1
|
Sun Z, Huang J, Ma X, Liang J, Sun C, Hu L, He H, Yu G. A Low-Field MRI Dataset For Spatiotemporal Analysis of Developing Brain. Sci Data 2025; 12:109. [PMID: 39833218 PMCID: PMC11747249 DOI: 10.1038/s41597-025-04450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Recently, imaging investigation of brain development has increasingly captured the attention of researchers and clinicians in an attempt to understand the link between the brain and behavioral changes. Although high-field MR imaging of infants is feasible, the necessary customizations have limited its accessibility, affordability, and reproducibility. Low-field MR, as an emerging solution for scrutinizing developing brain, has exhibited its unique advantages in safety, portability, and cost-effectiveness. The presented low-field infant structural MR data aims to manifest the feasibility of using low-field MR image to exam brain structural changes during early life in infants. The dataset comprises 100 T2 weighed MR images from infants with in-plane resolution of ~0.85 mm and ~6 mm slice thickness. To demonstrate the potential utility, we conducted atlas-based whole brain segmentations and volumetric quantifications to analyze brain development features in first 10 week in postnatal life. This dataset addresses the scarcity of a large, extended-span infant brain dataset that restricts the further tracking of infant brain development trajectories and the development of routine low-field MR imaging pipelines.
Collapse
Affiliation(s)
- Zhexian Sun
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China
| | - Jian Huang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China
| | - Xiaohui Ma
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiawei Liang
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chensheng Sun
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China
| | - Lanyin Hu
- School of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Hongjian He
- School of Physics, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 310058, China.
| | - Gang Yu
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Gies LM, Lynch JD, Bonanno K, Zhang N, Yeates KO, Taylor HG, Wade SL. Differences between parent- and teacher-reported executive functioning behaviors after traumatic injuries. Child Neuropsychol 2024; 30:1203-1214. [PMID: 38348682 PMCID: PMC11323218 DOI: 10.1080/09297049.2024.2314957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/11/2024] [Indexed: 08/16/2024]
Abstract
Deficits in executive functioning (EF) behaviors are very common following pediatric traumatic brain injury (TBI) and can linger well after acute injury recovery. Raters from multiple settings provide information that may not be appreciated otherwise. We examined differences between parent and teacher ratings of EF using data examining longitudinal outcomes following pediatric TBI in comparison to orthopedic injury (OI). We used linear mixed models to determine the association of rater type and injury type with scores on the Behavior Rating Inventory of Executive Functioning (BRIEF). After controlling for demographic variables, rater type and injury type accounted for a small but significant proportion of the variance in EF. Teachers' ratings on the BRIEF were significantly higher than parent ratings for global EF and metacognition, but not for behavior regulation, regardless of injury type, indicating greater EF concerns. All BRIEF ratings, whether from teachers or parents, were higher for children with TBI than for those with OI. Results suggest that parents and teachers provide unique information regarding EF following traumatic injuries and that obtaining ratings from persons who observe children at school as well as at home can result in a better understanding of situation-specific variability in outcomes.
