1
|
Anghele M, Marina V, Moscu CA, Anghele AD, Dragomir L. Psycho-Somatic Evolution of Patients with Multiple Traumatic Injuries. Clin Pract 2024; 14:2419-2432. [PMID: 39585017 PMCID: PMC11587048 DOI: 10.3390/clinpract14060189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVE In this study, we aimed to identify the factors that could impact the Stress-Related Growth Scale (SRGS) questionnaire administered to patients. MATERIALS AND METHODS Participants were asked to complete a written SRGS questionnaire (a translated and approved version in Romania) at varying time intervals relative to the traumatic event. The questionnaire was developed in accordance with legal regulations of the World Health Organization and the European Union for research involving human subjects for medical purposes. It took approximately 15 min to complete. The questionnaire was filled out by the patient or their legal guardian/parent for minors between January 2021 and January 2022. RESULTS The findings revealed the individual dimensions in the context of the traumatic impact, and the subsequent conclusions could be applied to a larger group with similar traumatic experiences. It is recognized that psychosomatic pathologies can hinder posttraumatic rehabilitation, leading to slower and more challenging recovery. CONCLUSIONS Posttraumatic stress disorder often manifests as chronic development of symptoms characterized by reexperiencing traumatic scenes, avoidance behaviors, negative alterations in cognition, and heightened arousal. Posttraumatic stress disorder (PTSD) is a prevalent, persistent, and psychologically debilitating syndrome that can significantly impair an individual's ability to cope with life. The etiology and manifestation of this disorder present numerous challenges due to the complexity of defining and diagnosing these conditions. The distribution of men and women affected by posttraumatic stress disorder varies across different sources and cannot be simplified into one explanation. While sex distribution is an important factor, it is not the sole determinant for understanding the various aspects of these disorders. The diversity of stressors has been shown to correlate with changes in SRGS scores, including subtle emotions like shame and guilt, which contribute to the moral injury resulting from trauma.
Collapse
Affiliation(s)
- Mihaela Anghele
- Clinical-Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 47 Str. Domnească, 800201 Galati, Romania; (M.A.); (L.D.)
| | - Virginia Marina
- Medical Department of Occupational Health, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 47 Str. Domnească, 800201 Galati, Romania
| | - Cosmina Alina Moscu
- Doctoral School, “Dunărea de Jos” University, 800201 Galati, Romania; (C.A.M.); (A.-D.A.)
| | | | - Liliana Dragomir
- Clinical-Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 47 Str. Domnească, 800201 Galati, Romania; (M.A.); (L.D.)
| |
Collapse
|
2
|
Tate DF, Wade BSC, Velez CS, Bigler ED, Davenport ND, Dennis EL, Esopenko C, Hinds SR, Kean J, Kennedy E, Kenney K, Mayer AR, Newsome MR, Philippi CL, Pugh MJ, Scheibel RS, Taylor BA, Troyanskaya M, Werner JK, York GE, Walker W, Wilde EA. Persistent MRI Findings Unique to Blast and Repetitive Mild TBI: Analysis of the CENC/LIMBIC Cohort Injury Characteristics. Mil Med 2024; 189:e1938-e1946. [PMID: 38401164 PMCID: PMC11363162 DOI: 10.1093/milmed/usae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/04/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024] Open
Abstract
INTRODUCTION MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT 84604, USA
| | - Benjamin S C Wade
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carmen S Velez
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
| | - Erin D Bigler
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT 84604, USA
- Departments of Neuroscience, Brigham Young University, Provo, UT 84604, USA
| | - Nicholas D Davenport
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emily L Dennis
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sidney R Hinds
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Jacob Kean
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Eamonn Kennedy
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico Health Science Center, Albuquerque, NM 87106, USA
| | - Mary R Newsome
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO 63121, St. Louis
| | - Mary J Pugh
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Randall S Scheibel
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian A Taylor
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maya Troyanskaya
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Gerald E York
- Imaging Associates of Alaska, Anchorage, AK 99508, USA
| | - William Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elisabeth A Wilde
- Department of Neurology, Traumatic Brain Injury and Concussion Center, University of Utah, Salt Lake City, UT 84132, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, UT 84148, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Waters AB, Bottari SA, Jones LC, Lamb DG, Lewis GF, Williamson JB. Regional associations of white matter integrity and neurological, post-traumatic stress disorder and autonomic symptoms in Veterans with and without history of loss of consciousness in mild TBI. FRONTIERS IN NEUROIMAGING 2024; 2:1265001. [PMID: 38268858 PMCID: PMC10806103 DOI: 10.3389/fnimg.2023.1265001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Background Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) share overlapping symptom presentations and are highly comorbid conditions among Veteran populations. Despite elevated presentations of PTSD after mTBI, mechanisms linking the two are unclear, although both have been associated with alterations in white matter and disruptions in autonomic regulation. The present study aimed to determine if there is regional variability in white matter correlates of symptom severity and autonomic functioning in a mixed sample of Veterans with and without PTSD and/or mTBI (N = 77). Methods Diffusion-weighted images were processed to extract fractional anisotropy (FA) values for major white matter structures. The PTSD Checklist-Military version (PCL-M) and Neurobehavioral Symptom Inventory (NSI) were used to determine symptom domains within PTSD and mTBI. Autonomic function was assessed using continuous blood pressure and respiratory sinus arrythmia during a static, standing angle positional test. Mixed-effect models were used to assess the regional specificity of associations between symptom severity and white matter, with FA, global symptom severity (score), and white matter tract (tract) as predictors. Additional interaction terms of symptom domain (i.e., NSI and PCL-M subscales) and loss of consciousness (LoC) were added to evaluate potential moderating effects. A parallel analysis was conducted to explore concordance with autonomic functioning. Results Results from the two-way Score × Tract interaction suggested that global symptom severity was associated with FA in the cingulum angular bundle (positive) and uncinate fasciculus (negative) only, without variability by symptom domain. We also found regional specificity in the relationship between FA and autonomic function, such that FA was positively associated with autonomic function in all tracts except the cingulum angular bundle. History of LoC moderated the association for both global symptom severity and autonomic function. Conclusions Our findings are consistent with previous literature suggesting that there is significant overlap in the symptom presentation in TBI and PTSD, and white matter variability associated with LoC in mTBI may be associated with increased PTSD-spectra symptoms. Further research on treatment response in patients with both mTBI history and PTSD incorporating imaging and autonomic assessment may be valuable in understanding the role of brain injury in treatment outcomes and inform treatment design.
