1
|
Thomson A, Rehn J, Yeung D, Breen J, White D. Deciphering IGH rearrangement complexity and detection strategies in acute lymphoblastic leukaemia. NPJ Precis Oncol 2025; 9:99. [PMID: 40185891 PMCID: PMC11971345 DOI: 10.1038/s41698-025-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lymphoblastic leukaemia is a highly heterogeneous malignancy characterised by various genomic alterations that influence disease progression and therapeutic outcomes. Gene fusions involving the immunoglobulin heavy chain gene represent a complex and diverse category. These fusions often result in enhancer hijacking, upregulation of partner proto-oncogenes and contribute to leukemogenesis. This review highlights the mechanisms underlying IGH gene fusions, the critical role they play in ALL pathogenesis, and current detection technologies.
Collapse
Affiliation(s)
- Ashlee Thomson
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Jacqueline Rehn
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - David Yeung
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Haematology Department, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, 5000, Australia
| | - James Breen
- Black Ochre Data Labs, Indigenous Genomics, The Kids Research Institute Australia, Adelaide, SA, 5000, Australia
- James Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Deborah White
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, 3168, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Passet M, Kim R, Clappier E. Genetic subtypes of B-cell acute lymphoblastic leukemia in adults. Blood 2025; 145:1451-1463. [PMID: 39786374 DOI: 10.1182/blood.2023022919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is a rare malignancy in adults, with outcomes remaining poor, especially compared with children. Over the past 2 decades, extensive whole-genome studies have identified numerous genetic alterations driving leukemia, leading to the recognition of >20 distinct subtypes that are closely associated with treatment response and prognosis. In pediatric B-ALL, large correlation studies have made genetic classification a central component of risk-adapted treatment strategies. Notably, genetic subtypes are unevenly distributed according to age, and the spectrum of genetic alterations and their prognostic relevance in adult B-ALL have been less extensively studied, with treatment primarily based on the presence or absence of BCR::ABL1 fusion. This review provides an overview of genetic subtypes in adult B-ALL, including recent biological and clinical insights in well-established subtypes as well as data on newly recognized subtypes. Their relevance for risk classification, disease monitoring, and therapeutic management, including in the context of B-cell-directed therapies, is discussed. This review advocates for continuing efforts to further improve our understanding of the biology of adult B-ALL to establish the foundation of future precision medicine in B-ALL.
Collapse
Affiliation(s)
- Marie Passet
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Vicente-Garcés C, Fernández G, Esperanza-Cebollada E, Richarte-Franqués M, Crespo-Carrasco A, Montesdeoca S, Isola I, Sarrate E, Cuatrecasas E, Rives S, Dapena JL, Camós M, Vega-García N. RNA-sequencing: A reliable tool to unveil transcriptional landscape of paediatric B-other acute lymphoblastic leukaemia. Br J Haematol 2025. [PMID: 40159352 DOI: 10.1111/bjh.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) comprises multiple subtypes characterized by different genetic alterations. With the use of current standard-of-care tests used in clinical practice, 20%-30% of the cases may not be classified into the main genetic subtypes and additional approaches are needed. These patients are grouped in the heterogeneous category B-other ALL. Transcriptome sequencing (RNA-seq) has allowed the identification of novel fusion genes and gene expression profiles that define new molecular subtypes. We present RNA-seq results integrated, in a real-world scenario, with clinical routine diagnostic data to identify new biomarkers and reclassify a cohort of 60 B-other ALL patients in the newly described genetic subtypes. Overall, 49 rearrangements were identified, including 32 different fusion genes in 41 B-other patients (68%). Moreover, we reported six novel rearrangements (IGK::PAX5, PAX5::IL1RAPL1, ETV6::KRT78, IGH::HIC1, IGH::MIR100HG and NKAIN4::PNPLA7). The integration of RNA-seq results with standard-of-care data allowed us to classify 72% of the patients (43/60) in 11 different subtypes, being DUX4 rearranged and PAX5alt the most represented subtypes. In summary, RNA-seq is a reliable tool for the identification of new emerging genetic subtypes contributing to a better genetic risk stratification of BCP-ALL paediatric patients on the path towards a more personalized medicine.
