1
|
Caeyenberghs K, Singh M, Cobden AL, Ellis EG, Graeme LG, Gates P, Burmester A, Guarnera J, Burnett J, Deutscher EM, Firman-Sadler L, Joyce B, Notarianni JP, Pardo de Figueroa Flores C, Domínguez D JF. Magnetic resonance imaging in traumatic brain injury: a survey of clinical practitioners' experiences and views on current practice and obstacles. Brain Inj 2025; 39:427-443. [PMID: 39876834 DOI: 10.1080/02699052.2024.2443001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/20/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) has revolutionized our capacity to examine brain alterations in traumatic brain injury (TBI). However, little is known about the level of implementation of MRI techniques in clinical practice in TBI and associated obstacles. METHODS A diverse set of health professionals completed 19 multiple choice and free text survey questions. RESULTS Of the 81 respondents, 73.4% reported that they acquire/order MRI scans in TBI patients, and 66% indicated they would prefer MRI be more often used with this cohort. The greatest impediment for MRI usage was scanner availability (57.1%). Less than half of respondents (42.1%) indicated that they perform advanced MRI analysis. Factors such as dedicated experts within the team (44.4%) and user-friendly MRI analysis tools (40.7%), were listed as potentially helpful to implement advanced MRI analyses in clinical practice. CONCLUSION Results suggest a wide variability in the purpose, timing, and composition of the scanning protocol of clinical MRI after TBI. Three recommendations are described to broaden implementation of MRI in clinical practice in TBI: 1) development of a standardized multimodal MRI protocol; 2) future directions for the use of advanced MRI analyses; 3) use of low-field MRI to overcome technical/practical issues with high-field MRI.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mervyn Singh
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Annalee L Cobden
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Elizabeth G Ellis
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Liam G Graeme
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Priscilla Gates
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alex Burmester
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jade Guarnera
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jake Burnett
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Emergency Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Evelyn M Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Lyndon Firman-Sadler
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Bec Joyce
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | | | | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
2
|
Caeyenberghs K, Imms P, Irimia A, Monti MM, Esopenko C, de Souza NL, Dominguez D JF, Newsome MR, Dobryakova E, Cwiek A, Mullin HAC, Kim NJ, Mayer AR, Adamson MM, Bickart K, Breedlove KM, Dennis EL, Disner SG, Haswell C, Hodges CB, Hoskinson KR, Johnson PK, Königs M, Li LM, Liebel SW, Livny A, Morey RA, Muir AM, Olsen A, Razi A, Su M, Tate DF, Velez C, Wilde EA, Zielinski BA, Thompson PM, Hillary FG. ENIGMA's simple seven: Recommendations to enhance the reproducibility of resting-state fMRI in traumatic brain injury. Neuroimage Clin 2024; 42:103585. [PMID: 38531165 PMCID: PMC10982609 DOI: 10.1016/j.nicl.2024.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024]
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Martin M Monti
- Department of Psychology, UCLA, USA; Brain Injury Research Center (BIRC), Department of Neurosurgery, UCLA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Nicola L de Souza
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan F Dominguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Mary R Newsome
- Michael E. DeBakey VA Medical Center, Houston, TX, USA; H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA; Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Andrew Cwiek
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Hollie A C Mullin
- Department of Psychology, Penn State University, State College, PA, USA.
| | - Nicholas J Kim
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Alfred E. Mann Department of Biomedical Engineering, Andrew & Erna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Maheen M Adamson
- Women's Operational Military Exposure Network (WOMEN) & Rehabilitation Department, VA Palo Alto, Palo Alto, CA, USA; Rehabilitation Service, VA Palo Alto, Palo Alto, CA, USA; Neurosurgery, Stanford School of Medicine, Stanford, CA, USA.
| | - Kevin Bickart
- UCLA Steve Tisch BrainSPORT Program, USA; Department of Neurology, David Geffen School of Medicine at UCLA, USA.
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Courtney Haswell
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, OH, USA.
| | - Paula K Johnson
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, The Netherlands; Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| | - Lucia M Li
- C3NL, Imperial College London, United Kingdom; UK DRI Centre for Health Care and Technology, Imperial College London, United Kingdom.
| | - Spencer W Liebel
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham, NC, USA.
| | - Alexandra M Muir
- Department of Psychology, Brigham Young University, Provo, UT, USA.
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; NorHEAD - Norwegian Centre for Headache Research, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC 3800, Australia; Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| | - Matthew Su
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Carmen Velez
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Brandon A Zielinski
- Departments of Pediatrics, Neurology, and Neuroscience, University of Florida, Gainesville, FL, USA; Departments of Pediatrics, Neurology, and Radiology, University of Utah, Salt Lake City, UT, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA.
| | - Frank G Hillary
- Department of Psychology, Penn State University, State College, PA, USA; Department of Neurology, Hershey Medical Center, PA, USA.