Collapse
Affiliation(s)
- Abigail B. Waters
- Brain Rehabilitation Research Center, North Florida/South Georgia VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Sarah A. Bottari
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
- Department of Psychiatry, Center for OCD and Anxiety Related Disorders, University of Florida, Gainesville, FL, United States
| | - Laura C. Jones
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
- Department of Psychiatry, Center for OCD and Anxiety Related Disorders, University of Florida, Gainesville, FL, United States
| | - Damon G. Lamb
- Brain Rehabilitation Research Center, North Florida/South Georgia VAMC, Gainesville, FL, United States
- Department of Psychiatry, Center for OCD and Anxiety Related Disorders, University of Florida, Gainesville, FL, United States
| | - Gregory F. Lewis
- Socioneural Physiology Lab, Kinsey Institute, Indiana University, Bloomington, IN, United States
| | - John B. Williamson
- Brain Rehabilitation Research Center, North Florida/South Georgia VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
- Department of Psychiatry, Center for OCD and Anxiety Related Disorders, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Powell JR, Hopfinger JB, Giovanello KS, Walton SR, DeLellis SM, Kane SF, Means GE, Mihalik JP. Mild traumatic brain injury history is associated with lower brain network resilience in soldiers. Brain Commun 2023; 5:fcad201. [PMID: 37545546 PMCID: PMC10400114 DOI: 10.1093/braincomms/fcad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Special Operations Forces combat soldiers sustain frequent blast and blunt neurotrauma, most often classified as mild traumatic brain injuries. Exposure to repetitive mild traumatic brain injuries is associated with persistent behavioural, cognitive, emotional and neurological symptoms later in life. Identifying neurophysiological changes associated with mild traumatic brain injury exposure, in the absence of present-day symptoms, is necessary for detecting future neurological risk. Advancements in graph theory and functional MRI have offered novel ways to analyse complex whole-brain network connectivity. Our purpose was to determine how mild traumatic brain injury history, lifetime incidence and recency affected whole-brain graph theoretical outcome measures. Healthy male Special Operations Forces combat soldiers (age = 33.2 ± 4.3 years) underwent multimodal neuroimaging at a biomedical research imaging centre using 3T Siemens Prisma or Biograph MRI scanners in this cross-sectional study. Anatomical and functional scans were preprocessed. The blood-oxygen-level-dependent signal was extracted from each functional MRI time series using the Big Brain 300 atlas. Correlations between atlas regions were calculated and Fisher z-transformed to generate subject-level correlation matrices. The Brain Connectivity Toolbox was used to obtain functional network measures for global efficiency (the average inverse shortest path length), local efficiency (the average global efficiency of each node and its neighbours), and assortativity coefficient (the correlation coefficient between the degrees of all nodes on two opposite ends of a link). General linear models were fit to compare mild traumatic brain injury lifetime incidence and recency. Nonparametric ANOVAs were used for tests on non-normally distributed data. Soldiers with a history of mild traumatic brain injury had significantly lower assortativity than those who did not self-report mild traumatic brain injury (t148 = 2.44, P = 0.016). The assortativity coefficient was significantly predicted by continuous mild traumatic brain injury lifetime incidence [F1,144 = 6.51, P = 0.012]. No differences were observed between recency groups, and no global or local efficiency differences were observed between mild traumatic brain injury history and lifetime incidence groups. Brain networks with greater assortativity have more resilient, interconnected hubs, while those with lower assortativity indicate widely distributed, vulnerable hubs. Greater lifetime mild traumatic brain injury incidence predicted lower assortativity in our study sample. Less resilient brain networks may represent a lack of physiological recovery in mild traumatic brain injury patients, who otherwise demonstrate clinical recovery, more vulnerability to future brain injury and increased risk for accelerated age-related neurodegenerative changes. Future longitudinal studies should investigate whether decreased brain network resilience may be a predictor for long-term neurological dysfunction.
