1
|
Di Battista AP, Rhind SG, Shiu M, Hutchison MG. Whole blood stimulation provides preliminary evidence of altered immune function following SRC. BMC Immunol 2024; 25:6. [PMID: 38218771 PMCID: PMC10788016 DOI: 10.1186/s12865-023-00595-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024] Open
Abstract
PURPOSE To implement an approach combining whole blood immune stimulation and causal modelling to estimate the impact of sport-related concussion (SRC) on immune function. METHODS A prospective, observational cohort study was conducted on athletes participating across 13 university sports at a single academic institute; blood was drawn from 52 athletes, comprised of 22 athletes (n = 11 male, n = 11 female) within seven days of a physician-diagnosed SRC, and 30 healthy athletes (n = 18 female, n = 12 male) at the beginning of their competitive season. Blood samples were stimulated for 24 h under two conditions: (1) lipopolysaccharide (lps, 100ng/mL) or (2) resiquimod (R848, 1uM) using the TruCulture® system. The concentration of 45 cytokines and chemokines were quantitated in stimulated samples by immunoassay using the highly sensitive targeted Proximity Extension Assays (PEA) on the Olink® biomarker platform. A directed acyclic graph (DAG) was used as a heuristic model to make explicit scientific assumptions regarding the effect of SRC on immune function. A latent factor analysis was used to derive two latent cytokine variables representing immune function in response to LPS and R848 stimulation, respectively. The latent variables were then modelled using student-t regressions to estimate the total causal effect of SRC on immune function. RESULTS There was an effect of SRC on immune function in males following SRC, and it varied according to prior concussion history. In males with no history of concussion, those with an acute SRC had lower LPS reactivity compared to healthy athletes with 93% posterior probability (pprob), and lower R848 reactivity with 77% pprob. Conversely, in males with a history of SRC, those with an acute SRC had higher LPS reactivity compared to healthy athletes with 85% pprob and higher R848 reactivity with 82%. In females, irrespective of concussion history, SRC had no effect on LPS reactivity. However, in females with no concussion history, those with an acute SRC had higher R848 reactivity compared to healthy athletes with 86% pprob. CONCLUSION Whole blood stimulation can be used within a causal framework to estimate the effect of SRC on immune function. Preliminary evidence suggests that SRC affects LPS and R848 immunoreactivity, that the effect is stronger in male athletes, and differs based on concussion history. Replication of this study in a larger cohort with a more sophisticated causal model is necessary.
Collapse
Affiliation(s)
- Alex P Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Maria Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Centre for Sport-Related Concussion Research, Innovation, and Knowledge, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Tabor JB, Brett BL, Nelson L, Meier T, Penner LC, Mayer AR, Echemendia RJ, McAllister T, Meehan WP, Patricios J, Makdissi M, Bressan S, Davis GA, Premji Z, Schneider KJ, Zetterberg H, McCrea M. Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review. Br J Sports Med 2023; 57:789-797. [PMID: 37316184 DOI: 10.1136/bjsports-2022-106680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN Systematic review. DATA SOURCES Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020164558.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Benjamin L Brett
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lindsay Nelson
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy Meier
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ruben J Echemendia
- Psychology, University of Missouri Kansas City, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, PA, USA
| | - Thomas McAllister
- Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William P Meehan
- Micheli Center for Sports Injury Prevention, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand South, Johannesburg, South Africa
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Michael McCrea
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Meier TB, Nitta ME, Teague TK, Nelson LD, McCrea MA, Savitz J. Prospective study of the effects of sport-related concussion on serum kynurenine pathway metabolites. Brain Behav Immun 2020; 87:715-724. [PMID: 32147388 PMCID: PMC7316609 DOI: 10.1016/j.bbi.2020.