Collapse
Affiliation(s)
- Lisa M. Gies
- Division of Physical Medicine and Rehabilitation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Psychology, University of Cincinnati, Cincinnati, OH
| | - James D. Lynch
- Department of Psychology, University of Cincinnati, Cincinnati, OH
- Center for ADHD, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - KellyAnn Bonanno
- Division of Physical Medicine and Rehabilitation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Psychology, University of Cincinnati, Cincinnati, OH
| | - Nanhua Zhang
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children’s Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Alberta, CA
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Shari L. Wade
- Division of Physical Medicine and Rehabilitation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Psychology, University of Cincinnati, Cincinnati, OH
- College of Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
3
|
Smith AM, Challagundla L, McGee IG, Warfield ZJ, Santos CDSE, Garrett MR, Grayson BE. Temporal shifts to the gut microbiome associated with cognitive dysfunction following high-fat diet consumption in a juvenile model of traumatic brain injury. Physiol Genomics 2024; 56:301-316. [PMID: 38145288 PMCID: PMC11283908 DOI: 10.1152/physiolgenomics.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023] Open
Abstract
The gut-brain axis interconnects the central nervous system (CNS) and the commensal bacteria of the gastrointestinal tract. The composition of the diet consumed by the host influences the richness of the microbial populations. Traumatic brain injury (TBI) produces profound neurocognitive damage, but it is unknown how diet influences the microbiome following TBI. The present work investigates the impact of a chow diet versus a 60% fat diet (HFD) on fecal microbiome populations in juvenile rats following TBI. Twenty-day-old male rats were placed on one of two diets for 9 days before sustaining either a Sham or TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Fecal samples were collected at both 1- and 9-days postinjury. Animals were cognitively assessed in the novel object recognition tests at 8 days postinjury. Fecal microbiota DNA was isolated and sequenced. Twenty days of HFD feeding did not alter body weight, but fat mass was elevated in HFD compared with Chow rats. TBI animals had a greater percentage of entries to the novel object quadrant than Sham counterparts, P < 0.05. The Firmicutes/Bacteroidetes ratio was significantly higher in TBI than in the Sham, P < 0.05. Microbiota of the Firmicutes lineage exhibited perturbations by both injury and diet that were sustained at both time points. Linear regression analyses were performed to associate bacteria with metabolic and neurocognitive endpoints. For example, counts of Lachnospiraceae were negatively associated with percent entries into the novel object quadrant. Taken together, these data suggest that both diet and injury produce robust shifts in microbiota, which may have long-term implications for chronic health.NEW & NOTEWORTHY Traumatic brain injury (TBI) produces memory and learning difficulties. Diet profoundly influences the populations of gut microbiota. Following traumatic brain injury in a pediatric model consuming either a healthy or high-fat diet (HFD), significant shifts in bacterial populations occur, of which, some are associated with diet, whereas others are associated with neurocognitive performance. More work is needed to determine whether these microbes can therapeutically improve learning following trauma to the brain.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ian G McGee
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zyra J Warfield
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | | | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
4
|
Smith-Paine J, Moscato EL, Narad ME, Sensenbaugh J, Ling B, Taylor HG, Stancin T, Yeates KO, Wade SL. More to the story than executive function: Effortful control soon after injury predicts long-term functional and social outcomes following pediatric traumatic brain injury in young children. J Int Neuropsychol Soc 2023; 29:325-335. [PMID: 36102333 PMCID: PMC10011017 DOI: 10.1017/s1355617722000315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine the impact of early traumatic brain injury (TBI) on effortful control (EC) over time and the relationship of EC and executive functioning (EF) to long-term functional and social outcomes. METHOD Parents of children (N = 206, ages 3-7) with moderate-to-severe TBI or orthopedic injuries (OIs) rated EC using the Child Behavior Questionnaire at 1 (pre-injury), 6, 12, and 18 months post-injury. Child functioning and social competence were assessed at 7 years post-injury. Mixed models examined the effects of injury, time since injury, and their interaction on EC. General linear models examined the associations of pre-injury EC and EC at 18 months with long-term functional and social outcomes. Models controlled for EF to assess the unique contribution of EC to outcomes. RESULTS Children with severe TBI had significantly lower EC than both the OI and moderate TBI groups at each post-injury time point. Both pre-injury and 18-month EC were associated with long-term outcomes. Among those with low EC at baseline, children with moderate and severe TBI had more functional impairment than those with OI; however, no group differences were noted at high levels of EC. EC had main effects on parent-reported social competence that did not vary by injury type. CONCLUSIONS Findings suggest that EC is sensitive to TBI effects and is a unique predictor of functional outcomes, independent of EF. High EC could serve as a protective factor, and as such measures of EC could be used to identify children for more intensive intervention.
