1
|
Butt H, Sathish S, London E, Lee Johnson T, Essawi K, Leonard A, Tisdale JF, Demirci S. Genome editing strategies for targeted correction of β-globin mutation in sickle cell disease: From bench to bedside. Mol Ther 2025:S1525-0016(25)00221-7. [PMID: 40165374 DOI: 10.1016/j.ymthe.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Sickle cell disease (SCD) includes a range of genotypes that result in a clinical syndrome, where abnormal red blood cell (RBC) physiology leads to widespread complications affecting nearly every organ system. Treatment strategies for SCD can be broadly categorized into disease-modifying therapies and those aimed toward a cure. Although several disease-modifying drugs have been approved, they do not fully address the complexity and severity of SCD. Recent advances in allogeneic transplantation and autologous gene therapy show promising outcomes in terms of efficacy and safety. While these approaches have improved the lives of many patients, achieving a durable and comprehensive cure for all remains challenging. To address this, gene-editing technologies, including zinc-finger nucleases, TALENs, CRISPR-Cas, base editing, and prime editing, have been explored both ex vivo and in vivo for targeted correction of the β-globin gene (HBB) in SCD. However, direct correction of HBB and its translation from the laboratory to the clinic presents ongoing limitations, with challenges involved in achieving robust mutation-correction efficiency, off-target effects, and high costs of therapies. The optimal strategy for curing SCD remains uncertain, but several promising approaches are emerging. This review touches on past, present, and future developments in HBB correction.
Collapse
Affiliation(s)
- Henna Butt
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Shruti Sathish
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Evan London
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Taylor Lee Johnson
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan 45142, Saudi Arabia
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| |
Collapse
|
2
|
Udeze C, Li N, Kunzweiler C, Baldwin J, Tuzin P, Zingel SD, Vetter C, Dombrowski S, Georgiadou-Schmidt E, Alba A, Meisel R. Clinical Complications and Healthcare Resource Utilization Associated with Conventional Management of Sickle Cell Disease with Recurrent Vaso-occlusive Crises and Transfusion-Dependent β-Thalassemia in Germany. PHARMACOECONOMICS - OPEN 2025; 9:291-300. [PMID: 39753835 DOI: 10.1007/s41669-024-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 02/27/2025]
Abstract
OBJECTIVE The purpose of this study was to describe clinical complications and healthcare resource utilization (HCRU) among patients with sickle cell disease (SCD) with recurrent vaso-occlusive crises (VOCs) and patients with transfusion-dependent β-thalassemia (TDT) in Germany. METHODS The Betriebskrankenkasse (BKKs) Database was used to identify patients with SCD or TDT. To be eligible for inclusion, patients with SCD were required to have ≥ 2 VOCs/year in any two consecutive years and ≥ 12 months of available data before and after the index date (second VOC in the second consecutive year). Patients with TDT were required to have ≥ 8 red blood cell transfusions (RBCTs) in any 12-month period and ≥ 12 months of available data after the index date (first RBCT). Clinical and HCRU outcomes were analyzed during follow-up. RESULTS Overall, 84 patients with SCD with recurrent VOCs and 68 patients with TDT were identified in the BKKs database. Among patients with SCD with recurrent VOCs, the most prevalent complications were retinopathy (45.2%), multisystem organ disease/failure (40.5%), and mental health complications (31.0%); among patients with TDT, they were endocrine (69.1%) and cardiopulmonary (55.9%) complications and malignancies (44.1%). Patients with SCD experienced a mean of 4.0 (standard deviation [SD] 3.9) VOCs and 1.9 (SD 2.5) hospitalizations per patient per year (PPPY) during follow-up. Patients with TDT had a mean (SD) of 16.4 (11.2) RBCTs and 59.4 (40.8) outpatient visits PPPY. CONCLUSIONS Patients with SCD with recurrent VOCs or TDT in Germany experience significant clinical complications and HCRU.