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Reports of neurodegenerative and psychiatric disease in former athletes have increased public concern about the acute and chronic effects of sport-related concussions (SRC). The biological factors underlying individual differences in the psychiatric sequalae of SRC and their role in potential long-term negative outcomes have not been determined. One understudied biological consequence of the known inflammatory response to concussion is the activation of a key immunoregulatory pathway, the kynurenine pathway (KP). Activation of the KP produces several neuroactive metabolites that have been associated with psychiatric and neurodegenerative diseases. We tested the hypothesis that SRC results in an elevation of serum KP metabolites with neurotoxic properties (quinolinic acid [QuinA], 3-hydroxykynurenine [3HK]) together with a reduction in the neuroprotective metabolite kynurenic acid (KynA), and that these metabolites would predict post-concussion psychological symptoms. Additionally, because brain injury is thought to prime the immune system, a secondary goal was to test the hypothesis that athletes with acute SRC and a history of prior SRC would have elevated neurotoxic relative to neuroprotective KP metabolites compared to athletes that were concussed for the first time. High school and collegiate football players (N = 1136) were enrolled at a preseason baseline visit that included clinical testing and blood specimen collection. Athletes that suffered a SRC (N = 59) completed follow-up visits within 6-hours (early-acute), at 24-48 h (late-acute) and at 8, 15, and 45 days post-injury. Uninjured contact sport (CC; N = 54) and non-contact sport athletes completed similar visits and served as controls (NCC; N = 30). SRC athletes had significantly elevated psychological symptoms, assessed using the Brief Symptom Inventory-18 (BSI), acutely following injury relative to both control groups. There was a group-by-visit interaction on the ratio of KynA to 3HK in serum, a neuroprotective index, with elevated KynA/3HK in athletes with SRC at the early-acute visit relative to later visits. Importantly, athletes with greater elevation in this neuroprotective index at the early-acute visit reported fewer depressive symptoms at the late-acute visit. Finally, SRC athletes with prior concussion had significantly lower serum KynA/QuinA at all visits compared to SRC athletes with no prior concussion, an effect driven by elevated QuinA in SRC athletes with prior concussion. These results suggest that early-acute activation of the KynA branch of the KP may protect against the development of depressive symptoms following concussion. Furthermore, they highlight the potential of serum QuinA as a biomarker for repetitive head injury and provide insight into possible mechanisms linking prior concussion with subsequent injury.
Collapse
Affiliation(s)
- Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI,Corresponding Author: Timothy B. Meier, PhD, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, Phone: 414-955-7310, Fax: 414-955-0115,
| | - Morgan E. Nitta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Psychology, Marquette University, Milwaukee, WI
| | - T. Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK,Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK,Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK.,Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK
| | - Lindsay D. Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK,Oxley College of Health Sciences, The University of Tulsa, Tulsa OK
| |
Collapse
|
4
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. Genetic association research in football: A systematic review. Eur J Sport Sci 2020; 21:714-752. [PMID: 32466725 DOI: 10.1080/17461391.2020.1776401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic variation is responsible for a large amount of the inter-individual performance disparities seen in sport. As such, in the last ten years genetic association studies have become more common; with one of the most frequently researched sports being football. However, the progress and methodological rigour of genetic association research in football is yet to be evaluated. Therefore, the aim of this paper was to identify and evaluate all genetic association studies involving football players and outline where and how future research should be directed. Firstly, a systematic search was conducted in the Pubmed and SPORTDiscus databases, which identified 80 eligible studies. Progression analysis revealed that 103 distinct genes have been investigated across multiple disciplines; however, research has predominately focused on the association of the ACTN3 or ACE gene. Furthermore, 55% of the total studies have been published within the last four years; showcasing that genetic association research in football is increasing at a substantial rate. However, there are several methodological inconsistencies which hinder research implications, such as; inadequate description or omission of ethnicity and on-field positions. Furthermore, there is a limited amount of research on several key areas crucial to footballing performance, in particular; psychological related traits. Moving forward, improved research designs, larger sample sizes, and the utilisation of genome-wide and polygenic profiling approaches are recommended. Finally, we introduce the Football Gene Project, which aims to address several of these limitations and ultimately facilitate greater individualised athlete development within football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK.,Department of Life Sciences, Birmingham City University, City South Campus, Westbourne Road, Edgbaston, B15 3TN, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne, Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| |