Collapse
Affiliation(s)
- Jacob R Powell
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph B Hopfinger
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel R Walton
- Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephen M DeLellis
- Fort Liberty Research Institute, The Geneva Foundation, Tacoma, WA 98402, USA
| | - Shawn F Kane
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gary E Means
- United States Army Special Operations Command, Fort Liberty, NC 28303, USA
| | - Jason P Mihalik
- Correspondence to: Jason P. Mihalik Matthew Gfeller Center, Department of Exercise and Sport Science The University of North Carolina at Chapel Hill, 2201 Stallings-Evans Sports Medicine Center Campus Box 8700, Chapel Hill, NC 27599, USA E-mail:
| |
Collapse
|
5
|
de Souza N, Esopenko C, Jia Y, Parrott JS, Merkley T, Dennis E, Hillary F, Velez C, Cooper D, Kennedy J, Lewis J, York G, Menefee D, McCauley S, Bowles AO, Wilde E, Tate DF. Discriminating Mild Traumatic Brain Injury and Posttraumatic Stress Disorder Using Latent Neuroimaging and Neuropsychological Profiles in Active-Duty Military Service Members. J Head Trauma Rehabil 2023; 38:E254-E266. [PMID: 36602276 PMCID: PMC10264548 DOI: 10.1097/htr.0000000000000848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) commonly occur among military Service Members and Veterans and have heterogenous, but also overlapping symptom presentations, which often complicate the diagnoses of underlying impairments and development of effective treatment plans. Thus, we sought to examine whether the combination of whole brain gray matter (GM) and white matter (WM) structural measures with neuropsychological performance can aid in the classification of military personnel with mTBI and PTSD. METHODS Active-Duty US Service Members ( n = 156; 87.8% male) with a history of mTBI, PTSD, combined mTBI+PTSD, or orthopedic injury completed a neuropsychological battery and T1- and diffusion-weighted structural neuroimaging. Cortical, subcortical, ventricular, and WM volumes and whole brain fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were calculated. Latent profile analyses were performed to determine how the GM and WM indicators, together with neuropsychological indicators, classified individuals. RESULTS For both GM and WM, respectively, a 4-profile model was the best fit. The GM model identified greater ventricular volumes in Service Members with cognitive symptoms, including those with a diagnosis of mTBI, either alone or with PTSD. The WM model identified reduced FA and elevated RD in those with psychological symptoms, including those with PTSD or mTBI and comorbid PTSD. However, contrary to expectation, a global neural signature unique to those with comorbid mTBI and PTSD was not identified. CONCLUSIONS The findings demonstrate that neuropsychological performance alone is more robust in differentiating Active-Duty Service Members with mTBI and PTSD, whereas global neuroimaging measures do not reliably differentiate between these groups.
Collapse
Affiliation(s)
- N.L. de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - C. Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Y. Jia
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - J. S. Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - T.L. Merkley
- Department of Psychology & Neuroscience Center, Brigham Young University, Provo, UT, USA
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E.L. Dennis
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - F.G. Hillary
- Department of Psychology, Pennsylvania State University, University Park, PA 16802, United States
- Social Life and Engineering Sciences Imaging Center, University Park, PA 16802, United States
| | - C. Velez
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - D.B. Cooper
- San Antonio VA Polytrauma Rehabilitation Center, San Antonio, TX
- Departments of Rehabilitation Medicine and Psychiatry, UT Health San Antonio, TX
| | - J. Kennedy
- General Dynamics Information Technology (GDIT) contractor for the Traumatic Brain Injury Center of Excellence (TBICoE), Neurology Service, Department of Medicine, Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA
| | - J. Lewis
- Neurology Clinic, Wright Patterson Air Force Base, Wright Patterson AFB, Ohio
| | - G. York
- Alaska Radiology Associates, Anchorage, AK
| | - D.S. Menefee
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
- The Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| | - S.R. McCauley
- Department of Neurology, Baylor College of Medicine, Houston, TX USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - A. O. Bowles
- Brain Injury Rehabilitation Service, Department of Rehabilitation Medicine, Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, US
| | - E.A. Wilde
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX USA
| | - D. F. Tate
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| |
Collapse
|
6
|
Dennis EL, Newsome MR, Lindsey HM, Adamson M, Austin TA, Disner SG, Eapen BC, Esopenko C, Franz CE, Geuze E, Haswell C, Hinds SR, Hodges CB, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Morey RA, Ollinger J, Rowland JA, Scheibel RS, Shenton ME, Sullivan DR, Talbert LD, Thomopoulos SI, Troyanskaya M, Walker WC, Wang X, Ware AL, Werner JK, Williams W, Thompson PM, Tate DF, Wilde EA. Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study. Hum Brain Mapp 2023; 44:1888-1900. [PMID: 36583562 PMCID: PMC9980891 DOI: 10.1002/hbm.26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Mary R. Newsome
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Hannah M. Lindsey
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Maheen Adamson