Collapse
Affiliation(s)
- Clara Vicente-Garcés
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Guerau Fernández
- Department of Genetic and Molecular Medicine-IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Esperanza-Cebollada
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Richarte-Franqués
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Alba Crespo-Carrasco
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sara Montesdeoca
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - Ignacio Isola
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - Edurne Sarrate
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - Esther Cuatrecasas
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Department of Genetic and Molecular Medicine-IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Susana Rives
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - José Luis Dapena
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Lymphoma Department. Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Mireia Camós
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Vega-García
- Developmental Tumors Biology Group, Leukaemia and Paediatric Haematology Disorders, Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Hospital Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
4
|
Vllahu M, Savarese M, Cantiello I, Munno C, Sarcina R, Stellato P, Leone O, Alfieri M. Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia. Biomedicines 2025; 13:424. [PMID: 40002837 PMCID: PMC11852417 DOI: 10.3390/biomedicines13020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, comprising almost 25% of all malignancies diagnosed in children younger than 20 years, and its incidence is still increasing. ALL is a blood cancer arising from the unregulated proliferation of clonal lymphoid progenitor cells. To make a diagnosis of B-cell ALL, bone marrow morphology and immunophenotyping are needed; cerebrospinal fluid examination, and chromosomal analysis are currently used as stratification exams. Currently, almost 70% of children affected by B-cell ALL are characterized by well-known cytogenetic abnormalities. However, the integration of results with "omic" techniques (genomics, transcriptomics, proteomics, and metabolomics, both individually and integrated) able to analyze simultaneously thousands of molecules, has enabled a deeper definition of the molecular scenario of B-cell ALL and the identification of new genetic alterations. Studies based on omics have greatly deepened our knowledge of ALL, expanding the horizon from the traditional morphologic and cytogenetic point of view. In this review, we focus our attention on the "omic" approaches mainly used to improve the understanding and management of B-cell ALL, crucial for the diagnosis, prognosis, and treatment of the disease, offering a pathway toward more precise and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Megi Vllahu
- Department of Precision Medicine, Università of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Savarese
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Immacolata Cantiello
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Carmen Munno
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Rosalba Sarcina
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Pio Stellato
- Oncohematology Unit, Department of Oncology, Hematology and Cellular Therapies, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy
| | - Ornella Leone
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children Hospital, 80129 Naples, Italy; (M.S.); (I.C.); (C.M.); (R.S.); (O.L.)
| |
Collapse
|
5
|
Boer JM, Koudijs MJ, Kester LA, Sonneveld E, Hehir-Kwa JY, Snijder S, Waanders E, Buijs A, de Haas V, van der Sluis IM, Pieters R, den Boer ML, Tops BBJ. Challenging Conventional Diagnostic Methods by Comprehensive Molecular Diagnostics: A Nationwide Prospective Comparison in Children With ALL. JCO Precis Oncol 2025; 9:e2400788. [PMID: 40020210 PMCID: PMC11913173 DOI: 10.1200/po-24-00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
PURPOSE Treatment stratification in ALL includes diverse (cyto)genetic aberrations, requiring diverse tests to yield conclusive data. We optimized the diagnostic workflow to detect all relevant aberrations with a limited number of tests in a clinically relevant time frame. METHODS In 467 consecutive patients with ALL (0-20 years), we compared RNA sequencing (RNAseq), fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), karyotyping, single-nucleotide polymorphism (SNP) array, and multiplex ligation-dependent probe amplification (MLPA) for technical success, concordance of results, and turnaround time. RESULTS To detect stratifying fusions (ETV6::RUNX1, BCR::ABL1, ABL-class, KMT2Ar, TCF3::HLF, IGH::MYC), RNAseq and FISH were conclusive for 97% and 96% of patients, respectively, with 99% concordance. RNAseq performed well in samples with a low leukemic cell percentage or low RNA quality. RT-PCR for six specific fusions was conclusive for >99% but false-negative for six patients with alternatively fused exons. RNAseq also detected gene fusions not yet used for stratification in 14% of B-cell precursor-ALL and 33% of T-ALL. For aneuploidies and intrachromosomal amplification of chromosome 21, SNP array gave a conclusive result in 99%, thereby outperforming karyotyping, which was conclusive for 64%. To identify deletions in eight stratifying genes/regions, SNP array was conclusive in 99% and MLPA in 95% of patients, with 98% concordance. The median turnaround times were 10 days for RNAseq, 9 days for FISH, 10 days for SNP array, and <7 days for MLPA and RT-PCR in this real-world prospective study. CONCLUSION Combining RNAseq and SNP array outperformed current diagnostic tools to detect all stratifying genetic aberrations in ALL. The turnaround time is <15 days matching major treatment decision time points. Moreover, combining RNAseq and SNP array has the advantage of detecting new lesions for studies on prognosis and pathobiology.