Collapse
|
5
|
Di Battista AP, Rhind SG, Richards D, Hutchison MG. An investigation of plasma interleukin-6 in sport-related concussion. PLoS One 2020; 15:e0232053. [PMID: 32343752 PMCID: PMC7188239 DOI: 10.1371/journal.pone.0232053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Increasing evidence suggests inflammation is an important component of concussion pathophysiology. However, its etiology, restitution, and potential clinical repercussions remain unknown. The purpose of the current study was to compare the blood concentrations of interleukin (IL) -6, a prominent inflammatory cytokine, between healthy athletes and athletes with a sport-related concussion (SRC), while addressing the potential confounds of sex, recent physical activity, and the interacting effect of concussion history. METHOD A prospective, observational cohort study was conducted on athletes at a single academic institute participating across 13 interuniversity sports. Follow-up of 96 athletes who agreed to provide a blood sample was completed: 41 athletes with a physician diagnosed SRC, and 55 healthy athletes. Ella™, the high sensitivity immunoassay system by ProteinSimple was used to measure peripheral plasma concentrations of IL-6 within the first week (median = 4 days, range = 2-7) following injury. A resampled ordinary least squares regression was used to evaluate the relationship between IL-6 concentrations and concussion status, while partial least squares regression was used to evaluate the relationship between IL-6 and both symptom burden and time to clinical recovery. RESULTS Regression analysis identified a negative relationship between plasma IL-6 concentrations and the interaction between an acute SRC and a history of concussion (β = -0.29, p = 0.029). IL-6 did not differ between healthy athletes and those with an acute SRC independent of concussion history, and was not correlated with either recovery time or symptom burden in athletes with SRC. CONCLUSION Perturbations to circulating IL-6 concentrations, a key inflammatory cytokine, may be more pronounced following SRC in athletes who have a history of concussion. These results add to a growing body of evidence supporting the involvement of inflammation at all phases of recovery following SRC, and potentially support a concomitant effect of prior concussion on acute SRC pathophysiology.
Collapse
Affiliation(s)
- Alex P. Di Battista
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael G. Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Meier TB, Huber DL, Bohorquez-Montoya L, Nitta ME, Savitz J, Teague TK, Bazarian JJ, Hayes RL, Nelson LD, McCrea MA. A Prospective Study of Acute Blood-Based Biomarkers for Sport-Related Concussion. Ann Neurol 2020; 87:907-920. [PMID: 32215965 DOI: 10.1002/ana.25725] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Prospectively characterize changes in serum proteins following sport-related concussion and determine whether candidate biomarkers discriminate concussed athletes from controls and are associated with duration of symptoms following concussion. METHODS High school and collegiate athletes were enrolled between 2015 and 2018. Blood was collected at preinjury baseline and within 6 hours (early acute) and at 24 to 48 hours (late acute) following concussion in football players (n = 106), matched uninjured football players (n = 84), and non-contact-sport athletes (n = 50). Glial fibrillary acidic protein, ubiquitin c-terminal hydrolase-L1, S100 calcium binding protein B, alpha-II-spectrin breakdown product 150, interleukin 6, interleukin 1 receptor antagonist, and c-reactive protein were measured in serum. Linear models assessed changes in protein concentrations over time. Receiver operating curves quantified the discrimination of concussed athletes from controls. A Cox proportional hazard model determined whether proteins were associated with symptom recovery. RESULTS All proteins except glial fibrillary acidic protein and c-reactive protein were significantly elevated at the early acute phase postinjury relative to baseline and both control groups and discriminated concussed athletes from controls with areas under the curve of 0.68 to 0.84. The candidate biomarkers also significantly improved the discrimination of concussed athletes from noncontact controls compared to symptom severity alone. Glial fibrillary acidic protein was elevated postinjury relative to baseline in concussed athletes with a loss of consciousness or amnesia. Finally, early acute levels of interleukin 1 receptor antagonist were associated with the number of days to symptom recovery. INTERPRETATION Brain injury and inflammatory proteins show promise as objective diagnostic biomarkers for sport-related concussion, and inflammatory markers may provide prognostic value. ANN NEUROL 2020;87:907-920.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel L Huber
