation(s)
- Birendra Mishra
- Departments of a Medicine.,d Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Gregory W Lawson
- e Office for Laboratory Animal Care, University of California Berkeley, Berkeley, California 94720-7150
| | | | | | - Ulrike Luderer
- Departments of a Medicine.,b Developmental and Cell Biology.,c Program in Public Health, University of California Irvine, Irvine, California 92617
| |
Collapse
|
23
|
Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer. Sci Rep 2018; 8:6709. [PMID: 29712937 PMCID: PMC5928241 DOI: 10.1038/s41598-018-24755-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56Fe and 28Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56Fe ion sensitive sites, but not those affected by X ray or 28Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.
Collapse
|
24
|
Cao Q, Liu W, Wang J, Cao J, Yang H. A single low dose of Fe ions can cause long-term biological responses in NL20 human bronchial epithelial cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:31-40. [PMID: 29127482 DOI: 10.1007/s00411-017-0719-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Space radiation cancer risk may be a potential obstacle for long-duration spaceflight. Among all types of cancer space radiation may induce, lung cancer has been estimated to be the largest potential risk. Although previous animal study has shown that Fe ions, the most important contributor to the total dose equivalent of space radiation, induced a higher incidence of lung tumorigenesis per dose than X-rays, the underlying mechanisms at cellular level remained unclear. Therefore, in the present study, we investigated long-term biological changes in NL20 human bronchial epithelial cells after exposure to Fe ion or X-ray irradiation. We found that compared with sham control, the progeny of NL20 cells irradiated with 0.1 Gy of Fe ions showed slightly increased micronucleus formation, significantly decreased cell proliferation, disturbed cell cycle distribution, and obviously elevated intracellular ROS levels accompanied by reduced SOD1 and SOD2 expression, but the progeny of NL20 cells irradiated with 0.9 Gy of X-rays did not show any significant changes. More importantly, Fe ion exposure caused much greater soft-agar colony formation than X-rays did in the progeny of irradiated NL20 cells, clearly suggesting higher cell transformation potential of Fe ions compared with X-rays. These data may shed the light on the potential lung tumorigenesis risk from Fe ion exposure. In addition, ATM inhibition by Ku55933 reversed some of the changes in the progeny of Fe ion-irradiated cells but not others such as soft-agar colony formation, suggesting complex processes from DNA damage to carcinogenesis. These data indicate that even a single low dose of Fe ions can induce long-term biological responses such as cell transformation, etc., suggesting unignorable health risk from space radiation to astronauts.
Collapse
Affiliation(s)
- Qianlin Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Liu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital, Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jingdong Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Miousse IR, Ewing LE, Kutanzi KR, Griffin RJ, Koturbash I. DNA Methylation in Radiation-Induced Carcinogenesis: Experimental Evidence and Clinical Perspectives. Crit Rev Oncog 2018; 23:1-11. [PMID: 29953365 PMCID: PMC6369919 DOI: 10.1615/critrevoncog.2018025687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ionizing radiation is a valuable tool in many spheres of human life. At the same time, it is a genotoxic agent with a well-established carcinogenic potential. Progress achieved in the last two decades has demonstrated convincingly that ionizing radiation can also target the cellular epigenome. Epigenetics is defined as heritable changes in the expression of genes that are not due to alterations of DNA sequence but consist of specific covalent modifications of chromatin components, such as methylation of DNA, histone modifications, and control performed by non-coding RNAs. Accumulating evidence suggests that DNA methylation, a key epigenetic mechanism involved in the control of expression of genetic information, may serve as one of the driving mechanisms of radiation-induced carcinogenesis. Here, we review the literature on the effects of ionizing radiation on DNA methylation in various biological systems, discuss the role of DNA methylation in radiation carcinogenesis, and provide our opinion on the potential utilization of this knowledge in radiation oncology.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura E. Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kristy R. Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert J. Griffin