- Rehabilitation DepartmentVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- NeurosurgeryStanford School of MedicineStanfordCaliforniaUSA
- Operational Military Exposure Network (WOMEN), VA Palo Alto Healthcare SystemCaliforniaPalo Alto94304USA
| | - Tara A. Austin
- The VA Center of Excellence for Research on Returning War VeteransWacoTexasUSA
| | - Seth G. Disner
- Minneapolis VA Health Care SystemMinneapolisMinnesottaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of Minnesota Medical SchoolMinneapolisMinnesottaUSA
| | - Blessen C. Eapen
- Department of Physical Medicine and RehabilitationVA Greater Los Angeles Health Care SystemLos AngelesCaliforniaUSA
- Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Carrie Esopenko
- Department of Rehabilitation and Human PerformanceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carol E. Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Elbert Geuze
- University Medical Center UtrechtUtrechtThe Netherlands
- Brain Research and Innovation CentreMinistry of DefenceUtrechtThe Netherlands
| | - Courtney Haswell
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Sidney R. Hinds
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
| | - Cooper B. Hodges
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimbra Kenney
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyLudwig‐Maximilians‐UniversitätMunichGermany
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVA San Diego Healthcare SystemLa JollaCaliforniaUSA
| | - Harvey S. Levin
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Rajendra A. Morey
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke‐UNC Brain Imaging and Analysis CenterDuke UniversityDurhamNorth CarolinaUSA
- VA Mid‐Atlantic Mental Illness Research Education and Clinical Center (MA‐MIRECC)DurhamNorth CarolinaUSA
| | - John Ollinger
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Jared A. Rowland
- VA Mid‐Atlantic Mental Illness Research Education and Clinical Center (MA‐MIRECC)DurhamNorth CarolinaUSA
- W.G. (Bill) Hefner VA Medical CenterSalisburyNorth CarolinaUSA
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Randall S. Scheibel
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Martha E. Shenton
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Danielle R. Sullivan
- National Center for PTSDVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | - Leah D. Talbert
- Department of PsychologyBrigham Young UniversityProvoUtahUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Maya Troyanskaya
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - William C. Walker
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
- Hunter Holmes McGuire Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Xin Wang
- Department of PsychiatryUniversity of ToledoToledoOhioUSA
| | - Ashley L. Ware
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| | - John Kent Werner
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
| | - Wright Williams
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUSCLos AngelesCaliforniaUSA
| | - David F. Tate
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Elisabeth A. Wilde
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
7
|
Latent Neuropsychological Profiles to Discriminate Mild Traumatic Brain Injury and Posttraumatic Stress Disorder in Active-Duty Service Members. J Head Trauma Rehabil 2022; 37:E438-E448. [PMID: 35452025 PMCID: PMC9585096 DOI: 10.1097/htr.0000000000000779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether cognitive and psychological symptom profiles differentiate clinical diagnostic classifications (eg, history of mild traumatic brain injury [mTBI] and posttraumatic stress disorder [PTSD]) in military personnel. METHODS US Active-Duty Service Members (N = 209, 89% male) with a history of mTBI (n = 56), current PTSD (n = 23), combined mTBI + PTSD (n = 70), or orthopedic injury controls (n = 60) completed a neuropsychological battery assessing cognitive and psychological functioning. Latent profile analysis was performed to determine how neuropsychological outcomes of individuals clustered together. Diagnostic classifications (ie, mTBI, PTSD, mTBI + PTSD, and orthopedic injury controls) within each symptom profile were examined. RESULTS A 5-profile model had the best fit. The profiles differentiated subgroups with high (34.0%) or normal (21.5%) cognitive and psychological functioning, cognitive symptoms (19.1%), psychological symptoms (15.3%), and combined cognitive and psychological symptoms (10.0%). The symptom profiles differentiated participants as would generally be expected. Participants with PTSD were mainly represented in the psychological symptom subgroup, while orthopedic injury controls were mainly represented in the high-functioning subgroup. Further, approximately 79% of participants with comorbid mTBI and PTSD were represented in a symptomatic group (∼24% = cognitive symptoms, ∼29% = psychological symptoms, and 26% = combined cognitive/psychological symptoms). Our results also showed that approximately 70% of military personnel with a history of mTBI were represented in the high- and normal-functioning groups. CONCLUSIONS These results demonstrate both overlapping and heterogeneous symptom and performance profiles in military personnel with a history of mTBI, PTSD, and/or mTBI + PTSD. The overlapping profiles may underscore why these diagnoses are often difficult to diagnose and treat, but suggest that advanced statistical models may aid in identifying profiles representing symptom and cognitive performance impairments within patient groups and enable identification of more effective treatment targets.