Collapse
Affiliation(s)
- Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Simone Snijder
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Esme Waanders
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Arjan Buijs
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Valérie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
6
|
Li L, Xiao H, Wu X, Tang Z, Khoury JD, Wang J, Wan S. RanBALL: An Ensemble Random Projection Model for Identifying Subtypes of B-Cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.24.614777. [PMID: 39386448 PMCID: PMC11463541 DOI: 10.1101/2024.09.24.614777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identifying B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic design. Existing methods for B-ALL subtyping primarily depend on immunophenotyping, cytogenetic tests and genomic profiling, which would be costly, complicated, and laborious. To overcome these challenges, we present RanBALL (an ensemble Random projection-based model for identifying B-ALL subtypes), an accurate and cost-effective model for B-ALL subtype identification. By leveraging random projection (RP) and ensemble learning, RanBALL can preserve patient-to-patient distances after dimension reduction and yield robustly accurate classification performance for B-ALL subtyping. Benchmarking results based on > 1700 B-ALL patients demonstrated that RanBALL achieved remarkable performance (accuracy: 0.93, F1-score: 0.93, and Matthews correlation coefficient: 0.93), significantly outperforming state-of-the-art methods like ALLSorts in terms of all performance metrics. In addition, RanBALL performs better than tSNE in terms of visualizing B-ALL subtype information. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets to have consequential positive impacts on downstream risk stratification and tailored treatment design. To extend its applicability and impacts, a Python-based RanBALL package is available at https://github.com/wan-mlab/RanBALL.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinchao Wu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:13-22. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
8
|
Witek MA, Larkey NE, Bartakova A, Hupert ML, Mog S, Cronin JK, Vun J, August KJ, Soper SA. Microfluidic Affinity Selection of B-Lineage Cells from Peripheral Blood for Minimal Residual Disease Monitoring in Pediatric B-Type Acute Lymphoblastic Leukemia Patients. Int J Mol Sci 2024; 25:10619. [PMID: 39408948 PMCID: PMC11477226 DOI: 10.3390/ijms251910619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Assessment of minimal residual disease (MRD) is the most powerful predictor of outcome in B-type acute lymphoblastic leukemia (B-ALL). MRD, defined as the presence of leukemic cells in the blood or bone marrow, is used for the evaluation of therapy efficacy. We report on a microfluidic-based MRD (MF-MRD) assay that allows for frequent evaluation of blood for the presence of circulating leukemia cells (CLCs). The microfluidic chip affinity selects B-lineage cells, including CLCs using anti-CD19 antibodies poised on the wall of the microfluidic chip. Affinity-selected cells are released from the capture surface and can be subjected to immunophenotyping to enumerate the CLCs, perform fluorescence in situ hybridization (FISH), and/or molecular analysis of the CLCs' mRNA/gDNA. During longitudinal testing of 20 patients throughout induction and consolidation therapy, the MF-MRD performed 116 tests, while only 41 were completed with multiparameter flow cytometry (MFC-MRD) using a bone marrow aspirate, as standard-of-care. Overall, 57% MF-MRD tests were MRD(+) as defined by CLC numbers exceeding a threshold of 5 × 10-4%, which was determined to be the limit of quantitation. Above a threshold of 0.01%, MFC-MRD was positive in 34% of patients. The MF offered the advantage of the opportunity for efficiently processing small volumes of blood (2 mL), which is important in the care of pediatric patients, especially infants. The minimally invasive means of blood collection are of high value when treating patients whose MRD is typically tested using an invasive bone marrow biopsy. MF-MRD detection can be useful for stratification of patients into risk groups and monitoring of patient well-being after completion of treatment for early recognition of potential impending disease recurrence.