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Morgan E Nitta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Psychology, Marquette University, Milwaukee, WI, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA.,Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA.,Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK, USA.,Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | | | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Di Battista AP, Churchill N, Rhind SG, Richards D, Hutchison MG. The relationship between symptom burden and systemic inflammation differs between male and female athletes following concussion. BMC Immunol 2020; 21:11. [PMID: 32164571 PMCID: PMC7068899 DOI: 10.1186/s12865-020-0339-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation appears to be an important component of concussion pathophysiology. However, its relationship to symptom burden is unclear. Therefore, the purpose of this study was to evaluate the relationship between symptoms and inflammatory biomarkers measured in the blood of male and female athletes following a sport-related concussion (SRC). RESULTS Forty athletes (n = 20 male, n = 20 female) from nine interuniversity sport teams at a single institution provided blood samples within one week of an SRC. Twenty inflammatory biomarkers were quantitated by immunoassay. The Sport Concussion Assessment Tool version 5 (SCAT-5) was used to evaluate symptoms. Partial least squares (PLS) analyses were used to evaluate the relationship(s) between biomarkers and symptoms. In males, a positive correlation between interferon (IFN)-γ and symptom severity was observed following SRC. The relationship between IFN-γ and symptoms was significant among all symptom clusters, with cognitive symptoms displaying the largest effect. In females, a significant negative relationship was observed between symptom severity and cytokines IFN-γ, tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO); a positive relationship was observed between symptom severity and MCP-4. Inflammatory mediators were significantly associated with all symptom clusters in females; the somatic symptom cluster displayed the largest effect. CONCLUSION These results provide supportive evidence of a divergent relationship between inflammation and symptom burden in male and female athletes following SRC. Future investigations should be cognizant of the potentially sex-specific pathophysiology underlying symptom presentation.
Collapse
Affiliation(s)
- Alex P Di Battista
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada.
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.
| | - Nathan Churchill
- Neuroscience Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Shawn G Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord St., Toronto, ON, M5S 2W6, Canada
- David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Edwards KA, Motamedi V, Osier ND, Kim HS, Yun S, Cho YE, Lai C, Dell KC, Carr W, Walker P, Ahlers S, LoPresti M, Yarnell A, Tschiffley A, Gill JM. A Moderate Blast Exposure Results in Dysregulated Gene Network Activity Related to Cell Death, Survival, Structure, and Metabolism. Front Neurol 2020; 11:91. [PMID: 32174881 PMCID: PMC7054450 DOI: 10.3389/fneur.2020.00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Blast exposure is common in military personnel during training and combat operations, yet biological mechanisms related to cell survival and function that coordinate recovery remain poorly understood. This study explored how moderate blast exposure influences gene expression; specifically, gene-network changes following moderate blast exposure. On day 1 (baseline) of a 10-day military training program, blood samples were drawn, and health and demographic information collected. Helmets equipped with bilateral sensors worn throughout training measured overpressure in pounds per square inch (psi). On day 7, some participants experienced moderate blast exposure (peak pressure ≥5 psi). On day 10, 3 days post-exposure, blood was collected and compared to baseline with RNA-sequencing to establish gene expression changes. Based on dysregulation data from RNA-sequencing, followed by top gene networks identified with Ingenuity Pathway Analysis, a subset of genes was validated (NanoString). Five gene networks were dysregulated; specifically, two highly significant networks: (1) Cell Death and Survival (score: 42), including 70 genes, with 50 downregulated and (2) Cell Structure, Function, and Metabolism (score: 41), including 69 genes, with 41 downregulated. Genes related to ubiquitination, including neuronal development and repair: UPF1, RNA Helicase and ATPase (UPF1) was upregulated while UPF3 Regulator of Nonsense Transcripts Homolog B (UPF3B) was downregulated. Genes related to inflammation were upregulated, including AKT serine/threonine kinase 1 (AKT1), a gene coordinating cellular recovery following TBIs. Moderate blast exposure induced significant gene expression changes including gene networks involved in (1) cell death and survival and (2) cellular development and function. The present findings may have implications for understanding blast exposure pathology and subsequent recovery efforts.