Collapse
Affiliation(s)
- Chuka Udeze
- Health Economics and Outcomes Research, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA.
| | - Nanxin Li
- Health Economics and Outcomes Research, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Colin Kunzweiler
- Health Economics and Outcomes Research, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Jessica Baldwin
- Health Economics and Outcomes Research, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Petra Tuzin
- Health Economics and Outcomes Research, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | | | | | | | | | | | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
3
|
Kunz JB, Tagliaferri L. Sickle Cell Disease. Transfus Med Hemother 2024; 51:332-344. [PMID: 39371249 PMCID: PMC11452173 DOI: 10.1159/000540149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Sickle cell disease (SCD) is among the most frequent hereditary disorders globally and its prevalence in Europe is increasing due to migration movements. Summary The basic pathophysiological event of SCD is polymerization of deoxygenated sickle hemoglobin, resulting in hemolysis, vasoocclusion, and multiorgan damage. While the pathophysiological cascade offers numerous targets for treatment, currently only two disease-modifying drugs have been approved in Europe and transfusion remains a mainstay of both preventing and treating severe complications of SCD. Allogeneic stem cell transplantation and gene therapy offer a curative option but are restricted to few patients due to costs and limited availability of donors. Key Message Further efforts are needed to grant patients access to approved treatments, to explore drug combinations and to establish new treatment options.
Collapse
Affiliation(s)
- Joachim B Kunz
- Department of Pediatric Oncology, Hematology and Immunology, Hopp-Children's Cancer Center (KiTZ) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Tagliaferri
- Department of Pediatric Oncology, Hematology and Immunology, Hopp-Children's Cancer Center (KiTZ) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Butt H, Tisdale JF. Gene therapies on the horizon for sickle cell disease: a clinician's perspective. Expert Rev Hematol 2024; 17:555-566. [PMID: 39076056 DOI: 10.1080/17474086.2024.2386366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Sickle cell disease (SCD) is a monogenic disorder that exerts several detrimental health effects on those affected, ultimately resulting in significant morbidity and early mortality. There are millions of individuals globally impacted by this disease. Research in gene therapy has been growing significantly over the past decade, now with two FDA approved products, aiming to find another cure for this complex disease. AREAS COVERED This perspective article aims to provide a clinician's insight into the current landscape of gene therapies, exploring the novel approaches, clinical advances, and potential impact on the management and prognosis of SCD. A comprehensive literature search encompassing databases such as PubMed, Web of Science and Google Scholar was employed. The search covered literature published from 1980 to 2024, focusing on SCD and curative therapy. EXPERT OPINION After careful evaluation of the risks and benefits associated with the use of gene therapy for affected patients, the need for a cure outweighs the risks associated with treatment in most cases of SCD. With advances in current technologies, gene therapies can increase access to cures for patients with SCD.
Collapse
Affiliation(s)
- Henna Butt
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Taghdiri M, Mussolino C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int J Mol Sci 2024; 25:7333. [PMID: 39000440 PMCID: PMC11242246 DOI: 10.3390/ijms25137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized the field of gene therapy as it has enabled precise genome editing with unprecedented accuracy and efficiency, paving the way for clinical applications to treat otherwise incurable genetic disorders. Typically, precise genome editing requires the delivery of multiple components to the target cells that, depending on the editing platform used, may include messenger RNA (mRNA), protein complexes, and DNA fragments. For clinical purposes, these have to be efficiently delivered into transplantable cells, such as primary T lymphocytes or hematopoietic stem and progenitor cells that are typically sensitive to exogenous substances. This challenge has limited the broad applicability of precise gene therapy applications to those strategies for which efficient delivery methods are available. Electroporation-based methodologies have been generally applied for gene editing applications, but procedure-associated toxicity has represented a major burden. With the advent of novel and less disruptive methodologies to deliver genetic cargo to transplantable cells, it is now possible to safely and efficiently deliver multiple components for precise genome editing, thus expanding the applicability of these strategies. In this review, we describe the different delivery systems available for genome editing components, including viral and non-viral systems, highlighting their advantages, limitations, and recent clinical applications. Recent improvements to these delivery methods to achieve cell specificity represent a critical development that may enable in vivo targeting in the future and will certainly play a pivotal role in the gene therapy field.
