1
|
Elliott JE, Brewer JS, Keil AT, Ligman BR, Bryant-Ekstrand MD, McBride AA, Powers K, Sicard SJ, Twamley EW, O’Neil ME, Hildebrand AD, Nguyen T, Morasco BJ, Gill JM, Dengler BA, Lim MM. Feasibility and acceptability for LION, a fully remote, randomized clinical trial within the VA for light therapy to improve sleep in Veterans with and without TBI: An MTBI2 sponsored protocol. PLoS One 2025; 20:e0305305. [PMID: 39775195 PMCID: PMC11706480 DOI: 10.1371/journal.pone.0305305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Sleep-wake disturbances frequently present in Veterans with mild traumatic brain injury (mTBI). These TBI-related sleep impairments confer significant burden and commonly exacerbate other functional impairments. Therapies to improve sleep following mTBI are limited and studies in Veterans are even more scarce. In our previous pilot work, morning bright light therapy (MBLT) was found to be a feasible behavioral sleep intervention in Veterans with a history of mTBI; however, this was single-arm, open-label, and non-randomized, and therefore was not intended to establish efficacy. The present study, LION (light vs ion therapy) extends this preliminary work as a fully powered, sham-controlled, participant-masked randomized controlled trial (NCT03968874), implemented as fully remote within the VA (target n = 120 complete). Randomization at 2:1 allocation ratio to: 1) active: MBLT (n = 80), and 2) sham: deactivated negative ion generator (n = 40); each with identical engagement parameters (60-min duration; within 2-hrs of waking; daily over 28-day duration). Participant masking via deception balanced expectancy assumptions across arms. Outcome measures were assessed following a 14-day baseline (pre-intervention), following 28-days of device engagement (post-intervention), and 28-days after the post-intervention assessment (follow-up). Primary outcomes were sleep measures, including continuous wrist-based actigraphy, self-report, and daily sleep dairy entries. Secondary/exploratory outcomes included cognition, mood, quality of life, circadian rhythm via dim light melatonin onset, and biofluid-based biomarkers. Participant drop out occurred in <10% of those enrolled, incomplete/missing data was present in <15% of key outcome variables, and overall fidelity adherence to the intervention was >85%, collectively establishing feasibility and acceptability for MBLT in Veterans with mTBI.
Collapse
Affiliation(s)
- Jonathan E. Elliott
- VA Portland Health Care System, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Military Traumatic Brain Injury Initiative (MTBI2), Bethesda, Maryland, United States of America
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Jessica S. Brewer
- VA Portland Health Care System, Portland, Oregon, United States of America
| | - Allison T. Keil
- VA Portland Health Care System, Portland, Oregon, United States of America
| | - Brittany R. Ligman
- VA Portland Health Care System, Portland, Oregon, United States of America
| | | | - Alisha A. McBride
- VA Portland Health Care System, Portland, Oregon, United States of America
| | - Katherine Powers
- VA Portland Health Care System, Portland, Oregon, United States of America
| | - Savanah J. Sicard
- VA Portland Health Care System, Portland, Oregon, United States of America
| | - Elizabeth W. Twamley
- VA San Diego Health Care System, Research Service; Center of Excellence for Stress and Mental Health, San Diego, San Diego, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Maya E. O’Neil
- VA Portland Health Care System, Portland, Oregon, United States of America
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Andrea D. Hildebrand
- School of Public Health, Biostatistics & Design Program, Oregon Health & Science University – Portland State University, Portland, Oregon, United States of America
| | - Thuan Nguyen
- School of Public Health, Biostatistics & Design Program, Oregon Health & Science University – Portland State University, Portland, Oregon, United States of America
| | - Benjamin J. Morasco
- VA Portland Health Care System, Portland, Oregon, United States of America
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jessica M. Gill
- School of Nursing, John’s Hopkins University, Baltimore, Maryland, United States of America
| | - Bradley A. Dengler
- Military Traumatic Brain Injury Initiative (MTBI2), Bethesda, Maryland, United States of America
| | - Miranda M. Lim
- VA Portland Health Care System, Portland, Oregon, United States of America
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, United States of America
- Military Traumatic Brain Injury Initiative (MTBI2), Bethesda, Maryland, United States of America
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Wang L, Zhang C, Wang B, Zhang L, Xi G, Deng J, Wang F. Decreased Cortical Sulcus Depth in Parkinson's Disease with Excessive Daytime Sleepiness. Clin Neuroradiol 2024:10.1007/s00062-024-01482-4. [PMID: 39636309 DOI: 10.1007/s00062-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Excessive daytime sleepiness (EDS), a prevalent non-motor symptom in Parkinson's disease (PD), significantly impacts the quality of life for PD patients and elevates the risks of injury. Our study is to investigate the altered cortical surface morphology characteristics in PD patients with EDS (PD-EDS). METHODS Clinical data and magnetic resonance imaging were obtained from the Parkinson's Progression Marker Initiative database, comprising 36 PD-EDS and 98 PD patients without EDS (PD-nEDS). The computational anatomy toolbox was utilized to derive sulcus depth (SD) and deep grey matter (GM) nuclei volumes. RESULTS PD-EDS patients exhibited significantly decreased SD values in the right caudal middle frontal gyrus, pars opercularis, and superior temporal cortex relative to PD-nEDS patients. However, no significant differences in deep GM nuclei volumes were identified. Receiver operating characteristic (ROC) curve analyses further revealed that these cortical SD values could potentially serve as a screening index for distinguishing PD-EDS from PD-nEDS. Additionally, although PD-EDS patients had a longer disease duration and poorer performance in motor function and depression compared to PD-nEDS patients, these factors were included as covariates in the neuroimaging analyses. CONCLUSION Our study findings demonstrated that decreased cortical SD values might induce sleep-wake state instability and contribute to the pathophysiological mechanisms of EDS in early-stage PD.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No.299 Qingyang Road, 214023, Wuxi, China.
- Department of Neurology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Chi Zhang
- School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bijia Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No.299 Qingyang Road, 214023, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No.299 Qingyang Road, 214023, Wuxi, China
| | - Jingyu Deng
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No.299 Qingyang Road, 214023, Wuxi, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No.299 Qingyang Road, 214023, Wuxi, China.
| |
Collapse
|
3
|
Takagi R, Wanasundara C, Wu L, Ipsiroglu O, Kuo C. Sleep After Concussion: A Scoping Review of Sensor Technologies. J Neurotrauma 2024; 41:1827-1841. [PMID: 38832860 DOI: 10.1089/neu.2023.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Sleep disturbances following a concussion/mild traumatic brain injury are associated with longer recovery times and more comorbidities. Sensor technologies can directly monitor sleep-related physiology and provide objective sleep metrics. This scoping review determines how sensor technologies are currently used to monitor sleep following a concussion. We searched Ovid (Medline, Embase), Web of Science, CINAHL, Compendex Engineering Village, and PsycINFO from inception to June 20, 2022, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for scoping reviews. Included studies objectively monitored sleep in participants with concussion. We screened 1081 articles and included 37 in the review. A total of 17 studies implemented polysomnography (PSG) months to years after injury for a median of two nights and provided a wide range of sleep metrics, including sleep-wake times, sleep stages, arousal indices, and periodic limb movements. Twenty-two studies used actigraphy days to weeks after injury for a median of 10 days and nights and provided information limited to sleep-wake times. Sleep stages were most reported in PSG studies, and sleep efficiency was most reported in actigraphy studies. For both technologies there was high variability in reported outcome measures. Sleep sensing technologies may be used to identify how sleep affects concussion recovery. However, high variability in sensor deployment methodologies makes cross-study comparisons difficult and highlights the need for standardization. Consensus on how sleep sensing technologies are used post-concussion may lead to clinical integration with subjective methods for improved sleep monitoring during the recovery period.
