1
|
Feng S, Wu Z, Zheng X, Shao Z, Lin Q, Sun S. Abnormal levels of expression of microRNAs in peripheral blood of patients with traumatic brain injury are induced by microglial activation and correlated with severity of injury. Eur J Med Res 2024; 29:188. [PMID: 38504296 PMCID: PMC10953077 DOI: 10.1186/s40001-024-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Microglia play a crucial role in regulating the progression of traumatic brain injury (TBI). In specific, microglia can self-activate and secrete various substances that exacerbate or alleviate the neuroimmune response to TBI. In addition, microRNAs (miRNAs) are involved in the functional regulation of microglia. However, molecular markers that reflect the dynamics of TBI have not yet been found in peripheral tissues. METHODS Paired samples of peripheral blood were collected from patients with TBI before and after treatment. Next-generation sequencing and bioinformatics analysis were used to identify the main pathways and biological functions of TBI-related miRNAs in the samples. Moreover, lipopolysaccharide-treated human microglia were used to construct a cellular immune-activation model. This was combined with analysis of peripheral blood samples to screen for highly expressed miRNAs derived from activated microglia after TBI treatment. Quantitative reverse-transcriptase polymerase chain reaction was used to determine the expression levels of these miRNAs, allowing their relationship with the severity of TBI to be examined. Receiver operating characteristic (ROC) curves were constructed to analyse the clinical utility of these miRNAs for determining the extent of TBI. RESULTS Sequencing results showed that 37 miRNAs were differentially expressed in peripheral blood samples from patients with TBI before and after treatment, with 17 miRNAs being upregulated and 20 miRNAs being downregulated after treatment. The expression profiles of these miRNAs were verified in microglial inflammation models and in the abovementioned peripheral blood samples. The results showed that hsa-miR-122-5p and hsa-miR-193b-3p were highly expressed in the peripheral blood of patients with TBI after treatment and that the expression levels of these miRNAs were correlated with the patients' scores on the Glasgow Coma Scale. ROC curve analysis revealed that abnormally high levels of expression of hsa-miR-122-5p and hsa-miR-193b-3p in peripheral blood have some clinical utility for distinguishing different extents of TBI and thus could serve as biomarkers of TBI. CONCLUSION Abnormally high levels of expression of hsa-miR-122-5p and hsa-miR-193b-3p in the peripheral blood of patients with TBI were due to the activation of microglia and correlated with the severity of TBI. This discovery may help to increase understanding of the molecular pathology of TBI and guide the development of new strategies for TBI therapy based on microglial function.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Zhangying Wu
- Department of Cardiology, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Xianping Zheng
- Intensive Care Unit, Zibo Central Hospital, Zibo, 255024, China
| | - Zhiwei Shao
- Intensive Care Unit, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Qiang Lin
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zhangdian District, Zibo, 255024, China.
| |
Collapse
|
2
|
Wu P, He B, Li X, Zhang H. Roles of microRNA-124 in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2023; 17:1298508. [PMID: 38034588 PMCID: PMC10687822 DOI: 10.3389/fncel.2023.1298508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI.