- Department of Radiation Oncology, Radiation Biology Division, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
26
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
27
|
How Will the Hematopoietic System Deal with Space Radiation on the Way to Mars? CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0104-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Chernyavskiy P, Edmondson EF, Weil MM, Little MP. High-energy particle beam and gamma radiation exposure, familial relatedness and cancer in mice. Br J Cancer 2017; 117:41-50. [PMID: 28535153 PMCID: PMC5520205 DOI: 10.1038/bjc.2017.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Some highly penetrant familial cancer syndromes exhibit elevated leukaemia risk, and there is evidence for familial clustering of lung cancer and other common cancers. Lung cancer and leukaemia are strongly radiogenic, but there are few indications that high-energy beam irradiation is markedly more effective than lower-energy radiation. METHODS We used a Cox model with familially structured random effects to assess 16 mortality end points in a group of 1850 mice in 47 families maintained in a circular-breeding scheme, exposed to accelerated Si or Fe ions (0.4 Gy) or 137Cs gamma rays (3 Gy). RESULTS There is periodicity in the effect of familial relatedness, which is most pronounced for pulmonary adenoma, Harderian-gland adenoma, Harderian-gland tumour, ectodermal tumour, pulmonary adenocarcinoma and hepatocellular carcinoma (P=0.0001/0.0003/0.0017/0.0035/0.0257/0.0340, respectively) with families that are 3-4 generations apart most strongly correlated; myeloid leukaemia also exhibited a striking periodic correlation structure. The relative risks of high-energy Si or Fe ions are not significantly different and are less than for 137Cs gamma-rays for most end points at the doses used. CONCLUSIONS There is periodicity in the effect of familial relatedness for various cancer sites. The effects per unit dose of high-energy charged particle beams are no higher than ninefold those of lower-energy gamma radiation.
Collapse
Affiliation(s)
- Pavel Chernyavskiy
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Elijah F Edmondson
- Colorado State University, Fort Collins, CO 80523, USA.,Frederick National Laboratory for Cancer Research, National Cancer Institute, Fort Detrick, Frederick, MD 21702, USA
| | | | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| |
Collapse
|
29
|
High Energy Particle Radiation-associated Oncogenic Transformation in Normal Mice: Insight into the Connection between Activation of Oncotargets and Oncogene Addiction. Sci Rep 2016; 6:37623. [PMID: 27876887 PMCID: PMC5120307 DOI: 10.1038/srep37623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Concerns on high-energy particle radiation-induced tumorigenic transformation of normal tissue in astronauts, and in cancer patients undergoing radiotherapy, emphasizes the significance of elucidating the mechanisms involved in radiogenic transformation processes. Mostly used genetically modified or tumor-prone models are less reliable in determining human health risk in space or protracted post-treatment normal tissue toxicity. Here, in wild type C57BL/6 mice, we related the deregulation of distinctive set of tissue-specific oncotargets in major organs upon 56Fe (600 MeV/amu; 0.5 Gy/min; 0.8 Gy) particle radiation and compared the response with low LET γ-radiation (137Cs; 0.5 Gy/min; 2 Gy). One of the novel findings is the ‘tissue-independent’ activation of TAL2 upon high-energy radiation, and thus qualifies TAL2 as a potential biomarker for particle and other qualities of radiation. Heightened expression of TAL2 gene transcript, which sustained over four weeks post-irradiation foster the concept of oncogene addiction signaling in radiogenic transformation. The positive/negative expression of other selected oncotargets that expresses tissue-dependent manner indicated their role as a secondary driving force that addresses the diversity of tissue-dependent characteristics of tumorigenesis. This study, while reporting novel findings on radiogenic transformation of normal tissue when exposed to particle radiation, it also provides a platform for further investigation into different radiation quality, LET and dose/dose rate effect in healthy organs.