Collapse
|
8
|
Mayer AR, Quinn DK. Neuroimaging Biomarkers of New-Onset Psychiatric Disorders Following Traumatic Brain Injury. Biol Psychiatry 2022; 91:459-469. [PMID: 34334188 PMCID: PMC8665933 DOI: 10.1016/j.biopsych.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has traditionally been associated with cognitive and behavioral changes during both the acute and chronic phases of injury. Because of its noninvasive nature, neuroimaging has the potential to provide unique information on underlying macroscopic and microscopic biological mechanisms that may serve as causative agents for these neuropsychiatric sequelae. This broad scoping review identifies at least 4 common macroscopic pathways that exist between TBI and new-onset psychiatric disorders, as well as several examples of how neuroimaging is currently being utilized in clinical research. The review then critically examines the strengths and limitations of neuroimaging for elucidating TBI-related microscopic pathology, such as microstructural changes, neuroinflammation, proteinopathies, blood-brain barrier damage, and disruptions in cellular signaling. A summary is then provided for how neuroimaging is currently being used to investigate TBI-related pathology in new-onset neurocognitive disorders, depression, and posttraumatic stress disorder. Identified gaps in the literature include a lack of prospective studies to definitively associate imaging findings with the development of new-onset psychiatric disorders, as well as antemortem imaging studies subsequently confirmed with postmortem correlates in the same study cohort. Although the spatial resolution and specificity of imaging biomarkers has greatly improved over the last 2 decades, we conclude that neuroimaging biomarkers do not yet exist for the definitive in vivo diagnosis of cellular pathology. This represents a necessary next step for further elucidating causal relationships between TBI and new-onset psychiatric disorders.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychology, University of New Mexico, Albuquerque, NM 87131,Corresponding author: Andrew Mayer, Ph.D., The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106 USA; Tel: 505-272-0769; Fax: 505-272-8002;
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
9
|
Dennis EL, Disner SG, Fani N, Salminen LE, Logue M, Clarke EK, Haswell CC, Averill CL, Baugh LA, Bomyea J, Bruce SE, Cha J, Choi K, Davenport ND, Densmore M, du Plessis S, Forster GL, Frijling JL, Gonenc A, Gruber S, Grupe DW, Guenette JP, Hayes J, Hofmann D, Ipser J, Jovanovic T, Kelly S, Kennis M, Kinzel P, Koch SBJ, Koerte I, Koopowitz S, Korgaonkar M, Krystal J, Lebois LAM, Li G, Magnotta VA, Manthey A, May GJ, Menefee DS, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Doherty D, Peverill M, Ressler KJ, Roos A, Sheridan MA, Sierk A, Simmons A, Simons RM, Simons JS, Stevens J, Suarez-Jimenez B, Sullivan DR, Théberge J, Tran JK, van den Heuvel L, van der Werff SJA, van Rooij SJH, van Zuiden M, Velez C, Verfaellie M, Vermeiren RRJM, Wade BSC, Wager T, Walter H, Winternitz S, Wolff J, York G, Zhu Y, Zhu X, Abdallah CG, Bryant R, Daniels JK, Davidson RJ, Fercho KA, Franz C, Geuze E, Gordon EM, Kaufman ML, Kremen WS, Lagopoulos J, Lanius RA, Lyons MJ, McCauley SR, McGlinchey R, McLaughlin KA, Milberg W, Neria Y, Olff M, Seedat S, Shenton M, Sponheim SR, Stein DJ, Stein MB, Straube T, Tate DF, van der Wee NJA, et alDennis EL, Disner SG, Fani N, Salminen LE, Logue M, Clarke EK, Haswell CC, Averill CL, Baugh LA, Bomyea J, Bruce SE, Cha J, Choi K, Davenport ND, Densmore M, du Plessis S, Forster GL, Frijling JL, Gonenc A, Gruber S, Grupe DW, Guenette JP, Hayes J, Hofmann D, Ipser J, Jovanovic T, Kelly S, Kennis M, Kinzel P, Koch SBJ, Koerte I, Koopowitz S, Korgaonkar M, Krystal J, Lebois LAM, Li G, Magnotta VA, Manthey A, May GJ, Menefee DS, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Doherty D, Peverill M, Ressler KJ, Roos A, Sheridan MA, Sierk A, Simmons A, Simons RM, Simons JS, Stevens J, Suarez-Jimenez B, Sullivan DR, Théberge J, Tran JK, van den Heuvel L, van der Werff SJA, van Rooij SJH, van Zuiden M, Velez C, Verfaellie M, Vermeiren RRJM, Wade BSC, Wager T, Walter H, Winternitz S, Wolff J, York G, Zhu Y, Zhu X, Abdallah CG, Bryant R, Daniels JK, Davidson RJ, Fercho KA, Franz C, Geuze E, Gordon EM, Kaufman ML, Kremen WS, Lagopoulos J, Lanius RA, Lyons MJ, McCauley SR, McGlinchey R, McLaughlin KA, Milberg W, Neria Y, Olff M, Seedat S, Shenton M, Sponheim SR, Stein DJ, Stein MB, Straube T, Tate DF, van der Wee NJA, Veltman DJ, Wang L, Wilde EA, Thompson PM, Kochunov P, Jahanshad N, Morey RA. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Mol Psychiatry 2021; 26:4315-4330. [PMID: 31857689 PMCID: PMC7302988 DOI: 10.1038/s41380-019-0631-x] [Show More Authors] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023]
Abstract
A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.