Collapse
Affiliation(s)
- Ryan Takagi
- Faculty of Applied Science, Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| | - Chamin Wanasundara
- Department of Pediatrics, BC Children's Hospital Interdisciplinary Sleep Medicine, University of British Columbia, Vancouver, Canada
| | - Lyndia Wu
- Faculty of Applied Science, Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| | - Osman Ipsiroglu
- Department of Pediatrics, BC Children's Hospital Interdisciplinary Sleep Medicine, University of British Columbia, Vancouver, Canada
| | - Calvin Kuo
- Faculty of Applied Science and Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
van Ierssel JJ, Galea O, Holte K, Luszawski C, Jenkins E, O'Neil J, Emery CA, Mannix R, Schneider K, Yeates KO, Zemek R. How completely are randomized controlled trials of non-pharmacological interventions following concussion reported? A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:537-547. [PMID: 37619783 PMCID: PMC11184319 DOI: 10.1016/j.jshs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE The study aimed to examine the reporting completeness of randomized controlled trials (RCTs) of non-pharmacological interventions following concussion. METHODS We searched MEDLINE, Embase, PsycInfo, CINAHL, and Web of Science up to May 2022. Two reviewers independently screened studies and assessed reporting completeness using the Template for Intervention Description and Replication (TIDieR), Consensus on Exercise Reporting Template (CERT), and international Consensus on Therapeutic Exercise aNd Training (i-CONTENT) checklists. Additional information was sought my study authors where reporting was incomplete. Risk of bias (ROB) was assessed with the Cochrane ROB-2 Tool. RCTs examining non-pharmacological interventions following concussion. RESULTS We included 89 RCTs (n = 53 high ROB) examining 11 different interventions for concussion: sub-symptom threshold aerobic exercise, cervicovestibular therapy, physical/cognitive rest, vision therapy, education, psychotherapy, hyperbaric oxygen therapy, transcranial magnetic stimulation, blue light therapy, osteopathic manipulation, and head/neck cooling. Median scores were: TIDieR 9/12 (75%; interquartile range (IQR) = 5; range: 5-12), CERT 17/19 (89%; IQR = 2; range: 10-19), and i-CONTENT 6/7 (86%; IQR = 1; range: 5-7). Percentage of studies completely reporting all items was TIDieR 35% (31/89), CERT 24% (5/21), and i-CONTENT 10% (2/21). Studies were more completely reported after publication of TIDieR (t87 = 2.08; p = 0.04) and CERT (t19 = 2.72; p = 0.01). Reporting completeness was not strongly associated with journal impact factor (TIDieR: rs = 0.27; p = 0.01; CERT: rs = -0.44; p = 0.06; i-CONTENT: rs = -0.17; p = 0.48) or ROB (TIDieR: rs = 0.11; p = 0.31; CERT: rs = 0.04; p = 0.86; i-CONTENT: rs = 0.12; p = 0.60). CONCLUSION RCTs of non-pharmacological interventions following concussion demonstrate moderate to good reporting completeness, but are often missing key components, particularly modifications, motivational strategies, and qualified supervisor. Reporting completeness improved after TIDieR and CERT publication, but publication in highly cited journals and low ROB do not guarantee reporting completeness.
Collapse
Affiliation(s)
| | - Olivia Galea
- The Centre for Health, Activity and Rehabilitation Research, University of Otago, Dunedin 9016, New Zealand
| | - Kirsten Holte
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Caroline Luszawski
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 1N4, Canada; Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Elizabeth Jenkins
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jennifer O'Neil
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Bruyère Research Institute, Ottawa, ON K1N 5C8, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rebekah Mannix
- Departments of Pediatrics and Emergency Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada; Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Departments of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Elliott JE, Brewer JS, Keil AT, Ligman BR, Bryant-Ekstrand MD, McBride AA, Powers K, Sicard SJ, Twamley EW, O’Neil ME, Hildebrand AD, Nguyen T, Morasco BJ, Gill JM, Dengler BA, Lim MM. Feasibility and acceptability for LION, a fully remote, randomized clinical trial within the VA for light therapy to improve sleep in Veterans with and without TBI: An MTBI 2 sponsored protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.30.24308195. [PMID: 38853958 PMCID: PMC11160858 DOI: 10.1101/2024.05.30.24308195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Sleep-wake disturbances frequently present in Veterans with mild traumatic brain injury (mTBI). These TBI-related sleep impairments confer significant burden and commonly exacerbate other functional impairments. Therapies to improve sleep following mTBI are limited and studies in Veterans are even more scarce. In our previous pilot work, morning bright light therapy (MBLT) was found to be a feasible behavioral sleep intervention in Veterans with a history of mTBI; however, this was single-arm, open-label, and non-randomized, and therefore was not intended to establish efficacy. The present study, LION (light vs ion therapy) extends this preliminary work as a fully powered, sham-controlled, participant-masked randomized controlled trial (NCT03968874), implemented as fully remote within the VA (target n=120 complete). Randomization at 2:1 allocation ratio to: 1) active: MBLT (n=80), and 2) sham: deactivated negative ion generator (n=40); each with identical engagement parameters (60-min duration; within 2-hrs of waking; daily over 28-day duration). Participant masking via deception balanced expectancy assumptions across arms. Outcome measures were assessed following a 14-day baseline (pre-intervention), following 28-days of device engagement (post-intervention), and 28-days after the post-intervention assessment (follow-up). Primary outcomes were sleep measures, including continuous wrist-based actigraphy, self-report, and daily sleep dairy entries. Secondary/exploratory outcomes included cognition, mood, quality of life, circadian rhythm via dim light melatonin onset, and biofluid-based biomarkers. Participant drop out occurred in <10% of those enrolled, incomplete/missing data was present in <15% of key outcome variables, and overall fidelity adherence to the intervention was >85%, collectively establishing feasibility and acceptability for MBLT in Veterans with mTBI.
Collapse
Affiliation(s)
- Jonathan E. Elliott
- VA Portland Health Care System, Portland, OR, USA
- Oregon Health & Science University, Department of Neurology,
Portland, OR, USA
- Military Traumatic Brain Injury Initiative (MTBI),
Bethesda, MD, USA
- VISN 20 Northwest Mental Illness Research, Education and Clinical
Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | | | | | | | | | | | | | | | - Elizabeth W. Twamley
- VA San Diego Health Care System, Research Service; Center of
Excellence for Stress and Mental Health, San Diego, CA, USA
- University of California San Diego, Department of Psychiatry, La
Jolla, CA, USA
| | - Maya E. O’Neil
- VA Portland Health Care System, Portland, OR, USA
- VISN 20 Northwest Mental Illness Research, Education and Clinical
Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
- Oregon Health & Science University, Medical Informatics and
Clinical Epidemiology, Portland, OR, USA
- Oregon Health & Science University, Department of Psychiatry,
Portland, OR, USA
| | - Andrea D. Hildebrand
- Oregon Health & Science University – Portland State
University, School of Public Health, Biostatistics & Design Program, Portland, OR,
USA
| | - Thuan Nguyen
- Oregon Health & Science University – Portland State
University, School of Public Health, Biostatistics & Design Program, Portland, OR,
USA
| | - Benjamin J. Morasco
- VA Portland Health Care System, Portland, OR, USA
- VISN 20 Northwest Mental Illness Research, Education and Clinical
Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
- Oregon Health & Science University, Department of Psychiatry,
Portland, OR, USA
| | - Jessica M. Gill
- John’s Hopkins University, School of Nursing, Baltimore,
MD, USA
| | | | - Miranda M. Lim
- VA Portland Health Care System, Portland, OR, USA
- Oregon Health & Science University, Department of Neurology,
Portland, OR, USA
- Military Traumatic Brain Injury Initiative (MTBI),
Bethesda, MD, USA
- VISN 20 Northwest Mental Illness Research, Education and Clinical
Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
6
|
Chow CM, Ekanayake K, Hackett D. Efficacy of Morning Shorter Wavelength Lighting in the Visible (Blue) Range and Broad-Spectrum or Blue-Enriched Bright White Light in Regulating Sleep, Mood, and Fatigue in Traumatic Brain Injury: A Systematic Review. Clocks Sleep 2024; 6:255-266. [PMID: 38920419 PMCID: PMC11202910 DOI: 10.3390/clockssleep6020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Traumatic brain injury (TBI) profoundly affects sleep, mood, and fatigue, impeding daily functioning and recovery. This systematic review evaluates the efficacy of morning shorter wavelength lighting in the visible (blue) range and broad-spectrum or blue-enriched bright white light exposure in mitigating these challenges among TBI patients. Through electronic database searches up to May 2023, studies assessing sleep, circadian rhythm, sleepiness, mood, and fatigue outcomes in TBI patients exposed to morning shorter wavelength lighting in the visible (blue) range and broad-spectrum or blue-enriched bright white light were identified. Seven studies involving 309 participants met the inclusion criteria. Results indicated consistent advancement in sleep timing among individuals with mild TBI, alongside improvements in total sleep time, mood, and reduced sleepiness with both types of light exposure, particularly in mild TBI cases. Notably, two studies demonstrated alleviation of fatigue exclusively in severe TBI cases following light exposure. Despite promising findings, evidence remains limited, emphasizing the need for future research with standardized protocols to confirm the potential and optimize the benefits of light therapy for TBI recovery.