Collapse
Affiliation(s)
- Maryam Taghdiri
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
6
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Vives Corrons JL. Understanding Rare Anemias: Emerging Frontiers for Diagnosis and Treatment. J Clin Med 2024; 13:3180. [PMID: 38892889 PMCID: PMC11172750 DOI: 10.3390/jcm13113180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Background-This review provides a comprehensive overview of rare anemias, emphasizing their hereditary and acquired causes, diagnostic advancements, and evolving treatment strategies. It outlines the significance of rare anemias within public health, historical challenges in recognition and treatment, and the role of European initiatives like ENERCA and EuroBloodNet in advancing care. Content-This document discusses diagnostic technologies like next-generation sequencing and the impact of artificial intelligence, alongside the promising avenues of gene therapy, targeted drug treatments, and stem cell transplantation. It underscores the importance of a patient-tailored approach, advances in diagnostic tools, and the necessity for continued research, patient advocacy, and international collaboration to improve outcomes for individuals with rare anemias.
Collapse
Affiliation(s)
- Joan-Lluis Vives Corrons
- Rare Anaemias and Erythropoietic Disorders Research, Institute for Leukaemia Research Josep Carreras, 08916 Barcelona, Spain;
- Ektacytometry Unit, Clinical Centre for Ambulatory Medicine, 08036 Barcelona, Spain
| |
Collapse
|
8
|
Vinchi F. Novel frontiers in gene therapy: In vivo gene editing. Hemasphere 2024; 8:e25. [PMID: 38434529 PMCID: PMC10878176 DOI: 10.1002/hem3.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Affiliation(s)
- Francesca Vinchi
- Iron Research Laboratory, Lindsley F. Kimball Research InstituteNew York Blood CenterNew York CityNew YorkUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkUSA
| |
Collapse
|
9
|
Hodroj MH, Akiki N, Bou-Fakhredin R, Taher AT. Beta-thalassemia: is cure still a dream? Minerva Med 2023; 114:850-860. [PMID: 37534831 DOI: 10.23736/s0026-4806.23.08501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
β-thalassemia is a monogenic disorder characterized by decreased hemoglobin production, resulting in chronic anemia. There are several factors affecting the clinical presentation of patients with β-thalassemia, and several complications such as iron overload or ineffective erythropoiesis have been linked to this disease. Until nowadays, several conservative therapies namely blood transfusions, iron chelation, and the FDA-approved drug Luspatercept have been adopted alongside other debatable permanent cures. Other clinical trials are being conducted to develop better and safer management techniques for these patients. This review will discuss the different treatment strategies of β-thalassemia including novel therapies, besides all possible curative therapies that are being developed for this disease.
Collapse
Affiliation(s)
- Mohammad H Hodroj
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Akiki
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Ali T Taher
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon -
| |
Collapse
|
10
|
Cario H. Diagnostik und Therapie der alpha- und
beta-Thalassämien. TRANSFUSIONSMEDIZIN 2023. [DOI: 10.1055/a-1966-5765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
ZusammenfassungDie komplexe Behandlung von Patienten mit Thalassämien stellt nicht nur
eine medizinische, sondern angesichts der in den letzten Jahren deutlich
gestiegenen Patientenzahlen auch eine gesellschaftliche Herausforderung dar, die
eine sehr enge Zusammenarbeit aller Behandler erfordert. Der vorliegende Beitrag
erläutert Ursachen und Pathogenese der alpha- und
beta-Thalassämien und bietet eine Übersicht zu Klinik und
Therapien.
Collapse
Affiliation(s)
- Holger Cario
- Klinik für Kinder- und Jugendmedizin, Zentrum für
Seltene Störungen der Hämatopoese und Immundefekte (ZSHI Ulm),
Universitätsklinikum Ulm
| |
Collapse
|
11
|
Methods for CRISPR-Cas as Ribonucleoprotein Complex Delivery In Vivo. Mol Biotechnol 2023; 65:181-195. [PMID: 35322386 DOI: 10.1007/s12033-022-00479-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023]
Abstract
The efficient delivery of CRISPR-Cas components is still a key and unsolved problem. CRISPR-Cas delivery in the form of a Cas protein+sgRNA (ribonucleoprotein complex, RNP complex), has proven to be extremely effective, since it allows to increase on-target activity, while reducing nonspecific activity. The key point for in vivo genome editing is the direct delivery of artificial nucleases and donor DNA molecules into the somatic cells of an adult organism. At the same time, control of the dose of artificial nucleases is impossible, which affects the efficiency of genome editing in the affected cells. Poor delivery efficiency and low editing efficacy reduce the overall potency of the in vivo genome editing process. Here we review how this problem is currently being solved in scientific works and what types of in vivo delivery methods of Cas9/sgRNA RNPs have been developed.