Collapse
Affiliation(s)
- Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
- Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, CA, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Mark Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Emily K Clarke
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| | - Christopher L Averill
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Jessica Bomyea
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Jiook Cha
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Kyle Choi
- Health Services Research Center, University of California, San Diego, CA, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atilla Gonenc
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Staci Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jasmeet Hayes
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Jonathan Ipser
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sinead Kelly
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mitzy Kennis
- Brain Center Rudolf Magnus, Department of Psychiatry, UMCU, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sheri Koopowitz
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - John Krystal
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Gen Li
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Geoff J May
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, Bryan, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Deleene S Menefee
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- South Central MIRECC, Houston, TX, USA
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Location VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Richard W J Neufeld
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychology, University of British Columbia, Okanagan, BC, Canada
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Annerine Roos
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Margaret A Sheridan
- Department of Psychology and Brain Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anika Sierk
- University Medical Centre Charite, Berlin, Germany
| | - Alan Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Suarez-Jimenez
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | | | | | - Steven J A van der Werff
- Department of Psychiatry, LUMC, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen Velez
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Mieke Verfaellie
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
| | | | - Benjamin S C Wade
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Jonathan Wolff
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Gerald York
- Joint Trauma System, 3698 Chambers Pass, Joint Base San Antonio, Fort Sam Houston, TX, USA
- Alaska Radiology Associates, Anchorage, AK, USA
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Chadi G Abdallah
- Clinical Neuroscience Division, National Center for PTSD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Carol Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, UMCU, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - William S Kremen
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Jim Lagopoulos
- University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ruth A Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Stephen R McCauley
- Departments of Neurology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Regina McGlinchey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
| | | | - William Milberg
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Soraya Seedat
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Martha Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Dan J Stein
- SA Medical Research Council Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Nic J A van der Wee
- Department of Psychiatry, LUMC, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, Location VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- VISN 6 MIRECC, Durham VA, Durham, NC, USA
| |
Collapse
|
10
|
Philippi CL, Velez CS, Wade BSC, Drennon AM, Cooper DB, Kennedy JE, Bowles AO, Lewis JD, Reid MW, York GE, Newsome MR, Wilde EA, Tate DF. Distinct patterns of resting-state connectivity in U.S. service members with mild traumatic brain injury versus posttraumatic stress disorder. Brain Imaging Behav 2021; 15:2616-2626. [PMID: 33759113 DOI: 10.1007/s11682-021-00464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Mild traumatic brain injury (mTBI) is highly prevalent in military populations, with many service members suffering from long-term symptoms. Posttraumatic stress disorder (PTSD) often co-occurs with mTBI and predicts worse clinical outcomes. Functional neuroimaging research suggests there are both overlapping and distinct patterns of resting-state functional connectivity (rsFC) in mTBI versus PTSD. However, few studies have directly compared rsFC of cortical networks in military service members with these two conditions. In the present study, U.S. service members (n = 137; ages 19-59; 120 male) underwent resting-state fMRI scans. Participants were divided into three study groups: mTBI only, PTSD only, and orthopedically injured (OI) controls. Analyses investigated group differences in rsFC for cortical networks: default mode (DMN), frontoparietal (FPN), salience, somatosensory, motor, auditory, and visual. Analyses were family-wise error (FWE) cluster-corrected and Bonferroni-corrected for number of network seeds regions at the whole brain level (pFWE < 0.002). Both mTBI and PTSD groups had reduced rsFC for DMN and FPN regions compared with OI controls. These group differences were largely driven by diminished connectivity in the PTSD group. rsFC with the middle frontal gyrus of the FPN was increased in mTBI, but decreased in PTSD. Overall, these results suggest that PTSD symptoms may have a more consistent signal than mTBI. Our novel findings of opposite patterns of connectivity with lateral prefrontal cortex highlight a potential biomarker that could be used to differentiate between these conditions.
Collapse
Affiliation(s)
- Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA.