Collapse
Affiliation(s)
- Katie A Edwards
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vida Motamedi
- Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Nicole D Osier
- School of Nursing, University of Texas at Austin, Austin, TX, United States.,Department of Neurology, University of Texas, Austin, TX, United States
| | - Hyung-Suk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sijung Yun
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Young-Eun Cho
- College of Nursing, University of Iowa, Iowa City, IA, United States
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Kristine C Dell
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peter Walker
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Stephen Ahlers
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Matthew LoPresti
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela Yarnell
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Anna Tschiffley
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,CNRM Co-Director Biomarkers Core, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
9
|
Emery Joseph Crownover J, Holland AM. Therapeutic ketosis for mild traumatic brain injury. TRANSLATIONAL SPORTS MEDICINE 2019. [DOI: 10.1002/tsm2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Angelia Maleah Holland
- Nutrition, Exercise, and Stress Laboratory, Department of Kinesiology Augusta University Augusta Georgia
| |
Collapse
|
10
|
Nitta ME, Savitz J, Nelson LD, Teague TK, Hoelzle JB, McCrea MA, Meier TB. Acute elevation of serum inflammatory markers predicts symptom recovery after concussion. Neurology 2019; 93:e497-e507. [PMID: 31270219 DOI: 10.1212/wnl.0000000000007864] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To test the hypothesis that acute elevations in serum inflammatory markers predict symptom recovery after sport-related concussion (SRC). METHODS High school and collegiate football players (n = 857) were prospectively enrolled. Forty-one athletes with concussion and 43 matched control athletes met inclusion criteria. Serum levels of interleukin (IL)-6, IL-1β, IL-10, tumor necrosis factor, C-reactive protein, interferon-γ, and IL-1 receptor antagonist and Sport Concussion Assessment Tool, 3rd edition (SCAT3) symptom severity scores were collected at a preinjury baseline, 6 and 24-48 hours postinjury, and approximately 8, 15, and 45 days following concussion. The number of days that athletes were symptomatic following SRC (i.e., duration of symptoms) was the primary outcome variable. RESULTS IL-6 and IL-1RA were significantly elevated in athletes with concussion at 6 hours relative to preinjury and other postinjury visits, as well as compared to controls (ps ≤ 0.001). IL-6 and IL-1RA significantly discriminated concussed from control athletes at 6 hours postconcussion (IL-6 area under receiver operating characteristic curve 0.79 [95% confidence interval (CI) 0.65-0.92], IL-1RA AUC 0.79 [95% CI 0.67-0.90]). Further, IL-6 levels at 6 hours postconcussion were significantly associated with the duration of symptoms (hazard ratio for symptom recovery = 0.61 [95% CI 0.38-0.96], p = 0.031). CONCLUSIONS Results support the potential utility of IL-6 and IL-1RA as serum biomarkers of SRC and demonstrate the potential of these markers in identifying athletes at risk for prolonged recovery after SRC. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that serum levels of IL-6 and IL-1RA 6 hours postconcussion significantly discriminated concussed from control athletes.