Collapse
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Nicholas E. Larkey
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alena Bartakova
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
| | | | - Shalee Mog
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
| | - Jami K. Cronin
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Judy Vun
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Keith J. August
- Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City, Kansas City, MO 64108, USA; (J.K.C.); (J.V.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA; (N.E.L.); (S.M.)
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Biofluidica Inc., San Diego, CA 92121, USA; (A.B.); (M.L.H.)
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
9
|
Kroeze E, Iaccarino I, Kleisman MM, Mondal M, Beder T, Khouja M, Höppner MP, Scheijde-Vermeulen MA, Kester LA, Brüggemann M, Baldus CD, Cario G, Bladergroen RS, Garnier N, Attarbaschi A, Verdu-Amorós J, Sutton R, Macintyre E, Scholten K, Arias Padilla L, Burkhardt B, Beishuizen A, den Boer ML, Kuiper RP, Loeffen JLC, Boer JM, Klapper W. Mutational and transcriptional landscape of pediatric B-cell precursor lymphoblastic lymphoma. Blood 2024; 144:74-83. [PMID: 38588489 DOI: 10.1182/blood.2024023938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Pediatric B-cell precursor (BCP) lymphoblastic malignancies are neoplasms with manifestation either in the bone marrow or blood (BCP acute lymphoblastic leukemia [BCP-ALL]) or are less common in extramedullary tissue (BCP lymphoblastic lymphoma [BCP-LBL]). Although both presentations are similar in morphology and immunophenotype, molecular studies have been virtually restricted to BCP-ALL so far. The lack of molecular studies on BCP-LBL is due to its rarity and restriction on small, mostly formalin-fixed paraffin-embedded (FFPE) tissues. Here, to our knowledge, we present the first comprehensive mutational and transcriptional analysis of what we consider the largest BCP-LBL cohort described to date (n = 97). Whole-exome sequencing indicated a mutational spectrum of BCP-LBL, strikingly similar to that found in BCP-ALL. However, epigenetic modifiers were more frequently mutated in BCP-LBL, whereas BCP-ALL was more frequently affected by mutation in genes involved in B-cell development. Integrating copy number alterations, somatic mutations, and gene expression by RNA sequencing revealed that virtually all molecular subtypes originally defined in BCP-ALL are present in BCP-LBL, with only 7% of lymphomas that were not assigned to a subtype. Similar to BCP-ALL, the most frequent subtypes of BCP-LBL were high hyperdiploidy and ETV6::RUNX1. Tyrosine kinase/cytokine receptor rearrangements were detected in 7% of BCP-LBL. These results indicate that genetic subtypes can be identified in BCP-LBL using next-generation sequencing, even in FFPE tissue, and may be relevant to guide treatment.
Collapse
Affiliation(s)
- Emma Kroeze
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ingram Iaccarino
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| | | | - Mayukh Mondal
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mouhamad Khouja
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marc P Höppner
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | | | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monika Brüggemann
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claudia D Baldus
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
- Department of Pediatrics, Berlin-Frankfurt-Münster ALL Study Group Germany, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Nathalie Garnier
- Institut d'Hematologie et d'Oncologie Pediatrique, Hospices Civils de Lyon, Lyon, France
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Jaime Verdu-Amorós
- Department of Pediatric Hematology and Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- INCLIVA, Biomedical Research Institute, Valencia, Spain
| | - Rosemary Sutton
- Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Centre National de la Recherche Scientifique, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Kenneth Scholten
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Laura Arias Padilla
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, NHL-BFM Study Center, University Hospital Münster, Münster, Germany
| | - Auke Beishuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
- Clinical Research Unit "CATCH ALL" (KFO 5010/1) funded by the Deutsche Forschungsgemeinschaft, Bonn, Germany
| |
Collapse
|
10
|