Collapse
|
12
|
Cario H. [Diagnostics and treatment of alpha- and beta-thalassemias]. Dtsch Med Wochenschr 2022; 147:1250-1261. [PMID: 36126923 DOI: 10.1055/a-1767-8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thalassemias are a heterogeneous group of genetic diseases based on a quantitative disorder of globin chain synthesis. They are among the most frequent monogenic hereditary diseases worldwide. Migration during recent years led to a profoundly increasing number of patients in countries where the indigenous population has not been affected. The complex treatment of the patients represents a medical and socioeconomic challenge with the need for structured interdisciplinary clinical care and close collaboration among healthcare providers, regulatory authorities, and health care insurance companies. The following article provides an overview of the causes, pathogenesis, clinical presentation, and treatment of alpha- and beta-thalassemias.
Collapse
|
13
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
14
|
Chauhan W, Shoaib S, Fatma R, Zaka‐ur‐Rab Z, Afzal M. β‐thalassemia, and the advent of new Interventions beyond Transfusion and Iron chelation. Br J Clin Pharmacol 2022; 88:3610-3626. [DOI: 10.1111/bcp.15343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Shoaib Shoaib
- Department of Biochemistry, JNMC Aligarh Muslim University Aligarh India
| | - Rafat Fatma
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| | - Zeeba Zaka‐ur‐Rab
- Department of Pediatrics, JNMC Aligarh Muslim University Aligarh India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Department of Zoology Aligarh Muslim University Aligarh India
| |
Collapse
|
15
|
The EHA Research Roadmap: Hematopoietic Stem Cell Gene Therapy. Hemasphere 2022; 6:e671. [PMID: 35198856 PMCID: PMC8855740 DOI: 10.1097/hs9.0000000000000671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
|
16
|
HSCT remains the only cure for patients with transfusion-dependent thalassemia until gene therapy strategies are proven to be safe. Bone Marrow Transplant 2021; 56:2882-2888. [PMID: 34531544 DOI: 10.1038/s41409-021-01461-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Patients with β-thalassemia suffer from severe anemia, iron overload and multiple complications, that affect their quality of life and well-being. Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-matched sibling donor, performed in childhood, has been the gold standard for thalassemic patients for decades. Unfortunately, siblings are available only for the minority of patients. Fully matched unrelated donors have been the second choice for cure, with equal results as far as overall survival is concerned, having though the cost of frequent and serious complications. On the other hand, haploidentical transplantation is performed more frequently during the last decade, with promising results. Gene therapy represents a novel therapeutic approach, with impressive results from clinical trials, both from gene addition strategies, as well as from the emerging gene editing tools. After reviewing current critical points of HSCT using alternative donors and assessing recently reported safety issues of gene therapy methods, we conclude that, although a breakthrough, the safety of gene therapy remains to be established.
Collapse
|
17
|
Musallam KM, Bou‐Fakhredin R, Cappellini MD, Taher AT. 2021 update on clinical trials in β-thalassemia. Am J Hematol 2021; 96:1518-1531. [PMID: 34347889 DOI: 10.1002/ajh.26316] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023]
Abstract
The treatment landscape for patients with β-thalassemia is witnessing a swift evolution, yet several unmet needs continue to persist. Patients with transfusion-dependent β-thalassemia (TDT) primarily rely on regular transfusion and iron chelation therapy, which can be associated with considerable treatment burden and cost. Patients with non-transfusion-dependent β-thalassemia (NTDT) are also at risk of significant morbidity due to the underlying anemia and iron overload, but treatment options in this patient subgroup are limited. In this review, we provide updates on clinical trials of novel therapies targeting the underlying pathology in β-thalassemia, including the α/non-α-globin chain imbalance, ineffective erythropoiesis, and iron dysregulation.