Collapse
Affiliation(s)
- Morgan E Nitta
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa
| | - Jonathan Savitz
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa
| | - Lindsay D Nelson
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa
| | - T Kent Teague
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa
| | - James B Hoelzle
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa
| | - Michael A McCrea
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa
| | - Timothy B Meier
- From the Departments of Neurosurgery (M.E.N., L.D.N., M.A.M., T.B.M.), Neurology (L.D.N., M.A.M.), Cell Biology, Neurobiology and Anatomy (T.B.M.), and Biomedical Engineering (T.B.M.), Medical College of Wisconsin; Department of Psychology (M.E.N., J.B.H.), Marquette University, Milwaukee, WI; Laureate Institute for Brain Research (J.S.), Tulsa; Oxley College of Health Sciences (J.S.), The University of Tulsa; Departments of Surgery (T.K.T.) and Psychiatry (T.K.T.), University of Oklahoma School of Community Medicine; Department of Pharmaceutical Sciences (T.K.T.), University of Oklahoma College of Pharmacy; and Department of Biochemistry and Microbiology (T.K.T.), Oklahoma State University Center for Health Sciences, Tulsa.
| |
Collapse
|
11
|
Di Battista AP, Churchill N, Rhind SG, Richards D, Hutchison MG. Evidence of a distinct peripheral inflammatory profile in sport-related concussion. J Neuroinflammation 2019; 16:17. [PMID: 30684956 PMCID: PMC6347801 DOI: 10.1186/s12974-019-1402-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation is considered a hallmark of concussion pathophysiology in experimental models, yet is understudied in human injury. Despite the growing use of blood biomarkers in concussion, inflammatory biomarkers have not been well characterized. Furthermore, it is unclear if the systemic inflammatory response to concussion differs from that of musculoskeletal injury. The purpose of this paper was to characterize systemic inflammation after injury in athletes with sport-related concussion or musculoskeletal injury. Methods A prospective, observational cohort study was conducted employing 175 interuniversity athletes (sport-related concussion, n = 43; musculoskeletal injury, n = 30; healthy, n = 102) from 12 sports at a sports medicine clinic at an academic institution. High-sensitivity immunoassay was used to evaluate 20 inflammatory biomarkers in the peripheral blood of athletes within 7 days of injury (subacute) and at medical clearance. Healthy athletes were sampled prior to the start of their competitive season. Partial least squares regression analyses were used to identify salient biomarker contributions to class separation between injured and healthy athletes, as well as to evaluate the relationship between biomarkers and days to recovery in injured athletes. Results In the subacute period after injury, compared to healthy athletes, athletes with sport-related concussion had higher levels of the chemokines’ monocyte chemoattractant protein-4 (p < 0.001) and macrophage inflammatory protein-1β (p = 0.001); athletes with musculoskeletal injury had higher levels of thymus and activation-regulated chemokine (p = 0.001). No significant differences in biomarker profiles were observed at medical clearance. Furthermore, concentrations of monocyte chemoattractant protein-1 (p = 0.007) and monocyte chemoattractant protein-4 (p < 0.001) at the subacute time point were positively correlated with days to recovery in athletes with sport-related concussion, while thymus and activation-regulated chemokine was (p = 0.001) positively correlated with days to recovery in athletes with musculoskeletal injury. Conclusion Sport-related concussion is associated with perturbations to systemic inflammatory chemokines that differ from those observed in athletes with a musculoskeletal injury. These results support inflammation as an important facet of secondary injury after sport-related concussion that can be measured systemically in a human model of injury. Electronic supplementary material The online version of this article (10.1186/s12974-019-1402-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex P Di Battista
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada. .,Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada.
| | - Nathan Churchill
- Neuroscience Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Shawn G Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.,Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.,David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
McGrew CA. Sports-related Concussion - Genetic Factors. Curr Sports Med Rep 2019; 18:20-22. [PMID: 30624331 DOI: 10.1249/jsr.0000000000000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genetic biomarkers have been evaluated for validity in predicting risk for sports-related concussion as well as prognosticating recovery from this injury. Research results from predominantly small-scale pilot studies thus far are mixed and preliminary findings have not been adequately replicated. Currently, the use of such genetic biomarkers should be considered investigational and not for routine clinical use.