| | - Carmen S Velez
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA.,University of Utah, Salt Lake City, UT, USA
| | - Benjamin S C Wade
- University of Utah, Salt Lake City, UT, USA.,Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, USA
| | - Ann Marie Drennon
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA
| | - Douglas B Cooper
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA.,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jan E Kennedy
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA
| | - Amy O Bowles
- Brooke Army Medical Center, San Antonio, TX, USA.,Uniformed Services University of Health Science, Bethesda, MD, USA
| | - Jeffrey D Lewis
- Brooke Army Medical Center, San Antonio, TX, USA.,Uniformed Services University of Health Science, Bethesda, MD, USA
| | - Matthew W Reid
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA
| | | | - Mary R Newsome
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
11
|
Lange RT, Lippa SM, Brickell TA, Yeh PH, Ollinger J, Wright M, Driscoll A, Sullivan J, Braatz S, Gartner R, Barnhart E, French LM. Post-Traumatic Stress Disorder Is Associated with Neuropsychological Outcome but Not White Matter Integrity after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:63-73. [PMID: 33395374 DOI: 10.1089/neu.2019.6852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine neuropsychological functioning and white matter integrity, in service members and veterans (SMVs) after mild traumatic brain injury (MTBI), with versus without post-traumatic stress disorder (PTSD). Participants were 116 U.S. military SMVs, prospectively enrolled from the Walter Reed National Military Medical Center (Bethesda, MD), who had sustained an MTBI (n = 86) or an injury without TBI (i.e., Injured Control [IC]; n = 30). Participants completed a battery of neuropsychological measures (neurobehavioral and -cognitive), as well as diffusion tensor imaging (DTI) of the brain, on average 6 years post-injury. Based on diagnostic criteria for PTSD, participants in the MTBI group were classified into two subgroups: MTBI/PTSD-Present (n = 21) and MTBI/PTSD-Absent (n = 65). Participants in the IC group were included only if they were classified as PTSD-Absent. The MTBI/PTSD-Present group had a significantly higher number of self-reported symptoms on all neurobehavioral measures (e.g., depression), and lower scores on more than half of the neurocognitive domains (e.g., processing speed), compared to the MTBI/PTSD-Absent and IC/PTSD-Absent groups. There were no significant group differences for the vast majority of DTI measures, with the exception of a handful of regions (i.e., superior longitudinal fascicle and superior thalamic radiation). These results suggest that there is 1) a strong relationship between PTSD and poor neuropsychological outcome after MTBI and 2) a lack of a relationship between PTSD and white matter integrity, as measured by DTI, after MTBI. Concurrent PTSD and MTBI should be considered a risk factor for poor neuropsychological outcome that requires early intervention.
Collapse
Affiliation(s)
- Rael T Lange
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Tracey A Brickell
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Megan Wright
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Angela Driscoll
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jamie Sullivan
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Samantha Braatz
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Rachel Gartner
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Elizabeth Barnhart
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Louis M French
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Ju Y, Ou W, Su J, Averill CL, Liu J, Wang M, Wang Z, Zhang Y, Liu B, Li L, Abdallah CG. White matter microstructural alterations in posttraumatic stress disorder: An ROI and whole-brain based meta-analysis. J Affect Disord 2020; 266:655-670. [PMID: 32056942 DOI: 10.1016/j.jad.2020.01.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/02/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a debilitating mental illness that is thought to be associated with brain white matter (WM) alterations. Individual diffusion tensor imaging (DTI) studies to date have reported inconsistent alterations in FA across different brain regions in patients with PTSD. Here, we aimed to investigate FA in PTSD using both region-of-interest (ROI)-based and whole-brain-based meta-analytic approaches. OBJECTIVES Individual ROI-based meta-analysis was carried out in each eligible white matter tract and seed-based D mapping (SDM) meta-analysis was conducted in the whole brain to identify the convergence of FA alterations in PTSD relative to controls. RESULTS Seventeen studies were included in ROI-based meta-analysis (≥ 3 studies were included for each ROI, NPTSD ≥ 80 and Ncontrol ≥ 103 per ROI). Fourteen studies with a total of 322 PTSD and 335 controls were included in whole-brain based meta-analysis. Both ROI and whole-brain meta-analyses showed that patients with PTSD have significantly higher FA in the inferior fronto-occipital fasciculus and lower FA in the genu of corpus callosum. Whole-brain meta-analyses also identified higher FA in the left inferior temporal gyrus and lower FA in the anterior cingulum and left corticospinal tract. LIMITATIONS A small number of studies were included in some ROI tracts. Thus the results should be interpreted with caution. CONCLUSIONS Our results suggest that PTSD patients have increased FA in areas related to visual processing, but decreased FA in anterior brain regions critical to cognition association and fear regulation.
Collapse
Affiliation(s)
- Yumeng Ju
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wenwen Ou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jingzhi Su
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Christopher L Averill
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
| | - Jin Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Mi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Lingjiang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
13
|
Jak AJ, Jurick S, Hoffman S, Evangelista ND, Deford N, Keller A, Merritt VC, Sanderson-Cimino M, Sorg S, Delano-Wood L, Bangen KJ. PTSD, but not history of mTBI, is associated with altered myelin in combat-exposed Iraq and Afghanistan Veterans. Clin Neuropsychol 2020; 34:1070-1087. [PMID: 32176590 DOI: 10.1080/13854046.2020.1730975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the biological, cognitive, and psychological presentations of combat-exposed Veterans with a history of mild traumatic brain injury (mTBI) and/or posttraumatic stress disorder (PTSD) using a novel white matter imaging technique and comprehensive neuropsychological assessment. METHOD 74 Iraq and Afghanistan Veterans (mean age 33.89, 90.5% male) with history of mTBI (average 7.25 years since injury), PTSD, both, or neither underwent magnetic resonance imaging (MRI) exams including acquisition of a novel imaging technique, multicomponent-driven equilibrium single-pulse observation of T1/T2 (mcDESPOT) to quantify myelin water fraction (MWF), a surrogate measure of myelin content. Participants also underwent comprehensive neuropsychological assessment and three cognitive composite scores (memory, working memory/processing speed, and executive functioning) were created. RESULTS There were no significant group differences on the neuropsychological composite scores. ANCOVAs revealed a main effect of PTSD across all a priori regions of interest (ROI) in which PTSD was associated with higher MWF. There was no main effect of mTBI history or TBI by PTSD interaction on any ROI. Significant positive associations were observed between myelin and PTSD symptoms, but no significant associations were found between myelin and neurobehavioral symptoms. No significant associations were found between myelin in the a priori ROIs and the cognitive composite scores. CONCLUSION This study did not find neuropsychological or MWF differences in combat Veterans with a remote history of mTBI but did find myelin alterations related to PTSD. Psychological trauma should be a primary target for intervention in Veterans with comorbid PTSD and mTBI reporting subjective complaints, given its salience.