| |
Collapse
|
3
|
Sultana T, Hasan MA, Kang X, Liou-Johnson V, Adamson MM, Razi A. Neural mechanisms of emotional health in traumatic brain injury patients undergoing rTMS treatment. Mol Psychiatry 2023; 28:5150-5158. [PMID: 37414927 DOI: 10.1038/s41380-023-02159-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Emotional dysregulation such as that seen in depression, are a long-term consequence of mild traumatic brain injury (TBI), that can be improved by using neuromodulation treatments such as repetitive transcranial magnetic stimulation (rTMS). Previous studies provide insights into the changes in functional connectivity related to general emotional health after the application of rTMS procedures in patients with TBI. However, these studies provide little understanding of the underlying neuronal mechanisms that drive the improvement of the emotional health in these patients. The current study focuses on inferring the effective (causal) connectivity changes and their association with emotional health, after rTMS treatment of cognitive problems in TBI patients (N = 32). Specifically, we used resting state functional magnetic resonance imaging (fMRI) together with spectral dynamic causal model (spDCM) to investigate changes in brain effective connectivity, before and after the application of high frequency (10 Hz) rTMS over left dorsolateral prefrontal cortex. We investigated the effective connectivity of the cortico-limbic network comprised of 11 regions of interest (ROIs) which are part of the default mode, salience, and executive control networks, known to be implicated in emotional processing. The results indicate that overall, among extrinsic connections, the strength of excitatory connections decreased while that of inhibitory connections increased after the neuromodulation. The cardinal region in the analysis was dorsal anterior cingulate cortex (dACC) which is considered to be the most influenced during emotional health disorders. Our findings implicate the altered connectivity of dACC with left anterior insula and medial prefrontal cortex, after the application of rTMS, as a potential neural mechanism underlying improvement of emotional health. Our investigation highlights the importance of these brain regions as treatment targets in emotional processing in TBI.
Collapse
Affiliation(s)
- Tajwar Sultana
- Department of Computer and Information Systems Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Neurocomputation Laboratory, National Centre of Artificial Intelligence, Peshawar, Pakistan
| | - Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Neurocomputation Laboratory, National Centre of Artificial Intelligence, Peshawar, Pakistan
| | - Xiaojian Kang
- WRIISC-WOMEN, VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Victoria Liou-Johnson
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Maheen Mausoof Adamson
- WRIISC-WOMEN, VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR, London, United Kingdom.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
4
|
Tang VM, Ibrahim C, Rodak T, Goud R, Blumberger DM, Voineskos D, Le Foll B. Managing substance use in patients receiving therapeutic repetitive transcranial magnetic stimulation: A scoping review. Neurosci Biobehav Rev 2023; 155:105477. [PMID: 38007879 DOI: 10.1016/j.neubiorev.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is an invaluable treatment option for neuropsychiatric disorders. Co-occurring recreational and nonmedical substance use can be common in those presenting for rTMS treatment, and it is unknown how it may affect the safety and efficacy of rTMS for the treatment of currently approved neuropsychiatric indications. This scoping review aimed to map the literature on humans receiving rTMS and had a history of any type of substance use. The search identified 274 articles providing information on inclusion/exclusion criteria, withdrawal criteria, safety protocols, type of rTMS and treatment parameters, adverse events and effect on primary outcomes that related to substance use. There are neurophysiological effects of substance use on cortical excitability, although the relevance to clinical rTMS practice is unknown. The current literature supports the safety and feasibility of delivering rTMS to those who have co-occurring neuropsychiatric disorder and substance use. However, specific details on how varying degrees of substance use alters the safety, efficacy, and mechanisms of rTMS remains poorly described.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada.
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Terri Rodak
- CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Daphne Voineskos
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada; CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| |
Collapse
|
5
|
Philip NS, Ramanathan D, Gamboa B, Brennan MC, Kozel FA, Lazzeroni L, Madore MR. Repetitive Transcranial Magnetic Stimulation for Depression and Posttraumatic Stress Disorder in Veterans With Mild Traumatic Brain Injury. Neuromodulation 2023; 26:878-884. [PMID: 36737300 PMCID: PMC10765323 DOI: 10.1016/j.neurom.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Mild traumatic brain injury (mTBI) is a signature injury of military conflicts and is prevalent in veterans with major depressive disorder (MDD) and posttraumatic stress disorder (PTSD). Although therapeutic transcranial magnetic stimulation (TMS) can reduce symptoms of depression and PTSD, whether traumatic brain injury (TBI) affects TMS responsiveness is not yet known. We hypothesized mTBI would be associated with higher pretreatment symptom burden and poorer TMS response. MATERIALS AND METHODS We investigated a registry of veterans (N = 770) who received TMS for depression across the US Veterans Affairs system. Of these, 665 (86.4%) had data on TBI and lifetime number of head injuries while 658 had complete data related to depression outcomes. Depression symptoms were assessed using the nine-item Patient Health Questionnaire and PTSD symptoms using the PTSD Checklist for DSM-5. Linear mixed effects models and t-tests evaluated whether head injuries predicted symptom severity before treatment, and how TBI status affected clinical TMS outcomes. RESULTS Of the 658 veterans included, 337 (50.7%) reported previous mTBI, with a mean of three head injuries (range 1-20). TBI status did not predict depressive symptom severity or TMS-associated changes in depression (all p's > 0.1). TBI status was associated with a modest attenuation of TMS-associated improvement in PTSD (in patients with PTSD Checklist for DSM-5 scores > 33). There was no correlation between the number of head injuries and TMS response (p > 0.1). CONCLUSIONS Contrary to our hypothesis, presence of mTBI did not meaningfully change TMS outcomes. Veterans with mTBI had greater PTSD symptoms, yet neither TBI status nor cumulative head injuries reduced TMS effectiveness. Limitations include those inherent to retrospective registry studies and self-reporting. Although these findings are contrary to our hypotheses, they support the safety and effectiveness of TMS for MDD and PTSD in patients who have comorbid mTBI.