Collapse
Affiliation(s)
- Christopher A McGrew
- Department of Family and Community Medicine, Department of Orthopedics and Rehabilitation, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
13
|
Blood biomarkers are associated with brain function and blood flow following sport concussion. J Neuroimmunol 2018; 319:1-8. [PMID: 29685283 DOI: 10.1016/j.jneuroim.2018.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Secondary injury pathophysiology after sport-related concussion (SRC) is poorly understood. Blood biomarkers may be a useful tool for characterizing these processes, yet there are limitations in their application as a single modality. Combining blood biomarker analysis with advanced neuroimaging may help validate their continued utility in brain injury research by elucidating important secondary injury mechanisms. Hence, the purpose of this study was to evaluate co-modulation between peripheral blood biomarkers and advanced functional brain imaging after SRC. METHODS Forty-three university level athletes from 7 sports were recruited (16 recently concussed athletes; 15 healthy athletes with no prior history of concussion; 12 healthy athletes with a history of concussion). Seven blood biomarkers were evaluated: s100B, total tau (T-tau), von Willebrand factor (vWF), brain derived neurotrophic factor (BDNF), peroxiredoxin (PRDX)-6, monocyte chemoattractant protein (MCP)-1 and -4. Resting-state functional MRI was employed to assess global neural connectivity (Gconn), and arterial spin labelling was used to evaluate cerebral blood flow (CBF). We tested for concurrent alterations in blood biomarkers and MRI measures of brain function between athlete groups using a non-parametric, bootstrapped resampling framework. RESULTS Compared to healthy athletes, recently concussed athletes showed greater concurrent alterations in several peripheral blood biomarker and MRI measures: a decrease in T-Tau and Gconn, a decrease in T-Tau and CBF, a decrease in Gconn with elevated PRDX-6, a decrease in CBF with elevated PRDX-6, and a decrease in Gconn with elevated MCP-4. In addition, compared to healthy athletes with no concussion history, healthy athletes with a history of concussion displayed greater concurrent alterations in blood biomarkers and Gconn; lower GConn covaried with higher blood levels of s100B and MCP-4. CONCLUSION We identified robust relationships between peripheral blood biomarkers and MRI measures in both recently concussed athletes and healthy athletes with a history of concussion. The results from this combinatorial approach further support that human concussion is associated with inflammation, oxidative stress, and cellular damage, and that physiological perturbations may extend chronically beyond recovery. Finally, our results support the continued implementation of blood biomarkers as a tool to investigate brain injury, particularly in a multimodal framework.
Collapse
|
14
|
Di Battista AP, Rhind SG, Baker AJ, Jetly R, Debad JD, Richards D, Hutchison MG. An investigation of neuroinjury biomarkers after sport-related concussion: from the subacute phase to clinical recovery. Brain Inj 2018; 32:575-582. [PMID: 29420083 DOI: 10.1080/02699052.2018.1432892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To characterise a panel of neuroinjury-related blood biomarkers after sport-related concussion (SRC). We hypothesised significant differences in biomarker profiles between athletes with SRC and healthy controls at both subacute and medical clearance time points. METHODS Thirty-eight interuniversity athletes were recruited over two athletic seasons (n = 19 SRC; n = 19 healthy matched-control). High-sensitivity immunoassay was used to evaluate 11 blood analytes at both the subacute phase after SRC and at medical clearance. RESULTS Univariate analysis identified elevated circulating peroxiredoxin-6 (PRDX-6) in athletes with SRC compared to healthy controls at the subacute time point. Multivariate analyses yielded similar results in the subacute phase, but identified both PRDX-6 and T-tau as significant contributors to class separation between athletes with SRC and controls at medical clearance. CONCLUSIONS Our results are consistent with the increasing recognition that physiological recovery after SRC extends beyond clinical recovery. Blood biomarkers appear to be useful in elucidating the biology of brain restitution after SRC. However, their implementation requires mindfulness of factors such as academic stress, exercise, and injury heterogeneity.
