1
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
2
|
Mikryukova L, Akleyev A. Risk of cataract of different morphological types in Urals population chronically exposed at low doses. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
3
|
Ainsbury EA, Dalke C, Hamada N, Benadjaoud MA, Chumak V, Ginjaume M, Kok JL, Mancuso M, Sabatier L, Struelens L, Thariat J, Jourdain JR. Radiation-induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy. ENVIRONMENT INTERNATIONAL 2021; 146:106213. [PMID: 33276315 DOI: 10.1016/j.envint.2020.106213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England (PHE) Centre for Radiation, Chemical and Environmental Hazards, Oxon, United Kingdom.
| | - Claudia Dalke
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Germany.
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan.
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 31 avenue de la division Leclerc, Fontenay-aux-Roses, France.
| | - Vadim Chumak
- National Research Centre for Radiation Medicine, Ukraine.
| | | | - Judith L Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, (ENEA), Rome, Italy.
| | - Laure Sabatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Saclay, France.
| | | | - Juliette Thariat
- Laboratoire de physique corpusculaire IN2P3/ENSICAEN -UMR6534 - Unicaen - Normandie University, France
| | - Jean-René Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 31 avenue de la division Leclerc, Fontenay-aux-Roses, France.
| |
Collapse
|
4
|
Hamada N, Azizova TV, Little MP. An update on effects of ionizing radiation exposure on the eye. Br J Radiol 2020; 93:20190829. [PMID: 31670577 PMCID: PMC8519632 DOI: 10.1259/bjr.20190829] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
The International Commission on Radiological Protection (ICRP) has considered for over 60 years that the lens of the eye is among the most radiosensitive tissues, and has recommended dose limits for the lens to prevent occurrence of vision impairing cataracts (VICs). Epidemiological evidence that doses much lower than previously thought produce cataracts led ICRP to recommend reducing dose threshold for VICs and reducing an occupational equivalent dose limit for the lens in 2011, when only a single threshold of 0.5 Gy was recommended. On the basis of epidemiological evidence, ICRP assumed progression of minor opacities into VICs and no dose rate effect. This contrasts with previously recommended separate thresholds for minor opacities and VICs, and for different exposure scenarios. Progression was assumed based on similar risks of cataracts and cataract surgery in Japanese atomic bomb survivors. The absence of dose rate effect derived from the observed similar thresholds for protracted exposures in Chernobyl cleanup workers and in atomic bomb survivors. Since 2011, there has been an increasing body of epidemiological evidence relating to cataracts and other ocular diseases (i.e. glaucoma and macular degeneration), particularly at low doses and low dose rates. This review paper gives an overview of the scientific basis of the 2011 ICRP recommendation, discusses the plausibility of these two assumptions in the light of emerging scientific evidence, and considers the radiosensitivity of the lens among ocular structures.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Tamara V. Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Ozersk, Russia
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, MSC 9778, Bethesda, MD 20892-9778, USA
| |
Collapse
|
5
|
Sakashita T, Sato T, Hamada N. A biologically based mathematical model for spontaneous and ionizing radiation cataractogenesis. PLoS One 2019; 14:e0221579. [PMID: 31442279 PMCID: PMC6707595 DOI: 10.1371/journal.pone.0221579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cataracts have long been known, but a biomathematical model is still unavailable for cataratogenesis. There has been a renewed interest in ionizing radiation cataracts because the recent international recommendation of the reduced lens dose limit stimulated the discussion toward its regulatory implementation in various countries. Nevertheless, a relationship between radiation (dose and dose rate) and response (e.g., incidence, onset and progression) remains incompletely understood, raising the need for a risk-predictive mathematical model. We here report for the first time an in silico model for cataractogenesis. First, a simplified cell proliferation model was developed for human lens growth based on stem and progenitor cell proliferation as well as epithelial-fiber cell differentiation. Then, a model for spontaneous cataractogenesis was developed to reproduce the human data on a relationship between age and cataract incidence. Finally, a model for radiation cataractogenesis was developed that can reproduce the human data on a relationship between dose and cataract onset at various ages, which was further applied to estimate cataract incidence following chronic lifetime exposure. The model can serve as the foundation for further development of the risk-predictive model for cataractogenesis along with additional considerations of various biological mechanisms and epidemiological datasets.