Collapse
Affiliation(s)
| | - Emily L. Moscato
- Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- University of Cincinnati, Cincinnati, USA
| | - Megan E. Narad
- Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- University of Cincinnati, Cincinnati, USA
| | - Josh Sensenbaugh
- Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Wright State University, Dayton, USA
| | - Brandt Ling
- Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Wright State University, Dayton, USA
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Terry Stancin
- Case Western Reserve University, Cleveland, USA
- MetroHealth Medical Center, Cleveland, USA
| | | | - Shari L. Wade
- Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- University of Cincinnati, Cincinnati, USA
| |
Collapse
|
5
|
Cao M, Wu K, Halperin JM, Li X. Abnormal structural and functional network topological properties associated with left prefrontal, parietal, and occipital cortices significantly predict childhood TBI-related attention deficits: A semi-supervised deep learning study. Front Neurosci 2023; 17:1128646. [PMID: 36937671 PMCID: PMC10017753 DOI: 10.3389/fnins.2023.1128646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is a major public health concern in children. Children with TBI have elevated risk in developing attention deficits. Existing studies have found that structural and functional alterations in multiple brain regions were linked to TBI-related attention deficits in children. Most of these existing studies have utilized conventional parametric models for group comparisons, which have limited capacity in dealing with large-scale and high dimensional neuroimaging measures that have unknown nonlinear relationships. Nevertheless, none of these existing findings have been successfully implemented to clinical practice for guiding diagnoses and interventions of TBI-related attention problems. Machine learning techniques, especially deep learning techniques, are able to handle the multi-dimensional and nonlinear information to generate more robust predictions. Therefore, the current research proposed to construct a deep learning model, semi-supervised autoencoder, to investigate the topological alterations in both structural and functional brain networks in children with TBI and their predictive power for post-TBI attention deficits. Methods Functional magnetic resonance imaging data during sustained attention processing task and diffusion tensor imaging data from 110 subjects (55 children with TBI and 55 group-matched controls) were used to construct the functional and structural brain networks, respectively. A total of 60 topological properties were selected as brain features for building the model. Results The model was able to differentiate children with TBI and controls with an average accuracy of 82.86%. Functional and structural nodal topological properties associated with left frontal, inferior temporal, postcentral, and medial occipitotemporal regions served as the most important brain features for accurate classification of the two subject groups. Post hoc regression-based machine learning analyses in the whole study sample showed that among these most important neuroimaging features, those associated with left postcentral area, superior frontal region, and medial occipitotemporal regions had significant value for predicting the elevated inattentive and hyperactive/impulsive symptoms. Discussion Findings of this study suggested that deep learning techniques may have the potential to help identifying robust neurobiological markers for post-TBI attention deficits; and the left superior frontal, postcentral, and medial occipitotemporal regions may serve as reliable targets for diagnosis and interventions of TBI-related attention problems in children.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Jeffery M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
6
|
Treble-Barna A, Wade SL, Pilipenko V, Martin LJ, Yeates KO, Taylor HG, Kurowski BG. Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury. J Int Neuropsychol Soc 2023; 29:246-256. [PMID: 35465864 PMCID: PMC9592678 DOI: 10.1017/s1355617722000194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The present study examined the differential effect of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on neuropsychological functioning in children with traumatic brain injury (TBI) relative to orthopedic injury (OI). METHODS Participants were drawn from a prospective, longitudinal study of children who sustained a TBI (n = 69) or OI (n = 72) between 3 and 7 years of age. Children completed a battery of neuropsychological measures targeting attention, memory, and executive functions at four timepoints spanning the immediate post-acute period to 18 months post-injury. Children also completed a comparable age-appropriate battery of measures approximately 7 years post-injury. Parents rated children's dysexecutive behaviors at all timepoints. RESULTS Longitudinal mixed models revealed a significant allele status × injury group interaction with a medium effect size for verbal fluency. Cross-sectional models at 7 years post-injury revealed non-significant but medium effect sizes for the allele status x injury group interaction for fluid reasoning and immediate and delayed verbal memory. Post hoc stratified analyses revealed a consistent pattern of poorer neuropsychological functioning in Met carriers relative to Val/Val homozygotes in the TBI group, with small effect sizes; the opposite trend or no appreciable effect was observed in the OI group. CONCLUSIONS The results suggest a differential effect of the BDNF Val66Met polymorphism on verbal fluency, and possibly fluid reasoning and immediate and delayed verbal memory, in children with early TBI relative to OI. The Met allele-associated with reduced activity-dependent secretion of BDNF-may confer risk for poorer neuropsychological functioning in children with TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Assistant Professor, Department of Physical Medicine & Rehabilitation, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, KAU-910, Pittsburgh, PA 15213
| | - Shari L. Wade
- Professor, Division of Physical Medicine & Rehabilitation, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Valentina Pilipenko