Nordlund J. BCP neoplasms: same or different? Blood 2024; 144:4-6. [PMID: 38963673 DOI: 10.1182/blood.2024024791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
|
11
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
12
|
Tang M, Antić Ž, Fardzadeh P, Pietzsch S, Schröder C, Eberhardt A, van Bömmel A, Escherich G, Hofmann W, Horstmann MA, Illig T, McCrary JM, Lentes J, Metzler M, Nejdl W, Schlegelberger B, Schrappe M, Zimmermann M, Miarka-Walczyk K, Pastorczak A, Cario G, Renard BY, Stanulla M, Bergmann AK. An artificial intelligence-assisted clinical framework to facilitate diagnostics and translational discovery in hematologic neoplasia. EBioMedicine 2024; 104:105171. [PMID: 38810562 PMCID: PMC11154115 DOI: 10.1016/j.ebiom.2024.105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The increasing volume and intricacy of sequencing data, along with other clinical and diagnostic data, like drug responses and measurable residual disease, creates challenges for efficient clinical comprehension and interpretation. Using paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) as a use case, we present an artificial intelligence (AI)-assisted clinical framework clinALL that integrates genomic and clinical data into a user-friendly interface to support routine diagnostics and reveal translational insights for hematologic neoplasia. METHODS We performed targeted RNA sequencing in 1365 cases with haematological neoplasms, primarily paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) from the AIEOP-BFM ALL study. We carried out fluorescence in situ hybridization (FISH), karyotyping and arrayCGH as part of the routine diagnostics. The analysis results of these assays as well as additional clinical information were integrated into an interactive web interface using Bokeh, where the main graph is based on Uniform Manifold Approximation and Projection (UMAP) analysis of the gene expression data. At the backend of the clinALL, we built both shallow machine learning models and a deep neural network using Scikit-learn and PyTorch respectively. FINDINGS By applying clinALL, 78% of undetermined patients under the current diagnostic protocol were stratified, and ambiguous cases were investigated. Translational insights were discovered, including IKZF1plus status dependent subpopulations of BCR::ABL1 positive patients, and a subpopulation within ETV6::RUNX1 positive patients that has a high relapse frequency. Our best machine learning models, LDA and PASNET-like neural network models, achieve F1 scores above 97% in predicting patients' subgroups. INTERPRETATION An AI-assisted clinical framework that integrates both genomic and clinical data can take full advantage of the available data, improve point-of-care decision-making and reveal clinically relevant insights promptly. Such a lightweight and easily transferable framework works for both whole transcriptome data as well as the cost-effective targeted RNA-seq, enabling efficient and equitable delivery of personalized medicine in small clinics in developing countries. FUNDING German Ministry of Education and Research (BMBF), German Research Foundation (DFG) and Foundation for Polish Science.
Collapse
Affiliation(s)
- Ming Tang
- Department of Human Genetics, Hannover Medical School, Hannover, Germany; L3S Research Centre, Leibniz University Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Charlotte Schröder
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Alena van Bömmel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Gabriele Escherich
- Clinic of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin A Horstmann
- Clinic of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Thomas Illig
- Hannover Unified Bio Bank, Hannover Medical School, Hannover, Germany
| | - J Matt McCrary
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Markus Metzler
- Department of Paediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Nejdl
- L3S Research Centre, Leibniz University Hannover, Germany
| | | | - Martin Schrappe
- Department of Paediatrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Martin Zimmermann
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Karolina Miarka-Walczyk
- Department of Paediatrics, Oncology and Haematology, Medical University of Lodz, Lodz, Poland
| | - Agata Pastorczak
- Department of Paediatrics, Oncology and Haematology, Medical University of Lodz, Lodz, Poland
| | - Gunnar Cario
- Department of Paediatrics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bernhard Y Renard
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| | - Martin Stanulla
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
13
|