Collapse
Affiliation(s)
- Khaled M. Musallam
- Thalassemia Center, Burjeel Medical City Abu Dhabi United Arab Emirates
- International Network of Hematology London UK
| | - Rayan Bou‐Fakhredin
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community University of Milan, Ca’ Granda Foundation IRCCS Maggiore Policlinico Hospital Milan Italy
| | - Ali T. Taher
- Department of Internal Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
18
|
Taher AT, Bou-Fakhredin R, Kattamis A, Viprakasit V, Cappellini MD. Improving outcomes and quality of life for patients with transfusion-dependent β-thalassemia: recommendations for best clinical practice and the use of novel treatment strategies. Expert Rev Hematol 2021; 14:897-909. [PMID: 34493145 DOI: 10.1080/17474086.2021.1977116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION β-thalassemia is one of the most common inherited monogenic diseases. Many patients are dependent on a lifetime of red blood cell (RBC) transfusions and iron chelation therapy. Although treatments have a significant impact on quality of life (QoL), life expectancy, and long-term health outcomes have improved in recent decades through safer RBC transfusion practices and better iron chelation strategies. Advances in the understanding of the pathology of β-thalassemia have led to the development of new treatment options that have the potential to reduce the RBC transfusion burden in patients with transfusion-dependent (TD) β-thalassemia and improve QoL. AREAS COVERED This review provides an overview of currently available treatments for patients with TD β-thalassemia, highlighting QoL issues, and providing an update on current clinical experience plus important practical points for two new treatments available for TD β-thalassemia: betibeglogene autotemcel (beti-cel) gene therapy and the erythroid maturation agent luspatercept, an activin ligand trap. EXPERT OPINION Approved therapies, including curative gene therapies and supportive treatments such as luspatercept, have the potential to reduce RBC transfusion burden, and improve clinical outcomes and QoL in patients with TD β-thalassemia. Cost of treatment is, however, likely to be a significant barrier for payors and patients.
Collapse
Affiliation(s)
- Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Bou-Fakhredin
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Vip Viprakasit
- Siriraj Center of Excellence on Advanced Gene and Cellular Therapy (Si-COE-AGCT) & Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
19
|
Taher AT, Cappellini MD. Luspatercept for β-thalassemia: beyond red blood cell transfusions. Expert Opin Biol Ther 2021; 21:1363-1371. [PMID: 34404288 DOI: 10.1080/14712598.2021.1968825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Red blood cell transfusions and iron chelation therapy are the cornerstone of treatment for β-thalassemia, with allogeneic hematopoietic stem cell transplantation and gene therapy offering further disease-management options for eligible patients. With up to 90% of severe cases of β-thalassemia occurring in resource-constrained countries, and estimates indicating that 22,500 deaths occur annually as a direct consequence of undertransfusion, provision of adequate treatment remains a major issue. AREAS COVERED In this review, we provide an overview of luspatercept, a first-in-class erythroid maturation agent, and present the available clinical data related to the treatment of β-thalassemia. EXPERT OPINION The recent approval of luspatercept offers a new, long-term therapeutic option for adult patients with transfusion-dependent β-thalassemia to reduce red blood cell transfusion burden, anemia, and iron overload.
Collapse
Affiliation(s)
- Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | |
Collapse
|
20
|
Karamperis K, Tsoumpeli MT, Kounelis F, Koromina M, Mitropoulou C, Moutinho C, Patrinos GP. Genome-based therapeutic interventions for β-type hemoglobinopathies. Hum Genomics 2021; 15:32. [PMID: 34090531 PMCID: PMC8178887 DOI: 10.1186/s40246-021-00329-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
For decades, various strategies have been proposed to solve the enigma of hemoglobinopathies, especially severe cases. However, most of them seem to be lagging in terms of effectiveness and safety. So far, the most prevalent and promising treatment options for patients with β-types hemoglobinopathies, among others, predominantly include drug treatment and gene therapy. Despite the significant improvements of such interventions to the patient's quality of life, a variable response has been demonstrated among different groups of patients and populations. This is essentially due to the complexity of the disease and other genetic factors. In recent years, a more in-depth understanding of the molecular basis of the β-type hemoglobinopathies has led to significant upgrades to the current technologies, as well as the addition of new ones attempting to elucidate these barriers. Therefore, the purpose of this article is to shed light on pharmacogenomics, gene addition, and genome editing technologies, and consequently, their potential use as direct and indirect genome-based interventions, in different strategies, referring to drug and gene therapy. Furthermore, all the latest progress, updates, and scientific achievements for patients with β-type hemoglobinopathies will be described in detail.