Collapse
|
30
|
Siranart N, Blakely EA, Cheng A, Handa N, Sachs RK. Mixed Beam Murine Harderian Gland Tumorigenesis: Predicted Dose-Effect Relationships if neither Synergism nor Antagonism Occurs. Radiat Res 2016; 186:577-591. [DOI: 10.1667/rr14411.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nopphon Siranart
- Department of Mathematics, University of California at Berkeley, Berkeley, California
| | - Eleanor A. Blakely
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Alden Cheng
- Department of Mathematics, University of California at Berkeley, Berkeley, California
| | - Naval Handa
- Department of Mathematics, University of California at Berkeley, Berkeley, California
| | - Rainer K. Sachs
- Department of Mathematics, University of California at Berkeley, Berkeley, California
| |
Collapse
|
31
|
Suman S, Kumar S, Fornace AJ, Datta K. Decreased RXRα is Associated with Increased β-Catenin/TCF4 in (56)Fe-Induced Intestinal Tumors. Front Oncol 2015; 5:218. [PMID: 26500891 PMCID: PMC4597120 DOI: 10.3389/fonc.2015.00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Although it is known that accumulation of oncogenic β-catenin is critical for intestinal tumorigenesis, the underlying mechanisms have not yet been fully explored. Post-translational β-catenin level is regulated via the adenomatous polyposis coli (APC)-dependent as well as the APC-independent ubiquitin–proteasome pathway (UPP). Employing an APC-mutant mouse model (APCMin/+) the present study aimed to investigate the status of RXRα, an APC-independent factor involved in targeting β-catenin to UPP for degradation, in tumor-bearing and tumor-free areas of intestine after exposure to energetic 56Fe ions. APCMin/+ mice were exposed to energetic 56Fe ions (4 or 1.6 Gy) and intestinal tumor samples and tumor-free normal intestinal samples were collected 100–110 days after exposure. The status of TCF4, β-catenin, cyclin D1, and RXRα was examined using immunohistochemistry and immunoblots. We observed increased accumulation of the transcription factor TCF4 and its co-activator β-catenin as well as their downstream oncogenic target protein cyclin-D1 in 56Fe ion-induced intestinal tumors. Further, decreased expression of RXRα in tumors as well as in adjacent normal epithelium was indicative of perturbations in β-catenin proteasomal-targeting machinery. This indicates that decreased UPP targeting of β-catenin due to downregulation of RXRα can contribute to further accumulation of β-catenin and to 56Fe-induced tumorigenesis.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA ; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University , Jeddah , Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University , Washington, DC , USA
| |
Collapse
|
32
|
Li Z, Doho G, Zheng X, Jella KK, Li S, Wang Y, Dynan WS. Co-culturing with High-Charge and Energy Particle Irradiated Cells Increases Mutagenic Joining of Enzymatically Induced DNA Double-Strand Breaks in Nonirradiated Cells. Radiat Res 2015; 184:249-58. [PMID: 26284422 DOI: 10.1667/rr14092.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cell populations that have been exposed to high-charge and energy (HZE) particle radiation, and then challenged by expression of a rare-cutting nuclease, show an increased frequency of deletions and translocations originating at the enzyme cut sites. Here, we examine whether this effect also occurs in nonirradiated cells that have been co-cultured with irradiated cells. Human cells were irradiated with 0.3-1.0 Gy of either 600 MeV/u (56)Fe or 1,000 MeV/u (48)Ti ions or with 0.3-3.0 Gy of 320 kV X rays. These were co-cultured with I-SceI-expressing reporter cells at intervals up to 21 days postirradiation. Co-culture with HZE-irradiated cells led to an increase in the frequency of I-SceI-stimulated translocations and deletions in the nonirradiated cells. The effect size was similar to that seen previously in directly irradiated populations (maximum effect in bystander cells of 1.7- to 4-fold depending on ion and end point). The effect was not observed when X-ray-irradiated cells were co-cultured with nonirradiated cells, but was correlated with an increase in γ-H2AX foci-positive cells in the nonirradiated population, suggesting the presence of genomic stress. Transcriptional profiling of a directly irradiated cell population showed that many genes for cytokines and other secretory proteins were persistently upregulated, but their induction was not well correlated with functional effects on repair in co-cultured cells, suggesting that this transcriptional response alone is not sufficient to evoke the effect. The finding that HZE-irradiated cells influence the DNA double-strand break repair fidelity in their nonirradiated neighbors has implications for risk in the space radiation environment.