Collapse
Affiliation(s)
- Tetsuya Sakashita
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Watanuki, Takasaki, Gunma, Japan
| | - Tatsuhiko Sato
- Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Shirakata, Tokai, Ibaraki, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Iwado-kita, Komae, Tokyo, Japan
| |
Collapse
|
6
|
Azizova TV, Hamada N, Bragin EV, Bannikova MV, Grigoryeva ES. Risk of cataract removal surgery in Mayak PA workers occupationally exposed to ionizing radiation over prolonged periods. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:139-149. [PMID: 30879144 DOI: 10.1007/s00411-019-00787-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In this study, the risk of cataract removal surgery was assessed in a cohort of workers occupationally exposed to ionizing radiation over a prolonged period. The study cohort includes 22,377 workers of the Mayak Production Association (about 25% of whom are females) first employed at one of the main facilities in 1948-1982, who were followed up to the end of 2008. Dose estimates used in the study are provided by the Mayak Worker Dosimetry System 2008. The mean cumulative dose from external γ-rays [personal dose equivalent Hp(10)] is 0.54 ± 0.76 Sv for males and 0.44 ± 0.65 Sv for females. The mean cumulative doses from neutrons (personal dose equivalent Hp(10)n) were 0.034 ± 0.080 Sv for males and 0.033 ± 0.092 Sv for females. Relative risks and excess relative risks per unit dose were calculated based on maximum likelihood. Among 4,177 workers diagnosed with a verified diagnosis of senile cataract, 701 lens removal surgeries (16.7%) were performed by the end of the follow-up period. The risk of cataract removal surgery was shown to be significantly associated with non-radiation factors such as sex, attained age, smoking, an ocular comorbidity (e.g., glaucoma), and a somatic comorbidity (e.g., diabetes mellitus). There was no significant association of cataract removal surgery with external γ-dose regardless of inclusion of the neutron dose adjustment with either linear or non-linear models. It is concluded that cataract removal surgery rate may not be a highly sensitive and specific indicator that could serve as a surrogate for radiation-related cataracts.
Collapse
Affiliation(s)
- Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia.
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan
| | - Evgeny V Bragin
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - Maria V Bannikova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russia
| |
Collapse
|
7
|
Hamada N, Azizova TV, Little MP. Glaucomagenesis following ionizing radiation exposure. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 779:36-44. [PMID: 31097150 PMCID: PMC10654893 DOI: 10.1016/j.mrrev.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Glaucoma is a group of optic neuropathies causing optic nerve damage and visual field defects, and is one of the leading causes of blindness. Nearly a century has passed since the first report of glaucoma manifested following ionizing radiation therapy of cancers. Nevertheless, associations between glaucoma and radiation exposures, a dose response relationship, and the mechanistic underpinnings remain incompletely understood. Here we review the current knowledge on manifestations and mechanisms of radiogenic glaucoma. There is some evidence that neovascular glaucoma is manifest relatively quickly, within a few years after high-dose and high dose-rate radiotherapeutic exposure, but little evidence of excess risks of glaucoma after exposure to much lower doses or dose rates. As such, glaucoma appears to have some of the characteristics of a tissue reaction effect, with a threshold of at least 5 Gy but possibly much higher.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan.
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Russia.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9778, Bethesda, MD, 20892-9778, USA.
| |
Collapse
|
8
|
Yokoyama S, Hamada N, Hayashida T, Tsujimura N, Tatsuzaki H, Kurosawa T, Nabatame K, Ohguchi H, Ohno K, Yamauchi-Kawaura C, Iimoto T, Ichiji T, Hotta Y, Iwai S, Akahane K. Current situations and discussions in Japan in relation to the new occupational equivalent dose limit for the lens of the eye. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2017; 37:659-683. [PMID: 28516892 DOI: 10.1088/1361-6498/aa73e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens of the eye in 2011, there have been extensive discussions in various countries. This paper reviews the current situation in radiation protection of the ocular lens and the discussions on the potential impact of the new lens dose limit in Japan. Topics include historical changes to the lens dose limit, the current situation with occupational lens exposures (e.g., in medical workers, nuclear workers, and Fukushima nuclear power plant workers) and measurements, and the current status of biological studies and epidemiological studies on radiation cataracts. Our focus is on the situation in Japan, but we believe such information sharing will be useful in many other countries.
Collapse
Affiliation(s)
- Sumi Yokoyama
- Faculty of Health Science, Fujita Health University; 1-98, Dengakugakubo, Kutsukakecho, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hamada N, Sato T. Cataractogenesis following high-LET radiation exposure. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:262-291. [DOI: 10.1016/j.mrrev.2016.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022]
|
10
|
Nakashima E. Response to Doss et al. HEALTH PHYSICS 2014; 107:263-264. [PMID: 25068967 DOI: 10.1097/hp.0000000000000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Eiji Nakashima
- Department of Statistics Radiation Effects Research Foundation Hiroshima, Japan
| |
Collapse
|
11
|
Doss M, Egleston BL, Litwin S. Atomic bomb survivor cataract surgery prevalence data are consistent with non-zero threshold dose--Comment on article by Nakashima et al. 2013. HEALTH PHYSICS 2014; 107:262-263. [PMID: 25068966 PMCID: PMC4123214 DOI: 10.1097/hp.0000000000000137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Mohan Doss
- Diagnostic Imaging Fox Chase Cancer Center Philadelphia, PA Biostatistics Fox Chase Cancer Center Philadelphia, PA
| | | | | |
Collapse
|