- Biostatistician, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Lisa J. Martin
- Professor, Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati School of Medicine. 3333 Burnett Av, MLC 4012, Cincinnati OH 45229
| | - Keith Owen Yeates
- Professor, Department of Psychology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N1N4 Canada
| | - H. Gerry Taylor
- Professor, Abigail Wexner Research Institute at Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, 700 Children’s Drive, Columbus, OH, 43205
| | - Brad G. Kurowski
- Associate Professor, Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Departments of Pediatrics and Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 3333 Burnett Av, MLC 4009, Cincinnati OH 45229
| |
Collapse
|
7
|
Brown AW, Esterov D, Zielinski MD, Weaver AL, Mara KC, Ferrara MJ, Immermann JM, Moir C. Incidence and risk of attention-deficit/hyperactivity disorder and learning disability by adulthood after traumatic brain injury in childhood: a population-based birth cohort study. Child Neuropsychol 2022:1-17. [DOI: 10.1080/09297049.2022.2136645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Allen W. Brown
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Dmitry Esterov
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Amy L. Weaver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Kristin C. Mara
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Michael J. Ferrara
- Surgical Medical Acute Care Research Program, Mayo Clinic, Rochester, MN, USA
| | - Joseph M. Immermann
- Surgical Medical Acute Care Research Program, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Treble-Barna A, Wade SL, Pilipenko V, Martin LJ, Yeates KO, Taylor HG, Kurowski BG. Brain-Derived Neurotrophic Factor Val66Met and Behavioral Adjustment after Early Childhood Traumatic Brain Injury. J Neurotrauma 2022; 39:114-121. [PMID: 33605167 PMCID: PMC8785712 DOI: 10.1089/neu.2020.7466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study examined the differential effect of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on behavioral adjustment in children with traumatic brain injury (TBI) relative to children with orthopedic injury (OI). Participants were drawn from a prospective, longitudinal study of children who sustained a TBI (n = 69) or OI (n = 72) between 3 and 7 years of age. Parents completed the Child Behavior Checklist (CBCL) at the immediate post-acute period, 6, 12, and 18 months after injury, and an average of 3.5 and 7 years after injury. Longitudinal mixed models examined the BDNF Val66Met allele status (Met carriers vs. Val/Val homozygotes) × injury group (TBI vs. OI) interaction in association with behavioral adjustment. After adjusting for continental ancestry, socioeconomic status, time post-injury, and pre-injury functioning, the allele status × injury group interaction was statistically significant for Internalizing, Externalizing, and Total Behavior problems. Post hoc within-group analysis suggested a consistent trend of poorer behavioral adjustment in Met carriers relative to Val/Val homozygotes in the TBI group; in contrast, the opposite trend was observed in the OI group. These within-group differences, however, did not reach statistical significance. The results support a differential effect of the BDNF Val66Met polymorphism on behavioral adjustment in children with early TBI relative to OI, and suggest that the Met allele associated with reduced activity-dependent secretion of BDNF may impart risk for poorer long-term behavioral adjustment in children with TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shari L. Wade
- Division of Physical Medicine and Rehabilitation, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa J. Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Brad G. Kurowski
- Division of Pediatric Rehabilitation Medicine and Departments of Pediatrics and Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Stojanovski S, Scratch SE, Dunkley BT, Schachar R, Wheeler AL. A Systematic Scoping Review of New Attention Problems Following Traumatic Brain Injury in Children. Front Neurol 2021; 12:751736. [PMID: 34858314 PMCID: PMC8631327 DOI: 10.3389/fneur.2021.751736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: To summarize existing knowledge about the characteristics of attention problems secondary to traumatic brain injuries (TBI) of all severities in children. Methods: Computerized databases PubMed and PsychINFO and gray literature sources were used to identify relevant studies. Search terms were selected to identify original research examining new ADHD diagnosis or attention problems after TBI in children. Studies were included if they investigated any severity of TBI, assessed attention or ADHD after brain injury, investigated children as a primary or sub-analysis, and controlled for or excluded participants with preinjury ADHD or attention problems. Results: Thirty-nine studies were included in the review. Studies examined the prevalence of and risk factors for new attention problems and ADHD following TBI in children as well as behavioral and neuropsychological factors associated with these attention problems. Studies report a wide range of prevalence rates of new ADHD diagnosis or attention problems after TBI. Evidence indicates that more severe injury, injury in early childhood, or preinjury adaptive functioning problems, increases the risk for new ADHD and attention problems after TBI and both sexes appear to be equally vulnerable. Further, literature suggests that cases of new ADHD often co-occurs with neuropsychiatric impairment in other domains. Identified gaps in our understanding of new attention problems and ADHD include if mild TBI, the most common type of injury, increases risk and what brain abnormalities are associated with the emergence of these problems. Conclusion: This scoping review describes existing studies of new attention problems and ADHD following TBI in children and highlights important risk factors and comorbidities. Important future research directions are identified that will inform the extent of this outcome across TBI severities, its neural basis and points of intervention to minimize its impact.