Hu Z, Jia Z, Liu J, Mao A, Han H, Gu Z. MD-ALL: an integrative platform for molecular diagnosis of B-acute lymphoblastic leukemia. Haematologica 2024; 109:1741-1754. [PMID: 37981856 PMCID: PMC11141650 DOI: 10.3324/haematol.2023.283706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
B-acute lymphoblastic leukemia (B-ALL) consists of dozens of subtypes defined by distinct gene expression profiles (GEP) and various genetic lesions. With the application of transcriptome sequencing (RNA sequencing [RNA-seq]), multiple novel subtypes have been identified, which lead to an advanced B-ALL classification and risk-stratification system. However, the complexity of analyzing RNA-seq data for B-ALL classification hinders the implementation of the new B-ALL taxonomy. Here, we introduce Molecular Diagnosis of Acute Lymphoblastic Leukemia (MD-ALL), an integrative platform featuring sensitive and accurate B-ALL classification based on GEP and sentinel genetic alterations from RNA-seq data. In this study, we systematically analyzed 2,955 B-ALL RNA-seq samples and generated a reference dataset representing all the reported B-ALL subtypes. Using multiple machine learning algorithms, we identified the feature genes and then established highly sensitive and accurate models for B-ALL classification using either bulk or single-cell RNA-seq data. Importantly, this platform integrates multiple aspects of key genetic lesions acquired from RNA-seq data, which include sequence mutations, large-scale copy number variations, and gene rearrangements, to perform comprehensive and definitive B-ALL classification. Through validation in a hold-out cohort of 974 samples, our models demonstrated superior performance for B-ALL classification compared with alternative tools. Moreover, to ensure accessibility and user-friendly navigation even for users with limited or no programming background, we developed an interactive graphical user interface for this MD-ALL platform, using the R Shiny package. In summary, MD-ALL is a user-friendly B-ALL classification platform designed to enable integrative, accurate, and comprehensive B-ALL subtype classification. MD-ALL is available from https://github.com/gu-lab20/MD-ALL.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA; Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhilian Jia
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA; Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jiangyue Liu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA
| | - Allen Mao
- Research Informatics, City of Hope National Medical Center, Duarte, CA
| | - Helen Han
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA; Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA; Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA.
| |
Collapse
|
14
|
Wang C, Li J, Liu W, Zhao L, Yan H, Yan Y, Ren J, Peng L, Zhang J, Liu Y, Weng X, Zhu Y, Jing D, Mi JQ, Wang J. Refined risk stratification helps guiding transplantation choice in adult BCR::ABL1-positive acute lymphoblastic leukemia. Blood Cancer J 2024; 14:71. [PMID: 38658532 PMCID: PMC11043066 DOI: 10.1038/s41408-024-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Cheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaojiao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Bastian L, Beder T, Barz MJ, Bendig S, Bartsch L, Walter W, Wolgast N, Brändl B, Rohrandt C, Hansen BT, Hartmann AM, Iben K, Das Gupta D, Denker M, Zimmermann J, Wittig M, Chitadze G, Neumann M, Schneller F, Fiedler W, Steffen B, Stelljes M, Faul C, Schwartz S, Müller FJ, Cario G, Harder L, Haferlach C, Pfeifer H, Gökbuget N, Brüggemann M, Baldus CD. Developmental trajectories and cooperating genomic events define molecular subtypes of BCR::ABL1-positive ALL. Blood 2024; 143:1391-1398. [PMID: 38153913 PMCID: PMC11033585 DOI: 10.1182/blood.2023021752] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
ABSTRACT Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL) are currently defined by the International Consensus Classification of myeloid neoplasms and acute leukemias (ICC): "lymphoid only", with BCR::ABL1 observed exclusively in lymphatic precursors, vs "multilineage", where BCR::ABL1 is also present in other hematopoietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization analysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients; P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred from gene expression. Further subclusters grouped samples according to cooperating genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS, whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying developmental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.