Collapse
Affiliation(s)
- Chin Moi Chow
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (K.E.); (D.H.)
- Sleep Research Group, Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Kanchana Ekanayake
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (K.E.); (D.H.)
| | - Daniel Hackett
- Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia; (K.E.); (D.H.)
| |
Collapse
|
7
|
Gervais C, Hjeij D, Fernández-Puerta L, Arbour C. Non-pharmacological interventions for sleep disruptions and fatigue after traumatic brain injury: a scoping review. Brain Inj 2024; 38:403-416. [PMID: 38402580 DOI: 10.1080/02699052.2024.2318599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The aim of this study was to conduct a scoping review to determine the nature, variety, and volume of empirical evidence on nonpharmacological interventions for sleep disturbances with potential implications for fatigue in adults sustaining a traumatic brain injury (TBI). METHODS A systematic literature search was conducted across four databases to identify primary studies testing a single non-pharmacological intervention or a combination of non-pharmacological interventions for sleep disturbances and fatigue in community-dwelling adults with TBI. RESULTS Sixteen studies were reviewed addressing six non-pharmacological interventions for sleep disruptions and fatigue after TBI including light therapy, cognitive-behavioral therapy, warm footbath application, shiatsu, and sleep hygiene protocol. Non-pharmacological interventions involving light or cognitive-behavioral therapy were reported in 75% of the studies. Actigraphy-based estimation of total sleep time and subjective level of fatigue were frequent outcomes. CONCLUSION While this scoping review has utility in describing existing non-pharmacological approaches to manage sleep and fatigue after TBI, the findings suggest that interventions are often developed without considering TBI individuals' source of motivation and the need for support in self-administration. Future studies may achieve greater sustainability by considering the evolving needs of TBI patients and their families and the drivers and barriers that might influence non-pharmacological intervention use at home.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Danny Hjeij
- Faculty of Nursing, Université de Montréal, Montreal, Canada
| | | | - Caroline Arbour
- Faculty of Nursing, Université de Montréal, Montreal, Canada
| |
Collapse
|
8
|
Sharp N, Burish MJ, Digre KB, Ailani J, Fani M, Lamp S, Schwedt TJ. Photophobia is associated with lower sleep quality in individuals with migraine: results from the American Registry for Migraine Research (ARMR). J Headache Pain 2024; 25:55. [PMID: 38609895 PMCID: PMC11015590 DOI: 10.1186/s10194-024-01756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Patients with migraine often have poor sleep quality between and during migraine attacks. Furthermore, extensive research has identified photophobia as the most common and most bothersome symptom in individuals with migraine, second only to headache. Seeking the comfort of darkness is a common strategy for managing pain during an attack and preventing its recurrence between episodes. Given the well-established effects of daily light exposure on circadian activity rhythms and sleep quality, this study aimed to investigate the relationship between photophobia symptoms and sleep quality in a cohort of patients with migraine. METHODS A cross-sectional observational study was conducted using existing data extracted from the American Registry for Migraine Research (ARMR). Participants with a migraine diagnosis who had completed the baseline questionnaires (Photosensitivity Assessment Questionnaire (PAQ), Generalized Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-2 (PHQ-2)), and selected questions of the ARMR Sleep questionnaire were included. Models were created to describe the relationship of photophobia and photophilia with various sleep facets, including sleep quality (SQ), sleep disturbance (SDis), sleep onset latency (SOL), sleep-related impairments (SRI), and insomnia. Each model was controlled for age, sex, headache frequency, anxiety, and depression. RESULTS A total of 852 patients meeting the inclusion criteria were included in the analysis (mean age (SD) = 49.8 (13.9), 86.6% (n = 738) female). Those with photophobia exhibited significantly poorer sleep quality compared to patients without photophobia (p < 0.001). Photophobia scores were associated with SQ (p < 0.001), SDis (p < 0.001), SOL (p = 0.011), SRI (p = 0.020), and insomnia (p = 0.005) after controlling for age, sex, headache frequency, depression, and anxiety, signifying that higher levels of photophobia were associated with worse sleep-related outcomes. Conversely, photophilia scores were associated with better sleep-related outcomes for SQ (p < 0.007), SOL (p = 0.010), and insomnia (p = 0.014). CONCLUSION Results suggest that photophobia is a significant predictor of poor sleep quality and sleep disturbances in migraine. These results underscore the necessity for comprehensive and systematic investigations into the intricate interplay between photophobia and sleep to enhance our understanding and develop tailored solutions for individuals with migraine.
Collapse
Affiliation(s)
- Nina Sharp
- The Design School, Arizona State University, Tempe, AZ, USA.
| | - Mark J Burish
- Department of Neurosurgery, Medical School, The University of Texas Health Science Center at Houston, McGovern, Houston, TX, USA
| | - Kathleen B Digre
- Department of Ophthalmology and Visual Sciences, Department of Neurology, John A Moran Eye Center, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Jessica Ailani
- Department of Neurology, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Mahya Fani
- The Design School, Arizona State University, Tempe, AZ, USA
| | - Sophia Lamp
- Psychology Department, Arizona State University, Tempe, AZ, USA
| | - Todd J Schwedt
- Neurology Department, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
9
|
Kureshi S, Mendizabal M, Francis J, Djalilian HR. Conservative Management of Acute Sports-Related Concussions: A Narrative Review. Healthcare (Basel) 2024; 12:289. [PMID: 38338173 PMCID: PMC10855441 DOI: 10.3390/healthcare12030289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This review explores the application of the conservative management model for pain to sports-related concussions (SRCs), framing concussions as a distinct form of pain syndrome with a pathophysiological foundation in central sensitization. Drawing parallels with proven pain management models, we underscore the significance of a proactive approach to concussion management. Recognizing concussions as a pain syndrome allows for the tailoring of interventions in alignment with conservative principles. This review first covers the epidemiology and controversies surrounding prolonged concussion recovery and persistent post-concussion symptoms (PPCS). Next, the pathophysiology of concussions is presented within the central sensitization framework, emphasizing the need for early intervention to mitigate the neuroplastic changes that lead to heightened pain sensitivity. Five components of the central sensitization process specific to concussion injuries are highlighted as targets for conservative interventions in the acute period: peripheral sensitization, cerebral metabolic dysfunction, neuroinflammation, glymphatic system dysfunction, and pain catastrophizing. These proactive interventions are emphasized as pivotal in accelerating concussion recovery and reducing the risk of prolonged symptoms and PPCS, in line with the philosophy of conservative management.