Collapse
Affiliation(s)
- Sonja Stojanovski
- SickKids Research Institute, Program in Neuroscience and Mental Health, Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Physiology Department, University of Toronto, Toronto, ON, Canada
| | - Shannon E. Scratch
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Benjamin T. Dunkley
- SickKids Research Institute, Program in Neuroscience and Mental Health, Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- SickKids Research Institute, Program in Neuroscience and Mental Health, Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Psychiatry Department, University of Toronto, Toronto, ON, Canada
| | - Anne L. Wheeler
- SickKids Research Institute, Program in Neuroscience and Mental Health, Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Physiology Department, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Cao M, Halperin JM, Li X. Abnormal Functional Network Topology and Its Dynamics during Sustained Attention Processing Significantly Implicate Post-TBI Attention Deficits in Children. Brain Sci 2021; 11:brainsci11101348. [PMID: 34679412 PMCID: PMC8533973 DOI: 10.3390/brainsci11101348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to adverse outcomes. This study investigated the topological properties of the functional brain network for sustained attention processing and their dynamics in 42 children with severe post-TBI attention deficits (TBI-A) and 47 matched healthy controls. Functional MRI data during a block-designed sustained attention task was collected for each subject, with each full task block further divided into the pre-, early, late-, and post-stimulation stages. The task-related functional brain network was constructed using the graph theoretic technique. Then, the sliding-window-based method was utilized to assess the dynamics of the topological properties in each stimulation stage. Relative to the controls, the TBI-A group had significantly reduced nodal efficiency and/or degree of left postcentral, inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be significantly associated with elevated inattentive symptoms in children with TBI-A. These results suggest that abnormal functional network characteristics and their dynamics associated with the left parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Jeffery M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA;
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Correspondence: ; Tel.: +1-973-596-5880
| |
Collapse
|
11
|
Ewing-Cobbs L, Montroy JJ, Clark AE, Holubkov R, Cox CS, Keenan HT. As Time Goes by: Understanding Child and Family Factors Shaping Behavioral Outcomes After Traumatic Brain Injury. Front Neurol 2021; 12:687740. [PMID: 34290664 PMCID: PMC8287068 DOI: 10.3389/fneur.2021.687740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To model pre-injury child and family factors associated with the trajectory of internalizing and externalizing behavior problems across the first 3 years in children with pediatric traumatic brain injury (TBI) relative to children with orthopedic injuries (OI). Parent-reported emotional symptoms and conduct problems were expected to have unique and shared predictors. We hypothesized that TBI, female sex, greater pre-injury executive dysfunction, adjustment problems, lower income, and family dysfunction would be associated with less favorable outcomes. Methods: In a prospective longitudinal cohort study, we examined the level of behavior problems at 12 months after injury and rate of change from pre-injury to 12 months and from 12 to 36 months in children ages 4-15 years with mild to severe TBI relative to children with OI. A structural equation model framework incorporated injury characteristics, child demographic variables, as well as pre-injury child reserve and family attributes. Internalizing and externalizing behavior problems were indexed using the parent-rated Emotional Symptoms and Conduct Problems scales from the Strengths and Difficulties questionnaire. Results: The analysis cohort of 534 children [64% boys, M (SD) 8.8 (4.3) years of age] included 395 with mild to severe TBI and 139 with OI. Behavior ratings were higher after TBI than OI but did not differ by TBI severity. TBI, higher pre-injury executive dysfunction, and lower income predicted the level and trajectory of both Emotional Symptoms and Conduct Problems at 12 months. Female sex and poorer family functioning were vulnerability factors associated with greater increase and change in Emotional Symptoms by 12 months after injury; unique predictors of Conduct Problems included younger age and prior emotional/behavioral problems. Across the long-term follow-up from 12 to 36 months, Emotional Symptoms increased significantly and Conduct Problems stabilized. TBI was not a significant predictor of change during the chronic stage of recovery. Conclusions: After TBI, Emotional Symptoms and Conduct Problem scores were elevated, had different trajectories of change, increased or stayed elevated from 12 to 36 months after TBI, and did not return to pre-injury levels across the 3 year follow-up. These findings highlight the importance of addressing behavioral problems after TBI across an extended time frame.