Collapse
Affiliation(s)
- Lorenz Bastian
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Malwine J. Barz
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Sonja Bendig
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Lorenz Bartsch
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | | | - Nadine Wolgast
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Christian Rohrandt
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Björn-Thore Hansen
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina M. Hartmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Katharina Iben
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Dennis Das Gupta
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Miriam Denker
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johannes Zimmermann
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Guranda Chitadze
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Martin Neumann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Folker Schneller
- Medical Clinic and Polyclinic of Klinikum rechts der Isar of Technical University Munich, Munich, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Steffen
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Matthias Stelljes
- Department of Medicine A–Hematology, Hemostaseology, Oncology, Pulmonology, University Hospital Muenster, Munster, Germany
| | - Christoph Faul
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lana Harder
- Institut für Tumorgenetik Nord, Kiel, Germany
| | | | - Heike Pfeifer
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Claudia D. Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| |
Collapse
|
16
|
Hu Z, Kovach AE, Yellapantula V, Ostrow D, Doan A, Ji J, Schmidt RJ, Gu Z, Bhojwani D, Raca G. Transcriptome Sequencing Allows Comprehensive Genomic Characterization of Pediatric B-Acute Lymphoblastic Leukemia in an Academic Clinical Laboratory. J Mol Diagn 2024; 26:49-60. [PMID: 37981088 PMCID: PMC10773144 DOI: 10.1016/j.jmoldx.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Studies have shown the power of transcriptome sequencing [RNA sequencing (RNA-Seq)] in identifying known and novel oncogenic drivers and molecular subtypes of B-acute lymphoblastic leukemia (B-ALL). The current study investigated whether the clinically validated RNA-Seq assay, coupled with a custom analysis pipeline, could be used for a comprehensive B-ALL classification. Following comprehensive clinical testing, RNA-Seq was performed on 76 retrospective B-ALL cases, 28 of which had known and 48 had undetermined subtype. Subtypes were accurately identified in all 28 known cases, and in 38 of 48 unknown cases (79%). The subtypes of the unknown cases included the following: PAX5alt (n = 12), DUX4-rearranged (n = 6), Philadelphia chromosome-like (n = 5), low hyperdiploid (n = 4), ETV6::RUNX1-like (n = 3), MEF2D-rearranged (n = 2), PAX5 P80R (n = 2), ZEB2/CEBP (n = 1), NUTM1-rearranged (n = 1), ZNF384-rearranged (n = 1), and TCF3::PBX1 (n = 1). In 15 of 38 cases (39%), classification based on expression profile was corroborated by detection of subtype-defining oncogenic drivers missed by clinical testing. RNA-Seq analysis also detected large copy number abnormalities, oncogenic hot-spot sequence variants, and intragenic IKZF1 deletions. This pilot study confirms the feasibility of implementing an RNA-Seq workflow for clinical diagnosis of molecular subtypes in pediatric B-ALL, reinforcing that RNA-Seq represents a promising global genomic assay for this heterogeneous leukemia.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Computational and Quantitative Medicine and Systems Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Andrew Doan
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine and Systems Biology, Beckman Research Institute of City of Hope, Duarte, California.
| | - Deepa Bhojwani
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
17
|
Krali O, Marincevic-Zuniga Y, Arvidsson G, Enblad AP, Lundmark A, Sayyab S, Zachariadis V, Heinäniemi M, Suhonen J, Oksa L, Vepsäläinen K, Öfverholm I, Barbany G, Nordgren A, Lilljebjörn H, Fioretos T, Madsen HO, Marquart HV, Flaegstad T, Forestier E, Jónsson ÓG, Kanerva J, Lohi O, Norén-Nyström U, Schmiegelow K, Harila A, Heyman M, Lönnerholm G, Syvänen AC, Nordlund J. Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia. NPJ Precis Oncol 2023; 7:131. [PMID: 38066241 PMCID: PMC10709574 DOI: 10.1038/s41698-023-00479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2025] Open
Abstract
Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia (ALL). Molecular subgroups guide risk-stratification and targeted therapies, but outcomes of recently identified subtypes are often unclear, owing to limited cases with comprehensive profiling and cross-protocol studies. We developed a machine learning tool (ALLIUM) for the molecular subclassification of ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and gene expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. ALLIUM was used to revise and verify the molecular subtype of 281 B-cell precursor ALL (BCP-ALL) cases with previously undefined molecular phenotype, resulting in a single revised subtype for 81.5% of these cases. Our study shows the power of combining DNA methylation and gene expression data for resolving ALL subtypes and provides a comprehensive population-based retrospective cohort study of molecular subtype frequencies in the Nordic countries.
Collapse
Affiliation(s)
- Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Pia Enblad
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Oksa
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - Kaisa Vepsäläinen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Ingegerd Öfverholm
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hans O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Tromsø, Norway
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Erik Forestier
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden
| | - Ólafur G Jónsson
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Reykjavik, Iceland
| | - Jukka Kanerva
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- New Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ulrika Norén-Nyström
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Mats Heyman
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|