Collapse
Affiliation(s)
- Amy J Jak
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,VASDHS Center of Excellence for Stress and Mental Health (CESAMH), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Sarah Jurick
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,VASDHS Center of Excellence for Stress and Mental Health (CESAMH), San Diego, CA, USA
| | - Samantha Hoffman
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Nicole D Evangelista
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | | | - Amber Keller
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
| | - Victoria C Merritt
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
| | - Mark Sanderson-Cimino
- Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Scott Sorg
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,VASDHS Center of Excellence for Stress and Mental Health (CESAMH), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Katherine J Bangen
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| |
Collapse
|
14
|
Klimova A, Korgaonkar MS, Whitford T, Bryant RA. Diffusion Tensor Imaging Analysis of Mild Traumatic Brain Injury and Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:81-90. [PMID: 30616750 DOI: 10.1016/j.bpsc.2018.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Debate exists over the extent to which dysfunctions arising from mild traumatic brain injury (mTBI) are distinct from posttraumatic stress disorder (PTSD). METHODS This study investigated 1) the white matter integrity of participants with either mTBI or PTSD, and 2) the relationship between white matter integrity and postconcussive syndrome. The sample comprised 110 civilians (mTBI group = 40; PTSD group = 32; age- and sex-matched trauma-exposed control subjects = 38) recruited from community advertising. Indicators of white matter abnormalities were fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. PTSD symptoms were indexed by the Clinician-Administered PTSD Scale, and postconcussive symptoms were assessed using the Somatic and Psychological Health Report measure. RESULTS Fractional anisotropy was reduced in mTBI participants in the corpus callosum, tracts of the brainstem, projection fibers, association fibers, and limbic fibers compared with both PTSD and trauma-exposed control subjects. This decrease in fractional anisotropy was observed in the context of concurrent changes in radial diffusivity, axial diffusivity, and mean diffusivity. Postconcussive symptoms were largely explained by PTSD severity rather than by changes in brain white matter. mTBI appears to be characterized by distinct reductions in white matter integrity, and this cannot be attributed to PTSD. CONCLUSIONS PTSD symptoms appear to be more strongly associated with postconcussive syndrome than with white matter compromise. These findings extend epidemiological evidence of the relative associations of PTSD and mTBI with postconcussive syndrome.
Collapse
Affiliation(s)
- Aleksandra Klimova
- School of Psychology, University of New South Wales, Sydney, Australia; Brain Dynamics Centre, Westmead Institute for Medical Research, Westmead, Australia
| | | | - Thomas Whitford
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, Australia; Brain Dynamics Centre, Westmead Institute for Medical Research, Westmead, Australia.
| |
Collapse
|
15
|
Miao XR, Chen QB, Wei K, Tao KM, Lu ZJ. Posttraumatic stress disorder: from diagnosis to prevention. Mil Med Res 2018; 5:32. [PMID: 30261912 PMCID: PMC6161419 DOI: 10.1186/s40779-018-0179-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic impairment disorder that occurs after exposure to traumatic events. This disorder can result in a disturbance to individual and family functioning, causing significant medical, financial, and social problems. This study is a selective review of literature aiming to provide a general outlook of the current understanding of PTSD. There are several diagnostic guidelines for PTSD, with the most recent editions of the DSM-5 and ICD-11 being best accepted. Generally, PTSD is diagnosed according to several clusters of symptoms occurring after exposure to extreme stressors. Its pathogenesis is multifactorial, including the activation of the hypothalamic-pituitary-adrenal (HPA) axis, immune response, or even genetic discrepancy. The morphological alternation of subcortical brain structures may also correlate with PTSD symptoms. Prevention and treatment methods for PTSD vary from psychological interventions to pharmacological medications. Overall, the findings of pertinent studies are difficult to generalize because of heterogeneous patient groups, different traumatic events, diagnostic criteria, and study designs. Future investigations are needed to determine which guideline or inspection method is the best for early diagnosis and which strategies might prevent the development of PTSD.
Collapse
Affiliation(s)
- Xue-Rong Miao
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Qian-Bo Chen
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Kai Wei
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Kun-Ming Tao
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Zhi-Jie Lu
- Department of Anesthesiology and Intensive Care, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|