Collapse
Affiliation(s)
- Zhentian Li
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,d The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, P. R. China.,f Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
| | - Gregory Doho
- b Department of Emory Integrated Genomics Core, Emory University, Atlanta, Georgia
| | - Xuan Zheng
- e Zhongnan Hospital, Wuhan University, Wuhan, P. R. China
| | - Kishore Kumar Jella
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shuyi Li
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,c Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Ya Wang
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - William S Dynan
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia.,c Department of Biochemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
33
|
Barcellos-Hoff MH, Blakely EA, Burma S, Fornace AJ, Gerson S, Hlatky L, Kirsch DG, Luderer U, Shay J, Wang Y, Weil MM. Concepts and challenges in cancer risk prediction for the space radiation environment. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:92-103. [PMID: 26256633 DOI: 10.1016/j.lssr.2015.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.
Collapse
Affiliation(s)
| | | | - Sandeep Burma
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University, Boston, MA, USA
| | | | | | - Jerry Shay
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ya Wang
- Emory University, Atlanta, GA, USA
| | | |
Collapse
|
34
|
Sridharan DM, Asaithamby A, Bailey SM, Costes SV, Doetsch PW, Dynan WS, Kronenberg A, Rithidech KN, Saha J, Snijders AM, Werner E, Wiese C, Cucinotta FA, Pluth JM. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat Res 2015; 183:1-26. [PMID: 25564719 DOI: 10.1667/rr13804.1] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.
Collapse
Affiliation(s)
- D M Sridharan
- a Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M, Corbitt A, Alwood JS, Yu Y, Globus RK, Solomides CC, Ullrich RL, Petrache I. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2014; 308:L416-28. [PMID: 25526737 DOI: 10.1152/ajplung.00260.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Ralph A Pietrofesa
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kelly S Schweitzer
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evgeny V Berdyshev
- Department of Medicine University of Illinois at Chicago, Chicago, Illinois
| | | | - Astrid Corbitt
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Joshua S Alwood
- Oak Ridge Associated Universities, NASA Postdoctoral Program, Moffett Field, California
| | - Yongjia Yu
- University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Ruth K Globus
- NASA Ames Research Center, Moffett Field, California
| | | | | | - Irina Petrache
- Department of Medicine, Pulmonary and Critical Care Division, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
36
|
Zheng X, Zhang X, Ding L, Lee JR, Weinberger PM, Dynan WS. Synergistic effect of high charge and energy particle radiation and chronological age on biomarkers of oxidative stress and tissue degeneration: a ground-based study using the vertebrate laboratory model organism Oryzias latipes. PLoS One 2014; 9:e111362. [PMID: 25375139 PMCID: PMC4222877 DOI: 10.1371/journal.pone.0111362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.
Collapse
Affiliation(s)
- Xuan Zheng
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xinyan Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lingling Ding
- Department of Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, China
| | - Jeffrey R. Lee
- Department of Pathology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Paul M. Weinberger
- Department of Otolaryngology and Center for Biotechnology & Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - William S. Dynan
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Li Z, Wang H, Wang Y, Murnane JP, Dynan WS. Effect of radiation quality on mutagenic joining of enzymatically-induced DNA double-strand breaks in previously irradiated human cells. Radiat Res 2014; 182:573-9. [PMID: 25329962 DOI: 10.1667/rr13723.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous work has shown that high charge and energy particle irradiation of human cells evokes a mutagenic repair phenotype, defined by increased mutagenic repair of new double-strand breaks that are introduced enzymatically, days or weeks after the initial irradiation. The effect was seen originally with 600 MeV/u (56)Fe particles, which have a linear energy transfer (LET) value of 174 keV/μm, but not with X rays or γ rays (LET ≤ 2 keV/μm). To better define the radiation quality dependence of the phenomenon, we tested two ions with intermediate LET values, 1,000 MeV/u (48)Ti (LET = 108 keV/μm) and 300 MeV/u (28)Si (LET = 69 keV/μm). These experiments used a previously validated assay, where a rare-cutting nuclease introduces double-strand breaks in two reporter transgene cassettes, which are located on different chromosomes. Deletions of a block of sequence in one of the cassettes, or translocations between cassettes, are measured independently using a multicolor fluorescence assay. The results showed that (48)Ti was a potent, but transient, inducer of mutagenic repair, based on increased frequency of nuclease-induced translocations. The (48)Ti ions did not affect the frequency of nuclease-induced deletions. The (28)Si ions had no measurable effect on either endpoint. There was a close correlation between the induction of the mutagenic repair phenomenon and the frequency of micronuclei in the targeted population (R(2) = 0.74), whereas there was no apparent correlation with radiation-induced cell inactivation. Together, these results better define the radiation quality dependence of the mutagenic repair phenomenon and establish its correlation, or lack of correlation, with other endpoints.