Collapse
Affiliation(s)
- Linda Ewing-Cobbs
- Department of Pediatrics and Children's Learning Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Janelle J. Montroy
- Department of Pediatrics and Children's Learning Institute, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amy E. Clark
- Department of Pediatrics, Division of Critical Care, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Richard Holubkov
- Department of Pediatrics, Division of Critical Care, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Heather T. Keenan
- Department of Pediatrics, Division of Critical Care, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Prus R, Appelhans O, Logash M, Pokotylo P, Nowicki GJ, Ślusarska B. A Histological and Morphometric Assessment of the Adult and Juvenile Rat Livers after Mild Traumatic Brain Injury. Cells 2021; 10:cells10051121. [PMID: 34066539 PMCID: PMC8148537 DOI: 10.3390/cells10051121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most severe problems of modern medicine that plays a dominant role in morbidity and mortality in economically developed countries. Our experimental study aimed to evaluate the histological and morphological changes occurring in the liver of adult and juvenile mildly traumatized rats (mTBI) in a time-dependent model. The experiment was performed on 70 adult white rats at three months of age and 70 juvenile rats aged 20 days. The mTBI was modelled by the Impact-Acceleration Model-free fall of weight in the parieto-occipital area. For histopathological comparison, the samples were taken on the 1st, 3rd, 5th, 7th, 14th, and 21st days after TBI. In adult rats, dominated changes in the microcirculatory bed in the form of blood stasis in sinusoidal capillaries and veins, RBC sludge, and adherence to the vessel wall with the subsequent appearance of perivascular and focal leukocytic infiltrates. In juvenile rats, changes in the parenchyma in the form of hepatocyte dystrophy prevailed. In both groups, the highest manifestation of the changes was observed on 5–7 days of the study. On 14–21 days, compensatory phenomena prevailed in both groups. Mild TBI causes changes in the liver of both adult and juvenile rats. The morphological pattern and dynamics of liver changes, due to mild TBI, are different in adult and juvenile rats.
Collapse
Affiliation(s)
- Ruslan Prus
- Department of Normal and Pathological Clinical Anatomy, Odessa National Medical University, UA-65000 Odessa, Ukraine; (R.P.); (O.A.)
| | - Olena Appelhans
- Department of Normal and Pathological Clinical Anatomy, Odessa National Medical University, UA-65000 Odessa, Ukraine; (R.P.); (O.A.)
| | - Maksim Logash
- Department of Normal Anatomy, Lviv National Medical University, UA-79010 Lviv, Ukraine;
- Correspondence: ; Tel.: +48-814-486-810
| | - Petro Pokotylo
- Department of Normal Anatomy, Lviv National Medical University, UA-79010 Lviv, Ukraine;
| | - Grzegorz Józef Nowicki
- Department of Family Medicine and Community Nursing, Medical University of Lublin, PL-20-081 Lublin, Poland; (G.J.N.); (B.Ś.)
| | - Barbara Ślusarska
- Department of Family Medicine and Community Nursing, Medical University of Lublin, PL-20-081 Lublin, Poland; (G.J.N.); (B.Ś.)