Collapse
Affiliation(s)
- Sohaib Kureshi
- Neurosurgical Medical Clinic, San Diego, CA 92111, USA
- TBI Virtual, San Diego, CA 92111, USA
| | | | | | - Hamid R. Djalilian
- TBI Virtual, San Diego, CA 92111, USA
- Departments of Otolaryngology, Neurological Surgery, and Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Chen R, Yan Y, Cheng X. Circadian light therapy and light dose for depressed young people: a systematic review and meta-analysis. Front Public Health 2024; 11:1257093. [PMID: 38259764 PMCID: PMC10800803 DOI: 10.3389/fpubh.2023.1257093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background Empirical evidence has shown that light therapy (LT) can reduce depression symptoms by stimulating circadian rhythms. However, there is skepticism and inconclusive results, along with confusion regarding dosing. The purpose of this study is to quantify light as a stimulus for the circadian system and create a dose-response relationship that can help reduce maladies among adolescents and young adults (AYAs). This will provide a reference for light exposure and neural response, which are crucial in the neuropsychological mechanism of light intervention. The study also aims to provide guidance for clinical application. Methods The latest quantitative model of CLA (circadian light) and CSt,f (circadian stimulus) was adopted to quantify light dose for circadian phototransduction in youth depression-related light therapy. Articles published up to 2023 through Web of Science, Cochrane Library, Medline (OVID), CINAHL, APA PsycINFO, Embase, and Scholars were retrieved. A meta-analysis of 31 articles (1,031 subjects) was performed using Stata17.0, CMA3.0 (comprehensive meta-analysis version 3.0) software, and Python 3.9 platform for light therapy efficacy comparison and dose-response quantification. Results Under various circadian stimulus conditions (0.1 < CSt,f < 0.7) of light therapy (LT), malady reductions among AYAs were observed (pooled SMD = -1.59, 95%CI = -1.86 to -1.32; z = -11.654, p = 0.000; I2 = 92.8%), with temporal pattern (p = 0.044) and co-medication (p = 0.000) suggested as main heterogeneity sources. For the efficacy advantage of LT with a higher circadian stimulus that is assumed to be influenced by visualization, co-medication, disease severity, and time pattern, sets of meta-analysis among random-controlled trials (RCTs) found evidence for significant efficacy of circadian-active bright light therapy (BLT) over circadian-inactive dim red light (SMD = -0.65, 95% CI = -0.96 to -0.34; z = -4.101, p = 0.000; I2 = 84.9%) or circadian-active dimmer white light (SMD = -0.37, 95% CI = -0.68 to -0.06; z = -2.318, p = 0.02; I2 = 33.8%), whereas green-blue, circadian-active BLT showed no significant superiority over circadian-inactive red/amber light controls (SMD = -0.21, 95% CI = -0.45 to 0.04; z = -2.318, p = 0.099; I2 = 0%). Overall, circadian-active BLT showed a greater likelihood of clinical response than dim light controls, with increased superiority observed with co-medication. For pre-to-post-treatment amelioration and corresponding dose-response relationship, cumulative duration was found more influential than other categorical (co-medication, severity, study design) or continuous (CSt,f) variables. Dose-response fitting indicated that the therapeutic effect would reach saturation among co-medicated patients at 32-42 days (900-1,000 min) and 58-59 days (1,100-1,500 min) among non-medicated AYAs. When exerting high circadian stimulus of light therapy (0.6 < CSt,f < 0.7), there was a significantly greater effect size in 1,000-1,500 min of accumulative duration than <1,000 or >1,500 min of duration, indicating a threshold for practical guidance. Limitations The results have been based on limited samples and influenced by a small sample effect. The placebo effect could not be ignored. Conclusions Although the superiority of LT with higher circadian stimulus over dimmer light controls remains unproven, greater response potentials of circadian-active BLT have been noticed among AYAs, taking co-medication, disease severity, time pattern, and visual characteristics into consideration. The dose-response relationship with quantified circadian stimulus and temporal pattern had been elaborated under various conditions to support clinical depression treatment and LT device application in the post-pandemic era.
Collapse
Affiliation(s)
- Ranpeng Chen
- School of Architecture and Urban Planning, Chongqing University, Chongqing, China
| | - Yonghong Yan
- School of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing, China
| | - Xiang Cheng
- School of Architecture and Urban Planning, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Thondala B, Pawar H, Chauhan G, Panjwani U. The effect of non-pharmacological interventions on sleep quality in people with sleep disturbances: A systematic review and a meta-analysis. Chronobiol Int 2023; 40:1333-1353. [PMID: 37853577 DOI: 10.1080/07420528.2023.2262567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Sleep is the elixir of life. Both healthy populations and patients with chronic diseases experience sleep disturbances in their lifetime. Pharmacological agents to induce sleep in individuals with sleep disturbances pose side effects like tolerance and dependence, warranting the development of alternative non-pharmacological interventions with less or no adverse effects. However, deciphering comprehensive evidence on the translational potential of these alternative therapies remains difficult. In the current paper, we systematically reviewed the recent literature on the effect of non-pharmacological interventions (NPIs) on improving sleep quality in both healthy and diseased populations experiencing sleep disturbances. We searched PubMed, Science Direct, Cochrane Controlled Trials, and Web of Science databases from inception to June 2022 for randomized controlled trials and cohort studies evaluating the sleep quality of individuals. We performed a meta-analysis using the random effects model with Pittsburgh Sleep Quality Index (PSQI) as an outcome measure to evaluate the effect of five distinct NPIs on sleep quality in normal and people with different medical conditions. Subgroup analyses and sensitivity analyses were done for heterogeneity analysis and to check the consistency of results, respectively. In 16 trials reporting on 1885 subjects, that all NPIs like Resistance Training (SMD -0.29, 95% CI -0.64 to 0.05; p = 0.09); Yoga (SMD -0.48, 95% CI -0.72 to -0.25; p < 0.0001); Cognitive Behavioral Therapy (SMD -1.69, 95% CI -2.70 to -0.68; p = 0.001); Music (SMD -1.42, 95% CI -1.99 to -0.85; p < 0.00001); Light (SMD -0.43, 95% CI -0.77 to -0.09; p = 0.01) have substantially decreased the global PSQI scores. The findings of the randomized studies and a cohort study included in qualitative synthesis demonstrated that the global PSQI scores improved significantly as compared to the placebo groups. Despite the limitations of clinical heterogeneity in subjects, our results demonstrate a positive impact of the studied NPIs on sleep quality in individuals experiencing sleep disturbances. However, comprehensive double-blinded controlled trials are indispensable in the future, emphasizing the objective sleep quality and inter-individual differences in response to the intervention.
Collapse
Affiliation(s)
- Bhanuteja Thondala
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Harsh Pawar
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Garima Chauhan
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Usha Panjwani
- Department of Soldier Performance, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
12
|
Kureshi S, Stowe C, Francis J, Djalilian H. Circadian therapy interventions for glymphatic dysfunction in concussions injuries: A narrative review. Sci Prog 2023; 106:368504231189536. [PMID: 37499049 PMCID: PMC10388340 DOI: 10.1177/00368504231189536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There are two primary threats to the brain after concussion. The first is a buildup of neurotoxic proteins in the brain. The second, a partial consequence of the first, is a sustained neuroinflammatory response that may lead to central sensitization and the development of persistent post-concussive symptoms. These threats make neurotoxin clearance a high clinical priority in the acute period after injury. The glymphatic system is the brain's primary mechanism for clearing neurotoxic waste. The glymphatic system is intimately tied to the sleep cycle and circadian dynamics. However, glymphatic dysfunction and sleep disturbances are nearly ubiquitous in the acute period after concussion injury. Because of this, sleep optimization via circadian therapy is a time-sensitive and critical tool in acute concussion management.