Collapse
Affiliation(s)
- Zhentian Li
- a Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Emory University, Atlanta, Georgia
| | | | | | | | | |
Collapse
|
38
|
Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014; 9:e104819. [PMID: 25126721 PMCID: PMC4134239 DOI: 10.1371/journal.pone.0104819] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022] Open
Abstract
Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members.
Collapse
Affiliation(s)
- Michael M Weil
- Colorado State University, Fort Collins, Colorado, United States of America
| | - F Andrew Ray
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Paula C Genik
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Yongjia Yu
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maureen McCarthy
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Robert L Ullrich
- University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
39
|
Kennedy AR. Biological Effects of Space Radiation and Development of Effective Countermeasures. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:10-43. [PMID: 25258703 PMCID: PMC4170231 DOI: 10.1016/j.lssr.2014.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6072
| |
Collapse
|
40
|
Li Z, Hudson FZ, Wang H, Wang Y, Bian Z, Murnane JP, Dynan WS. Increased mutagenic joining of enzymatically-induced DNA double-strand breaks in high-charge and energy particle irradiated human cells. Radiat Res 2013; 180:17-24. [PMID: 23692479 DOI: 10.1667/rr3332.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The carcinogenic risk of high-charge and energy (HZE) particle exposure arises from its ability to both induce complex DNA damage and from its ability to evoke deleterious, non-DNA targeted effects. We investigate here whether these nontargeted effects involve dysregulation of double-strand break repair, such that a history of HZE exposure heightens the risks from future injury. We used a new human cell reporter line, in which expression of the I-SceI meganuclease stimulates both translocations on different chromosomes, and deletions on the same chromosome. Exposure to 1.0 Gy of 600 MeV/u (56)Fe ions led to a doubling in the frequency of I-SceI-mediated translocations and a smaller, but nevertheless significant, increase in the frequency of I-SceI-mediated deletions. This mutagenic repair phenotype persisted for up to two weeks and eight population doublings. The phenotype was not induced by low-linear energy transfer radiation or by a lower dose of HZE-particle radiation (0.3 Gy) indicating that the effect is radiation quality and dose dependent. The mutagenic repair phenotype was associated with the presence of micronuclei and persistent DSB repair foci, consistent with a hypothesis that genomic stress is a causative factor.
Collapse
Affiliation(s)
- Zhentian Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Held KD. Summary: achievements, critical issues, and thoughts on the future. HEALTH PHYSICS 2012; 103:681-4. [PMID: 23032899 PMCID: PMC3464434 DOI: 10.1097/hp.0b013e318264b2f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The number of individuals exposed to particle radiations in cancer treatment worldwide is increasing rapidly, and space agencies are developing plans for long duration, deep space missions in which humans could be exposed to significant levels of radiation from charged particles. Hence, the NCRP 47 th Annual Meeting on "Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions" was a timely opportunity to showcase the current scientific knowledge regarding charged particles, enhance cross-fertilization between the oncology and space scientific communities, and identify common needs and challenges to both communities as well as ways to address those challenges. This issue of Health Physics contains papers from talks presented at that meeting and highlights provocative questions and the ample opportunities for synergism between space and particle-therapy research to further understanding of the biological impacts of particle radiations.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Peng Y, Nagasawa H, Warner C, Bedford JS. Genetic susceptibility: radiation effects relevant to space travel. HEALTH PHYSICS 2012; 103:607-620. [PMID: 23032891 DOI: 10.1097/hp.0b013e31826945b9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15 rather than around 20 for low dose rates, as has been assumed by most recommendations from radiation protection organizations for charged particles of this LET. The authors suggest that similar studies using appropriate animal models of carcinogenesis would be valuable.
Collapse
Affiliation(s)
- Yuanlin Peng
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|