Collapse
Affiliation(s)
- Alex P Di Battista
- a Institute of Medical Science, University of Toronto , Toronto , ON , Canada.,b Defence Research and Development Canada, Toronto Research Centre , Toronto , ON , Canada
| | - Shawn G Rhind
- b Defence Research and Development Canada, Toronto Research Centre , Toronto , ON , Canada.,c Faculty of Kinesiology & Physical Education , University of Toronto , Toronto , ON , Canada
| | - Andrew J Baker
- a Institute of Medical Science, University of Toronto , Toronto , ON , Canada.,d Departments of Critical Care , Anesthesia and Surgery, St. Michael's Hospital, University of Toronto , Toronto ON , Canada.,e Neuroscience Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto , ON , Canada
| | - Rakesh Jetly
- f Directorate of Mental Health , Canadian Forces Health Services , Ottawa , ON Canada.,g Department of Psychiatry , University of Ottawa , Ottawa , ON , Canada
| | - Jeff D Debad
- h Meso Scale Diagnostics, LLC ., Rockville , MD , USA
| | - Doug Richards
- c Faculty of Kinesiology & Physical Education , University of Toronto , Toronto , ON , Canada
| | - Michael G Hutchison
- c Faculty of Kinesiology & Physical Education , University of Toronto , Toronto , ON , Canada.,e Neuroscience Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital , Toronto , ON , Canada
| |
Collapse
|
15
|
Hardy JJ, Mooney SR, Pearson AN, McGuire D, Correa DJ, Simon RP, Meller R. Assessing the accuracy of blood RNA profiles to identify patients with post-concussion syndrome: A pilot study in a military patient population. PLoS One 2017; 12:e0183113. [PMID: 28863142 PMCID: PMC5581162 DOI: 10.1371/journal.pone.0183113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a complex, neurophysiological condition that can have detrimental outcomes. Yet, to date, no objective method of diagnosis exists. Physical damage to the blood-brain-barrier and normal waste clearance via the lymphatic system may enable the detection of biomarkers of mTBI in peripheral circulation. Here we evaluate the accuracy of whole transcriptome analysis of blood to predict the clinical diagnosis of post-concussion syndrome (PCS) in a military cohort. Sixty patients with clinically diagnosed chronic concussion and controls (no history of concussion) were recruited (retrospective study design). Male patients (46) were split into a training set comprised of 20 long-term concussed (> 6 months and symptomatic) and 12 controls (no documented history of concussion). Models were validated in a testing set (control = 9, concussed = 5). RNA_Seq libraries were prepared from whole blood samples for sequencing using a SOLiD5500XL sequencer and aligned to hg19 reference genome. Patterns of differential exon expression were used for diagnostic modeling using support vector machine classification, and then validated in a second patient cohort. The accuracy of RNA profiles to predict the clinical diagnosis of post-concussion syndrome patients from controls was 86% (sensitivity 80%; specificity 89%). In addition, RNA profiles reveal duration of concussion. This pilot study shows the potential utility of whole transcriptome analysis to establish the clinical diagnosis of chronic concussion syndrome.
Collapse
Affiliation(s)
- Jimmaline J. Hardy
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Scott. R. Mooney
- Neuroscience & Rehabilitation Center, Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, United States of America
| | - Andrea. N. Pearson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Dawn McGuire
- Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel. J. Correa
- Neuroscience & Rehabilitation Center, Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, United States of America
| | - Roger P. Simon
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|