Collapse
Affiliation(s)
- Sohaib Kureshi
- Neurosurgical Medical Clinic, San Diego, CA, USA
- TBI Virtual, San Diego, CA, USA
| | | | | | - Hamid Djalilian
- TBI Virtual, San Diego, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| |
Collapse
|
13
|
He M, Ru T, Li S, Li Y, Zhou G. Shine light on sleep: Morning bright light improves nocturnal sleep and next morning alertness among college students. J Sleep Res 2023; 32:e13724. [PMID: 36058557 DOI: 10.1111/jsr.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/26/2023]
Abstract
The relationship between daytime light, especially morning light and sleep, has not been well documented. People who work in an office spend most of their time indoors and thus have less access to high-level daylight. The current study employed a field intervention approach to investigate whether exposure to 1.5 h of bright electric light in the early morning for 1 workweek would benefit sleep among students who spent most of their time in an office at the university. Twelve students (24.92 ± 1.78 years) underwent a 2 workday baseline measurement and two inconsecutive 5 workday interventions (with 1 week washout) with morning bright light and regular office light (1000 lx, 6500 K vs. 300 lx, 4000 K, at eye level). The sleep outcomes were recorded with actigraphy and a sleep diary. In addition, self-ratings of daytime sleepiness, mood, mental fatigue, perceived effort, and next morning sleepiness were measured each workday. The results showed that exposure to morning bright light versus regular office light yielded a higher sleep efficiency (83.82% ± 1.60 vs. 80.35% ± 1.57, p = 0.02), a smaller fragmentation index (15.26% ± 1.31 vs. 17.18% ± 1.28, p = 0.05), and a shorter time in bed (7.12 ± 0.13 vs. 7.51 ± 0.12, p = 0.03). Meanwhile, an earlier sleep onset time, shorter sleep latency, and lower morning sleepiness were observed after a 5 workday morning bright light intervention compared with the baseline (ps <0.05), no such benefit was found for self-ratings (ps >0.05). These findings support existing evidence that morning bright light could function as an enhancer of sleep and alertness for office occupants.
Collapse
Affiliation(s)
- Meiheng He
- Laboratory of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou, China
| | - Taotao Ru
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Siyu Li
- Laboratory of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou, China
| | - Yun Li
- Laboratory of Lighting and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
A Systematic Review of Treatments of Post-Concussion Symptoms. J Clin Med 2022; 11:jcm11206224. [PMID: 36294545 PMCID: PMC9604759 DOI: 10.3390/jcm11206224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Approximately 10−20% of patients who have sustained a mild Traumatic Brain Injury (mTBI) show persistent post-concussion symptoms (PCS). This review aims to summarize the level of evidence concerning interventions for PCS. Following the PRISMA guidelines, we conducted a systematic review regarding interventions for PCS post-mTBI until August 2021 using the Medline, Cochrane, and Embase databases. Inclusion criteria were the following: (1) intervention focusing on PCS after mTBI, (2) presence of a control group, and (3) adult patients (≥18 y.o). Quality assessment was determined using the Incog recommendation level, and the risk of bias was assessed using the revised Cochrane risk-of-bias tool. We first selected 104 full-text articles. Finally, 55 studies were retained, including 35 that obtained the highest level of evidence. The risk of bias was high in 22 out of 55 studies. Cognitive training, psycho-education, cognitive behavioral therapy, and graded return to physical activity demonstrated some effectiveness on persistent PCS. However, there is limited evidence of the beneficial effect of Methylphenidate. Oculomotor rehabilitation, light therapy, and headache management using repetitive transcranial magnetic stimulation seem effective regarding somatic complaints and sleep disorders. The preventive effect of early (<3 months) interventions remains up for debate. Despite its limitations, the results of the present review should encourage clinicians to propose a tailored treatment to patients according to the type and severity of PCS and could encourage further research with larger groups.
Collapse
|
15
|
Srisurapanont K, Samakarn Y, Kamklong B, Siratrairat P, Bumiputra A, Jaikwang M, Srisurapanont M. Efficacy and acceptability of blue-wavelength light therapy for post-TBI behavioral symptoms: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2022; 17:e0274025. [PMID: 36201498 PMCID: PMC9536631 DOI: 10.1371/journal.pone.0274025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/20/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Behavioral symptoms are common after traumatic brain injury (TBI), but their treatments remain unsatisfactory. This systematic review and meta-analysis compared the efficacy and acceptability between blue-wavelength light therapy (BWLT) and long-wavelength/no light therapy (LW/NLT) for post-TBI sleepiness, sleep disturbance, depressive symptoms, and fatigue. METHODS This study included randomized controlled trials comparing the effects of BWLT and LW/NLT on post-TBI sleepiness, sleep disturbance, depression, or fatigue. We searched Pubmed, Embase, CINAHL, and Cochrane Central Register of Controlled of Trials on April 13, 2022. The revised tool for assessing the risk of bias in randomized trials was applied. We performed a frequentist pairwise meta-analysis using a random-effects model. RESULTS Of 233 retrieved records, six trials (N = 278) were included in this meta-analysis. TBIs ranged from mild to severe, and the interventions were administered for a median of 35 days. Most trials delivered light therapy via lightboxes. Three trials had a high risk of bias. BWLT was significantly superior to LW/NLT in reducing sleep disturbance (5 trials; SMD = -0.63; 95% CI = -1.21 to -0.05; p = 0.03; I2 = 61%) and depressive symptoms (4 trials; SMD = -1.00; 95% CI = -1.62 to -0.38; p < 0.01; I2 = 56%). There were trends that BWLT was superior to LW/NLT in reducing sleepiness (6 trials; SMD = -0.92; 95% CI = -1.84 to 0.00; p = 0.05; I2 = 88%) and fatigue (4 trials; SMD = -1.44; 95% CI = -2.95 to 0.08; p = 0.06; I2 = 91%). All-cause dropout rates were not significantly different between groups. CONCLUSION Limited and heterogenous evidence suggests that short-term BWLT is well accepted, has a large treatment effect on post-TBI depressive symptoms, and may have a moderate treatment effect on post-TBI sleep disturbance.
Collapse
Affiliation(s)
| | - Yanisa Samakarn
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Arina Bumiputra
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Montita Jaikwang
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Manit Srisurapanont
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Argilés M, Sunyer-Grau B, Arteche-Fernandez S, Peña-Gómez C. Functional connectivity of brain networks with three monochromatic wavelengths: a pilot study using resting-state functional magnetic resonance imaging. Sci Rep 2022; 12:16197. [PMID: 36171254 PMCID: PMC9519584 DOI: 10.1038/s41598-022-20668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
Exposure to certain monochromatic wavelengths can affect non-visual brain regions. Growing research indicates that exposure to light can have a positive impact on health-related problems such as spring asthenia, circadian rhythm disruption, and even bipolar disorders and Alzheimer’s. However, the extent and location of changes in brain areas caused by exposure to monochromatic light remain largely unknown. This pilot study (N = 7) using resting-state functional magnetic resonance shows light-dependent functional connectivity patterns on brain networks. We demonstrated that 1 min of blue, green, or red light exposure modifies the functional connectivity (FC) of a broad range of visual and non-visual brain regions. Largely, we observed: (i) a global decrease in FC in all the networks but the salience network after blue light exposure, (ii) a global increase in FC after green light exposure, particularly noticeable in the left hemisphere, and (iii) a decrease in FC on attentional networks coupled with a FC increase in the default mode network after red light exposure. Each one of the FC patterns appears to be best arranged to perform better on tasks associated with specific cognitive domains. Results can be relevant for future research on the impact of light stimulation on brain function and in a variety of health disciplines.