Collapse
Affiliation(s)
- Noah S Philip
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Dhakshin Ramanathan
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Bruno Gamboa
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - McKenna C Brennan
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence Veterans Affairs Healthcare System, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Frank Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, FL, USA
| | - Laura Lazzeroni
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle R Madore
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Mittal N, Lewis C, Cho Y, Peterson CL, Hadimani RL. Effect of Fiber Tracts and Depolarized Brain Volume on Resting Motor Thresholds During Transcranial Magnetic Stimulation. IEEE TRANSACTIONS ON MAGNETICS 2022; 58:1-6. [DOI: 10.1109/tmag.2022.3148214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Neil Mittal
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Connor Lewis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Yeajin Cho
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Carrie L. Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ravi L. Hadimani
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Lindsey A, Ellison RL, Herrold AA, Aaronson AL, Kletzel SL, Stika MM, Guernon A, Bender Pape T. rTMS/iTBS and Cognitive Rehabilitation for Deficits Associated With TBI and PTSD: A Theoretical Framework and Review. J Neuropsychiatry Clin Neurosci 2022; 35:28-38. [PMID: 35872613 DOI: 10.1176/appi.neuropsych.21090227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rehabilitation of cognitive and psychosocial deficits resulting from traumatic brain injury (TBI) continues to be an area of concern in health care. Commonly co-occurring psychiatric disorders, such as major depressive disorder and posttraumatic stress disorder, create additional hurdles when attempting to remediate cognitive sequelae. There is increased need for procedures that will yield consistent gains indicative of recovery of function. Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, has potential as an instrument that can be tailored to aid cognitive processes and support functional gains. The use of iTBS enables direct stimulation of desired neural systems. iTBS, performed in conjunction with behavioral interventions (e.g., cognitive rehabilitation, psychotherapy), may result in additive success in facilitating cognitive restoration and adaptation. The purpose of this theoretical review is to illustrate how the technical and physiological aspects of iTBS may enhance other forms of neurorehabilitation for individuals with TBI. Future research on combinatorial iTBS interventions has the potential to translate to other complex neuropsychiatric conditions.
Collapse
Affiliation(s)
- André Lindsey
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Rachael L Ellison
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Amy A Herrold
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Alexandra L Aaronson
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Sandra L Kletzel
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Monica M Stika
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Ann Guernon
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Theresa Bender Pape
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| |
Collapse
|
8
|
Mittal N, Thakkar B, Hodges CB, Lewis C, Cho Y, Hadimani RL, Peterson CL. Effect of neuroanatomy on corticomotor excitability during and after transcranial magnetic stimulation and intermittent theta burst stimulation. Hum Brain Mapp 2022; 43:4492-4507. [PMID: 35678552 PMCID: PMC9435000 DOI: 10.1002/hbm.25968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 01/04/2023] Open
Abstract
Individual neuroanatomy can influence motor responses to transcranial magnetic stimulation (TMS) and corticomotor excitability after intermittent theta burst stimulation (iTBS). The purpose of this study was to examine the relationship between individual neuroanatomy and both TMS response measured using resting motor threshold (RMT) and iTBS measured using motor evoked potentials (MEPs) targeting the biceps brachii and first dorsal interosseus (FDI). Ten nonimpaired individuals completed sham‐controlled iTBS sessions and underwent MRI, from which anatomically accurate head models were generated. Neuroanatomical parameters established through fiber tractography were fiber tract surface area (FTSA), tract fiber count (TFC), and brain scalp distance (BSD) at the point of stimulation. Cortical magnetic field induced electric field strength (EFS) was obtained using finite element simulations. A linear mixed effects model was used to assess effects of these parameters on RMT and iTBS (post‐iTBS MEPs). FDI RMT was dependent on interactions between EFS and both FTSA and TFC. Biceps RMT was dependent on interactions between EFS and and both FTSA and BSD. There was no groupwide effect of iTBS on the FDI but individual changes in corticomotor excitability scaled with RMT, EFS, BSD, and FTSA. iTBS targeting the biceps was facilitatory, and dependent on FTSA and TFC. MRI‐based measures of neuroanatomy highlight how individual anatomy affects motor system responses to different TMS paradigms and may be useful for selecting appropriate motor targets when designing TMS based therapies.
Collapse
Affiliation(s)
- Neil Mittal
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Cooper B Hodges
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Connor Lewis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yeajin Cho
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ravi L Hadimani
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
9
|
|