| |
Collapse
|
13
|
Chevignard M, Câmara-Costa H, Dellatolas G. Pediatric traumatic brain injury and abusive head trauma. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:451-484. [PMID: 32958191 DOI: 10.1016/b978-0-444-64150-2.00032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Childhood traumatic brain injury (TBI) commonly occurs during brain development and can have direct, immediately observable neurologic, cognitive, and behavioral consequences. However, it can also disrupt subsequent brain development, and long-term outcomes are a combination of preinjury development and abilities, consequences of brain injury, as well as delayed impaired development of skills that were immature at the time of injury. There is a growing number of studies on mild TBI/sport-related concussions, describing initial symptoms and their evolution over time and providing guidelines for effective management of symptoms and return to activity/school/sports. Mild TBI usually does not lead to long-term cognitive or academic consequences, despite reports of behavioral/psychologic issues postinjury. Regarding moderate to severe TBI, injury to the brain is more severe, with evidence of a number of detrimental consequences in various domains. Patients can display neurologic impairments (e.g., motor deficits, signs of cerebellar disorder, posttraumatic epilepsy), medical problems (e.g., endocrine pituitary deficits, sleep-wake abnormalities), or sensory deficits (e.g., visual, olfactory deficits). The most commonly reported deficits are in the cognitive-behavioral field, which tend to be significantly disabling in the long-term, impacting the development of autonomy, socialization and academic achievement, participation, quality of life, and later, independence and ability to enter the workforce (e.g., intellectual deficits, slow processing speed, attention, memory, executive functions deficits, impulsivity, intolerance to frustration). A number of factors influence outcomes following pediatric TBI, including preinjury stage of development and abilities, brain injury severity, age at injury (with younger age at injury most often associated with worse outcomes), and a number of family/environment factors (e.g., parental education and occupation, family functioning, parenting style, warmth and responsiveness, access to rehabilitation and care). Interventions should identify and target these specific factors, given their major role in postinjury outcomes. Abusive head trauma (AHT) occurs in very young children (most often <6 months) and is a form of severe TBI, usually associated with delay before appropriate care is sought. Outcomes are systematically worse following AHT than following accidental TBI, even when controlling for age at injury and injury severity. Children with moderate to severe TBI and AHT usually require specific, coordinated, multidisciplinary, and long-term rehabilitation interventions and school adaptations, until transition to adult services. Interventions should be patient- and family-centered, focusing on specific goals, comprising education about TBI, and promoting optimal parenting, communication, and collaborative problem-solving.
Collapse
Affiliation(s)
- Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France; GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| | - Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France
| |
Collapse
|
14
|
Treble-Barna A, Pilipenko V, Wade SL, Jegga AG, Yeates KO, Taylor HG, Martin LJ, Kurowski BG. Cumulative Influence of Inflammatory Response Genetic Variation on Long-Term Neurobehavioral Outcomes after Pediatric Traumatic Brain Injury Relative to Orthopedic Injury: An Exploratory Polygenic Risk Score. J Neurotrauma 2020; 37:1491-1503. [PMID: 32024452 PMCID: PMC7307697 DOI: 10.1089/neu.2019.6866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The addition of genetic factors to prognostic models of neurobehavioral recovery following pediatric traumatic brain injury (TBI) may account for unexplained heterogeneity in outcomes. The present study examined the cumulative influence of candidate genes involved in the inflammatory response on long-term neurobehavioral recovery in children with early childhood TBI relative to children with orthopedic injuries (OI). Participants were drawn from a prospective, longitudinal study evaluating outcomes of children who sustained TBI (n = 67) or OI (n = 68) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at an average of 6.8 years after injury. Exploratory unweighted and weighted polygenic risk scores (PRS) were constructed from single nucleotide polymorphisms (SNPs) across candidate inflammatory response genes (i.e., angiotensin converting enzyme [ACE], brain-derived neurotrophic factor [BDNF], interleukin-1 receptor antagonist [IL1RN], and 5'-ectonucleotidase [NT5E]) that showed nominal (p ≤ 0.20) associations with outcomes in the TBI group. Linear regression models tested the PRS × injury group (TBI vs. OI) interaction term and post-hoc analyses examined the effect of PRS within each injury group. Higher inflammatory response PRS were associated with more executive dysfunction and behavior problems in children with TBI but not in children with OI. The cumulative influence of inflammatory response genes as measured by PRS explained additional variance in long-term neurobehavioral outcomes, over and above well-established predictors and single candidate SNPs tested individually. The results suggest that some of the unexplained heterogeneity in long-term neurobehavioral outcomes following pediatric TBI may be attributable to a child's genetic predisposition to a greater or lesser inflammatory response to TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennslvania, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shari L. Wade
- Division of Pediatric Rehabilitation Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - H. Gerry Taylor
- Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Lisa J. Martin
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brad G. Kurowski
- Division of Pediatric Rehabilitation Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|