Collapse
Affiliation(s)
- Marc Argilés
- School of Optics and Optometry, Universitat Politècnica de Catalunya, Terrassa, Catalonia, Spain.
| | - Bernat Sunyer-Grau
- School of Optics and Optometry, Universitat Politècnica de Catalunya, Terrassa, Catalonia, Spain
| | - Sílvia Arteche-Fernandez
- School of Optics and Optometry, Universitat Politècnica de Catalunya, Terrassa, Catalonia, Spain
| | - Cleofé Peña-Gómez
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Killgore WDS, Vanuk JR, Dailey NS. Treatment with morning blue light increases left amygdala volume and sleep duration among individuals with posttraumatic stress disorder. Front Behav Neurosci 2022; 16:910239. [PMID: 36172470 PMCID: PMC9510679 DOI: 10.3389/fnbeh.2022.910239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
BackgroundPosttraumatic stress disorder (PTSD) is associated with numerous cognitive, affective, and psychophysiological outcomes, including problems with sleep and circadian rhythms. We tested the effectiveness of a daily morning blue-light exposure treatment (BLT) versus a matched amber light treatment (ALT) to regulate sleep in individuals diagnosed with PTSD. Moreover, PTSD is also associated with reliable findings on structural neuroimaging scans, including reduced amygdala volumes and other differences in cortical gray matter volume (GMV) that may be indicative of underlying neurobehavioral dysfunctions. We examined the effect of BLT versus ALT on GMV and its association with sleep outcomes.MethodsSeventy-six individuals (25 male; 51 female) meeting DSM-V criteria for PTSD (Age = 31.45 years, SD = 8.83) completed sleep assessments and structural neuroimaging scans, followed by random assignment one of two light groups, including BLT (469 nm; n = 39) or placebo ALT (578 nm; n = 37) light therapy daily for 30-min over 6-weeks. Participants wore a wrist actigraph for the duration of the study. After treatment, participants returned to complete sleep assessments and a structural neuroimaging scan. Neuroimaging data were analyzed using the Computational Anatomy Toolbox (CAT12) and Voxel-Based Morphometry (VBM) modules within the Statistical Parametric Mapping (SPM12) software.ResultsThe BLT condition produced significant increases in total time in bed and total sleep time from actigraphy compared to the ALT condition, while ALT improved wake after sleep onset and sleep efficiency compared to BLT. Additionally, BLT led to an increase in left amygdala volume compared to ALT but did not affect hypothesized medial prefrontal regions. Finally, within group correlations showed that improvements in sleep quality and nightmare severity were correlated with increases in left amygdala volume over the course of treatment for the BLT group but not the ALT group.ConclusionIn individuals with PTSD, daily exposure to morning blue light treatment was associated with improvements in objective sleep duration and increased volume of the left amygdala compared to amber placebo light treatment, and changes in amygdala volume correlated with subjective improvement in sleep. These findings suggest that daily morning BLT may provide an important non-pharmacologic adjunctive approach for facilitating sleep and neurobehavioral recovery from PTSD.
Collapse
|
18
|
Vanuk JR, Pace-Schott EF, Bullock A, Esbit S, Dailey NS, Killgore WDS. Morning blue light treatment improves sleep complaints, symptom severity, and retention of fear extinction memory in post-traumatic stress disorder. Front Behav Neurosci 2022; 16:886816. [PMID: 36172467 PMCID: PMC9510714 DOI: 10.3389/fnbeh.2022.886816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Disrupted sleep is a major feature in numerous clinical disorders and is related to decrements in affective memory processing. The prevalence of sleep disruption in post-traumatic stress disorder (PTSD) is suggested to be a key feature that exacerbates the impaired ability to recall extinction memories during experimental fear conditioning. We hypothesized that an intervention employing blue-wavelength light therapy (BLT) to regulate sleep and stabilize circadian rhythms in patients with PTSD (i.e., via regulated morning exposure) would be associated with PTSD symptom improvement, decreased sleep-related complaints, as well as improved consolidation and retention of extinction memories relative to a fear conditioning/extinction paradigm. Eighty-two individuals with PTSD underwent a well-validated fear conditioning/extinction protocol with subsequent assignment to receive morning BLUE (BLT) or placebo AMBER (ALT) light therapy daily for 30-min over 6-weeks. Participants returned after the intervention for post-treatment extinction recall, comprised of exposure to the previously conditioned stimuli, with the difference in skin conductance response between the "extinguished" and the "never-extinguished" stimuli at follow-up. Participants also viewed previously conditioned stimuli in a novel context during a functional magnetic resonance imaging (fMRI) scan. BLUE light therapy was associated with improvements relative to correlated decreases between PTSD symptoms and sleep-related complaints. Participants receiving BLT also sustained retention of the extinction memory, while those in the placebo amber light treatment group showed impairment, characterized by the restoration of the extinguished fear response after 6-weeks. Participants in the ALT also demonstrated greater reactivity in the left insula when viewing the previously extinguished fear-conditioned stimuli in a novel context. Daily BLUE-wavelength morning light exposure was associated with greater retention of extinction learning in patients with PTSD when compared to ALT, as supported by both autonomic and neurobiological reactivity. We speculate that improved sleep facilitated by a stabilized circadian rhythm, after fear-learning, led to greater consolidation of the fear extinction memory, decreased PTSD symptom presentation, and associated decreases in sleep-related complaints. Prominent exposure treatments for PTSD incorporate principles of fear extinction, and our findings suggest that blue light treatment may facilitate treatment gains by promoting the consolidation of extinction memories via improved sleep.
Collapse
Affiliation(s)
- John R. Vanuk
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Edward F. Pace-Schott
- Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ayla Bullock
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Simon Esbit
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Natalie S. Dailey
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - William D. S. Killgore
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022; 185:140-161. [PMID: 35550156 PMCID: PMC9554922 DOI: 10.1016/j.brainresbull.2022.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Sleep disorders are widespread in society and are prevalent in military personnel and in Veterans. Disturbances of sleep and arousal mechanisms are common in neuropsychiatric disorders such as schizophrenia, post-traumatic stress disorder, anxiety and affective disorders, traumatic brain injury, dementia, and substance use disorders. Sleep disturbances exacerbate suicidal ideation, a major concern for Veterans and in the general population. These disturbances impair quality of life, affect interpersonal relationships, reduce work productivity, exacerbate clinical features of other disorders, and impair recovery. Thus, approaches to improve sleep and modulate arousal are needed. Basic science research on the brain circuitry controlling sleep and arousal led to the recent approval of new drugs targeting the orexin/hypocretin and histamine systems, complementing existing drugs which affect GABAA receptors and monoaminergic systems. Non-invasive brain stimulation techniques to modulate sleep and arousal are safe and show potential but require further development to be widely applicable. Invasive viral vector and deep brain stimulation approaches are also in their infancy but may be used to modulate sleep and arousal in severe neurological and psychiatric conditions. Behavioral, pharmacological, non-invasive brain stimulation and cell-specific invasive approaches covered here suggest the potential to selectively influence arousal, sleep initiation, sleep maintenance or sleep-stage specific phenomena such as sleep spindles or slow wave activity. These manipulations can positively impact the treatment of a wide range of neurological and psychiatric disorders by promoting the restorative effects of sleep on memory consolidation, clearance of toxic metabolites, metabolism, and immune function and by decreasing hyperarousal.