Collapse
Affiliation(s)
- Kariofyllis Karamperis
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- The Golden Helix Foundation, London, UK
| | - Maria T Tsoumpeli
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Fotios Kounelis
- Department of Computing, Group of Large-Scale Data & Systems, Imperial College London, London, UK
| | - Maria Koromina
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | | | - Catia Moutinho
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece.
- College of Medicine and Health Sciences, Department of Pathology, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
21
|
Baronciani D, Casale M, De Franceschi L, Graziadei G, Longo F, Origa R, Rigano P, Pinto V, Marchetti M, Gigante A, Iolascon A, Forni GL. Selecting β-thalassemia Patients for Gene Therapy: A Decision-making Algorithm. Hemasphere 2021; 5:e555. [PMID: 33969274 PMCID: PMC8096466 DOI: 10.1097/hs9.0000000000000555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
This expert opinion originally developed by a panel of the Italian Society of Thalassemias and Hemoglobinopathies (SITE), reviewed and adopted by the European Hematology Association (EHA) through the EHA Scientific Working Group on Red Cells and Iron, has been developed as priority decision-making algorithm on evidence and consensus with the aim to identify which patients with transfusion-dependent beta-thalassemia (TDT) could benefit from a gene therapy (GT) approach. Even if the wide utilized and high successful allogeneic hematopoietic stem-cell transplantation provides the possibility to cure several patients a new scenario has been opened by GT. Therefore, it is important to establish the patients setting for whom it is priority indicated, particularly in the early phase of the diffuse use outside experimental trials conducted in high selected centers. Moreover, actual price, limited availability, and resources disposal constitute a further indication to a rational and progressive approach to this innovative treatment. To elaborate this algorithm, the experience with allogeneic transplantation has been used has a predictive model. In this large worldwide experience, it has been clearly demonstrated that key for the optimal transplant outcome is optimal transfusion and chelation therapy in the years before the procedure and consequently optimal patient's clinical condition. In the document, different clinical scenarios have been considered and analyzed for the possible impact on treatment outcome. According to the European Medicine Agency (EMA) for the GT product, this expert opinion must be considered as a dynamic, updatable, priority-based indications for physicians taking care of TDT patients.
Collapse
Affiliation(s)
| | - Maddalena Casale
- Università degli Studi della Campania «Luigi Vanvitelli», Napoli, Italy
| | | | - Giovanna Graziadei
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Malattie Rare, Milano, Italy
| | - Filomena Longo
- Centro Microcitemie-Pediatria, AOU San Luigi Gonzaga, Orbassano (TO), Italy
| | - Raffaella Origa
- Ospedale Pediatrico Microcitemico “A.Cao,” A.O. “G.Brotzu,” Cagliari, Italy
| | - Paolo Rigano
- Divisione di Malattie Rare del Sangue e degli Organi Emopoietici, Ospedale V. Cervello, Palermo, Italy
| | - Valeria Pinto
- Centro della Microcitemia e Anemie Congenite, E.O. Ospedali Galliera, Genova, Italy
| | - Monia Marchetti
- Hematology Day Service, SOC Oncologia, Ospedale Cardinal Massaia, Asti, Italy
| | - Antonia Gigante
- Società Italiana Talassemie ed Emoglobinopatie (SITE), Roma, Italy
| | - Achille Iolascon
- Dept. of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Gian Luca Forni
- Centro della Microcitemia e Anemie Congenite, E.O. Ospedali Galliera, Genova, Italy
| |
Collapse
|