Collapse
|
20
|
Feasibility and preliminary efficacy for morning bright light therapy to improve sleep and plasma biomarkers in US Veterans with TBI. A prospective, open-label, single-arm trial. PLoS One 2022; 17:e0262955. [PMID: 35421086 PMCID: PMC9009710 DOI: 10.1371/journal.pone.0262955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) is associated with persistent sleep-wake dysfunction, including insomnia and circadian rhythm disruption, which can exacerbate functional outcomes including mood, pain, and quality of life. Present therapies to treat sleep-wake disturbances in those with TBI (e.g., cognitive behavioral therapy for insomnia) are limited by marginal efficacy, poor patient acceptability, and/or high patient/provider burden. Thus, this study aimed to assess the feasibility and preliminary efficacy of morning bright light therapy, to improve sleep in Veterans with TBI (NCT03578003). Thirty-three Veterans with history of TBI were prospectively enrolled in a single-arm, open-label intervention using a lightbox (~10,000 lux at the eye) for 60-minutes every morning for 4-weeks. Pre- and post-intervention outcomes included questionnaires related to sleep, mood, TBI, post-traumatic stress disorder (PTSD), and pain; wrist actigraphy as a proxy for objective sleep; and blood-based biomarkers related to TBI/sleep. The protocol was rated favorably by ~75% of participants, with adherence to the lightbox and actigraphy being ~87% and 97%, respectively. Post-intervention improvements were observed in self-reported symptoms related to insomnia, mood, and pain; actigraphy-derived measures of sleep; and blood-based biomarkers related to peripheral inflammatory balance. The severity of comorbid PTSD was a significant positive predictor of response to treatment. Morning bright light therapy is a feasible and acceptable intervention that shows preliminary efficacy to treat disrupted sleep in Veterans with TBI. A full-scale randomized, placebo-controlled study with longitudinal follow-up is warranted to assess the efficacy of morning bright light therapy to improve sleep, biomarkers, and other TBI related symptoms.
Collapse
|
21
|
Connolly LJ, Ponsford JL, Rajaratnam SMW, Lockley SW. Development of a Home-Based Light Therapy for Fatigue Following Traumatic Brain Injury: Two Case Studies. Front Neurol 2021; 12:651498. [PMID: 34589041 PMCID: PMC8473693 DOI: 10.3389/fneur.2021.651498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Fatigue and sleep disturbance negatively impact quality of life following brain injury and there are no established treatments. Building on research showing efficacy of blue light therapy delivered via a lightbox in reducing fatigue and daytime sleepiness after traumatic brain injury (TBI), this paper describes the development and implementation of a novel in-home light therapy to alleviate fatigue and sleep disturbance in two case studies. Methods: During the 8-week lighting intervention, participants' home lighting was adjusted to provide high intensity, blue-enriched (high melanopic) light all day as a stimulant and dimmer, blue-depleted (low melanopic) light for 3 h before sleep as a soporific. The sham 8-week control condition resembled participants' usual (baseline) lighting conditions (3,000-4,000 K all day). Lighting conditions were crossed-over. Outcomes were measures of fatigue, subjective daytime sleepiness, sleep quality, insomnia symptoms, psychomotor vigilance and mood. Case study participants were a 35-year old male (5 years post-TBI), and a 46-year-old female (22 years post-TBI). Results: The relative proportion of melanopic lux was greater in Treatment lighting than Control during daytime, and lower during evenings. Participants found treatment to be feasible to implement, and was well-tolerated with no serious side effects noted. Self-reported compliance was >70%. Both cases demonstrated reduced fatigue, sleep disturbance and insomnia symptoms during the treatment lighting intervention. Case 2 additionally showed reductions in daytime sleepiness and depressive symptoms. As expected, symptoms trended toward baseline levels during the control condition. Discussion: Treatment was positively received and compliance rates were high, with no problematic side-effects. Participants expressed interest in continuing the ambient light therapy in their daily lives. Conclusions: These cases studies demonstrate the acceptability and feasibility of implementing a personalized in-home dynamic light treatment for TBI patients, with evidence for efficacy in reducing fatigue and sleep disturbance. Clinical Trial Registration:www.anzctr.org.au, identifier: ACTRN12617000866303.
Collapse
Affiliation(s)
- Laura J Connolly
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Jennie L Ponsford
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Steven W Lockley
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Connolly LJ, Rajaratnam SMW, Spitz G, Lockley SW, Ponsford JL. Factors Associated With Response to Pilot Home-Based Light Therapy for Fatigue Following Traumatic Brain Injury and Stroke. Front Neurol 2021; 12:651392. [PMID: 34335435 PMCID: PMC8319544 DOI: 10.3389/fneur.2021.651392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Fatigue and sleep disturbance are common and debilitating problems after brain injury. Light therapy shows promise as a potential treatment. We conducted a trial of in-home light therapy to alleviate fatigue and sleep disturbance. The aim of the current study was to identify factors moderating treatment response. Methods: Participants were 24 individuals with traumatic brain injury (TBI) (n = 19) or stroke (n = 5) reporting clinically significant fatigue. Outcomes included fatigue on Brief Fatigue Inventory (primary outcome), sleep disturbance on Pittsburgh Sleep Quality Index, reaction time (RT) on Psychomotor Vigilance Task and time spent in productive activity. Interactions of demographic and clinical variables with these outcomes were examined in linear mixed-model analyses. Results: Whilst there were no variables found to be significantly associated with change in our primary outcome of fatigue, some variables revealed medium or large effect sizes, including chronotype, eye color, injury severity as measured by PTA, and baseline depressive symptoms. Chronotype significantly moderated sleep quality, with evening chronotype being associated with greater improvement during treatment. Injury type significantly predicted mean RT, with stroke participants exhibiting greater post-treatment reduction than TBI. Age significantly predicted productive activity during Treatment, with younger participants showing stronger Treatment effect. Conclusion: Light therapy may have a greater impact on sleep in younger individuals and those with an evening chronotype. Older individuals may need higher treatment dose to achieve benefit. Clinical Trial Registration:www.anzctr.org.au, identifier: ACTRN12617000866303.
Collapse
Affiliation(s)
- Laura J Connolly
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Shantha M W Rajaratnam
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Gershon Spitz
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Steven W Lockley
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jennie L Ponsford
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Connolly LJ, Rajaratnam SMW, Murray JM, Spitz G, Lockley SW, Ponsford JL. Home-based light therapy for fatigue following acquired brain injury: a pilot randomized controlled trial. BMC Neurol 2021; 21:262. [PMID: 34225698 PMCID: PMC8256500 DOI: 10.1186/s12883-021-02292-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Fatigue and sleep disturbance are debilitating problems following brain injury and there are no established treatments. Building on demonstrated efficacy of blue light delivered via a lightbox in reducing fatigue and daytime sleepiness after TBI, this study evaluated the efficacy of a novel in-home light intervention in alleviating fatigue, sleep disturbance, daytime sleepiness and depressive symptoms, and in improving psychomotor vigilance and participation in daily productive activity, following injury METHODS: The impact of exposure to a dynamic light intervention (Treatment) was compared to usual lighting (Control) in a randomized within-subject, crossover trial. Outcomes were fatigue (primary outcome), daytime sleepiness, sleep disturbance, insomnia symptoms, psychomotor vigilance, mood and activity levels. Participants (N = 24, M ± SDage = 44.3 ± 11.4) had mild-severe TBI or stroke > 3 months previously, and self-reported fatigue (Fatigue Severity Scale ≥ 4). Following 2-week baseline, participants completed each condition for 2 months in counter-balanced order, with 1-month follow-up. Treatment comprised daytime blue-enriched white light (CCT > 5000 K) and blue-depleted light (< 3000 K) 3 h prior to sleep. RESULTS Random-effects mixed-model analysis showed no significantly greater change in fatigue on the Brief Fatigue Inventory during Treatment, but a medium effect size of improvement (p = .33, d = -0.42). There were significantly greater decreases in sleep disturbance (p = .004), insomnia symptoms (p = .036), reaction time (p = .004) and improvements in productive activity (p = .005) at end of Treatment relative to Control, with large effect sizes (d > 0.80). Changes in other outcomes were non-significant. CONCLUSIONS This pilot study provides preliminary support for in-home dynamic light therapy to address sleep-related symptoms in acquired brain injury. TRIAL REGISTRATION This trial was registered with the Australian and New Zealand Clinical Trials Registry on 13 June 2017, www.anzctr.org.au , ACTRN12617000866303.
Collapse
Affiliation(s)
- Laura J Connolly
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia. .,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, USA
| | - Jade M Murray
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Steven W Lockley
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, USA
| | - Jennie L Ponsford
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Bajaj S, Raikes AC, Razi A, Miller MA, Killgore WDS. Blue-Light Therapy Strengthens Resting-State Effective Connectivity within Default-Mode Network after Mild TBI. J Cent Nerv Syst Dis 2021; 13:11795735211015076. [PMID: 34104033 PMCID: PMC8145607 DOI: 10.1177/11795735211015076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that post concussive symptoms, including mood changes, may be improved through morning blue-wavelength light therapy (BLT). However, the neurobiological mechanisms underlying these effects remain unknown. We hypothesize that BLT may influence the effective brain connectivity (EC) patterns within the default-mode network (DMN), particularly involving the medial prefrontal cortex (MPFC), which may contribute to improvements in mood. METHODS Resting-state functional MRI data were collected from 41 healthy-controls (HCs) and 28 individuals with mild traumatic brain injury (mTBI). Individuals with mTBI also underwent a diffusion-weighted imaging scan and were randomly assigned to complete either 6 weeks of daily morning BLT (N = 14) or amber light therapy (ALT; N = 14). Advanced spectral dynamic causal modeling (sDCM) and diffusion MRI connectometry were used to estimate EC patterns and structural connectivity strength within the DMN, respectively. RESULTS The sDCM analysis showed dominant connectivity pattern following mTBI (pre-treatment) within the hemisphere contralateral to the one observed for HCs. BLT, but not ALT, resulted in improved directional information flow (ie, EC) from the left lateral parietal cortex (LLPC) to MPFC within the DMN. The improvement in EC from LLPC to MPFC was accompanied by stronger structural connectivity between the 2 areas. For the BLT group, the observed improvements in function and structure were correlated (at a trend level) with changes in self-reported happiness. CONCLUSIONS The current preliminary findings provide empirical evidence that morning short-wavelength light therapy could be used as a novel alternative rehabilitation technique for mTBI. TRIAL REGISTRY The research protocols were registered in the ClinicalTrials.gov database (CT Identifiers NCT01747811 and NCT01721356).
Collapse
Affiliation(s)
- Sahil Bajaj
- Social, Cognitive and Affective Neuroscience (SCAN) Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging at Monash University, Clayton, VIC, Australia
- The Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Michael A Miller
- Social, Cognitive and Affective Neuroscience (SCAN) Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - William DS Killgore
- Social, Cognitive and Affective Neuroscience (SCAN) Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Alkozei A, Dailey NS, Bajaj S, Vanuk JR, Raikes AC, Killgore WDS. Exposure to Blue Wavelength Light Is Associated With Increases in Bidirectional Amygdala-DLPFC Connectivity at Rest. Front Neurol 2021; 12:625443. [PMID: 33841300 PMCID: PMC8032953 DOI: 10.3389/fneur.2021.625443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Blue wavelength light has been used successfully as a treatment method for certain mood disorders, but, the underlying mechanisms behind the mood enhancing effects of light remain poorly understood. We investigated the effects of a single dose of 30 min of blue wavelength light (n = 17) vs. amber wavelength light (n = 12) exposure in a sample of healthy adults on subsequent resting-state functional and directed connectivity, and associations with changes in state affect. Individuals who received blue vs. amber wavelength light showed greater positive connectivity between the right amygdala and a region within the left dorsolateral prefrontal cortex (DLPFC). In addition, using granger causality, the findings showed that individuals who received blue wavelength light displayed greater bidirectional information flow between these two regions relative to amber light. Furthermore, the strength of amygdala-DLPFC functional connectivity was associated with greater decreases in negative mood for the blue, but not the amber light condition. Blue light exposure may positively influence mood by modulating greater information flow between the amygdala and the DLPFC, which may result in greater engagement of cognitive control strategies that are needed to perceive and regulate arousal and mood.
Collapse
Affiliation(s)
- Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Sahil Bajaj
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - John R Vanuk
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - Adam C Raikes
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
26
|
Raikes AC, Dailey NS, Forbeck B, Alkozei A, Killgore WDS. Daily Morning Blue Light Therapy for Post-mTBI Sleep Disruption: Effects on Brain Structure and Function. Front Neurol 2021; 12:625431. [PMID: 33633674 PMCID: PMC7901882 DOI: 10.3389/fneur.2021.625431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.
Collapse
Affiliation(s)
- Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Brittany Forbeck
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
27
|
Srisurapanont K, Samakarn Y, Kamklong B, Siratrairat P, Bumiputra A, Jaikwang M, Srisurapanont M. Blue-wavelength light therapy for post-traumatic brain injury sleepiness, sleep disturbance, depression, and fatigue: A systematic review and network meta-analysis. PLoS One 2021; 16:e0246172. [PMID: 33539446 PMCID: PMC7861530 DOI: 10.1371/journal.pone.0246172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE This review aimed to determine the efficacy of blue-wavelength light therapy (BWLT) for post-traumatic brain injury (TBI) sleepiness, sleep disturbance, depression, and fatigue. METHODS Pubmed, Scopus, Web of Science, Cochrane Library, Academic Search Complete, and CINAHL. Included trials were randomized controlled trials (RCTs) of BWLT in adults with a history of TBI. Outcomes of interest included sleepiness, sleep disturbance, depression, or fatigue. Two reviewers independently screened the searched items, selected the trials, extracted the data, and rating the quality of trials. We aggregated the data using a random-effect, frequentist network meta-analysis (NMA). RESULTS We searched the databases on July 4, 2020. This review included four RCTs of 117 patients with a history of TBI who were randomized to received BWLT, amber light therapy (ALT), or no light therapy (NLT). Moderate-quality evidence revealed that: i) BWLT was significantly superior to NLT in reducing depression (SMD = 0.81, 95% CI = 0.20 to 1.43) ii) BWLT reduced fatigue at a significantly greater extent than NLT (SMD = 1.09, 95% CI = 0.41 to 1.76) and ALT (SMD = 1.00, 95% CI = 0.14 to 1.86). Low-quality evidence suggested that BWLT reduced depression at a greater extent than ALT (SMD = 0.57, 95% CI = 0.04 to 1.10). Low-quality evidence found that the dropout rates of those receiving BWLT and ALT were not significantly different (RR = 3.72, 95% CI = 0.65 to 21.34). CONCLUSION Moderate-quality evidence suggests that BWLT may be useful for post-TBI depression and fatigue.
Collapse
Affiliation(s)
| | - Yanisa Samakarn
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Arina Bumiputra
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Montita Jaikwang
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Manit Srisurapanont
- Department of Psychiatry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Killgore WDS. Lightening the mood: evidence for blue light exposure in the treatment of post-concussion depression. Expert Rev Neurother 2020; 20:1081-1083. [PMID: 32865054 DOI: 10.1080/14737175.2020.1814147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- William D S Killgore
- Department of Psychiatry, University of Arizona College of Medicine , Tucson, AZ, USA
| |
Collapse
|