Collapse
Affiliation(s)
- Panxing Wu
- Department of Neurosurgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Bao He
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Xiaoliang Li
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, Jiangsu, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
3
|
Zilliox MJ, Foecking EM, Kuffel GR, Conneely M, Saban KL, Herrold AA, Kletzel SL, Radke JR, Walsh E, Guernon A, Pape A, Ripley DL, Patil V, Pacheco MS, Rosenow JM, Bhaumik R, Bhaumik D, Pape TLB. An Initial miRNA Profile of Persons With Persisting Neurobehavioral Impairments and States of Disordered Consciousness After Severe Traumatic Brain Injury. J Head Trauma Rehabil 2023; 38:E267-E277. [PMID: 36350037 DOI: 10.1097/htr.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine the merits of using microRNAs (miRNAs) as biomarkers of disorders of consciousness (DoC) due to traumatic brain injury (TBI). SETTINGS Acute and subacute beds. PARTICIPANTS Patients remaining in vegetative and minimally conscious states (VS, MCS), an average of 1.5 years after TBI, and enrolled in a randomized clinical trial ( n = 6). Persons without a diagnosed central nervous system disorder, neurotypical controls ( n = 5). DESIGN Comparison of whole blood miRNA profiles between patients and age/gender-matched controls. For patients, correlational analyses between miRNA profiles and measures of neurobehavioral function. MAIN MEASURES Baseline measures of whole blood miRNAs isolated from the cellular and fluid components of blood and measured using miRNA-seq and real-time polymerase chain reaction (RT-PCR). Baseline neurobehavioral measures derived from 7 tests. RESULTS For patients, relative to controls, 48 miRNA were significantly ( P < .05)/differentially expressed. Cluster analysis showed that neurotypical controls were most similar to each other and with 2 patients (VS: n = 1; and MCS: n = 1). Three patients, all in MCS, clustered separately. The only female in the sample, also in MCS, formed an independent group. For the 48 miRNAs, the enriched pathways identified are implicated in secondary brain damage and 26 miRNAs were significantly ( P < .05) correlated with measures of neurobehavioral function. CONCLUSIONS Patients remaining in states of DoC an average of 1.5 years after TBI showed a different and reproducible pattern of miRNA expression relative to age/gender-matched neurotypical controls. The phenotypes, defined by miRNA profiles relative to persisting neurobehavioral impairments, provide the basis for future research to determine the miRNA profiles differentiating states of DoC and the basis for future research using miRNA to detect treatment effects, predict treatment responsiveness, and developing targeted interventions. If future research confirms and advances reported findings, then miRNA profiles will provide the foundation for patient-centric DoC neurorehabilitation.
Collapse
Affiliation(s)
- Michael J Zilliox
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois (Dr Zilliox); Research and Development Service (Drs Foecking, Walsh, Guernon, and Bender Pape), Center for Innovation in Complex Chronic Healthcare & Research Service (Drs Saban, Herrold, Kletzel, and Bender Pape), Rehabilitation Service (Dr Pacheco), and Department of Neurology (Dr Patil), Edward Hines Jr VA Hospital, Hines, Illinois; Department of Otolaryngology-Head and Neck Surgery (Dr Foecking), Marcella Niehoff School of Nursing (Dr Saban), Infectious Diseases and Immunology Research Institute (Dr Radke), and Division of Infectious Diseases (Dr Radke), Loyola University Chicago, Maywood, Illinois; Loyola Genomics Facility, Loyola University, Maywood, Illinois (Ms Kuffel); Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, Illinois (Dr Conneely); Departments of Psychiatry & Behavioral Sciences (Dr Herrold), Physical Medicine and Rehabilitation (Drs Ripley and Bender Pape), and Neurosurgery (Dr Rosenow), Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Department of Laboratory Medicine and Pathology, University of Washington Medicine, Seattle (Dr Pape); Lewis University, College of Nursing and Health Sciences, Romeoville, Illinois (Dr Guernon); Department of Psychiatry, Biostatistical Research Center, Division of Epidemiology and Biostatistics (Drs R. Bhaumik and D. Bhaumik), University of Illinois at Chicago; HealthBridge, Arlington Heights, Illinois (Dr Ripley); Dr Radke is now at Research Section, Boise VA Hospital, Boise, Idaho; Ms Kuffel is now at National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
5
|
Petrova TA, Kondratyev SA, Kostareva AA, Rutkovskiy RV, Savvina IA, Kondratyeva EA. miR-21, miR-93, miR-191, miR-let-7b, and miR-499 Expression Level in Plasma and Cerebrospinal Fluid in Patients with Prolonged Disorders of Consciousness. Neurol Int 2022; 15:40-54. [PMID: 36648968 PMCID: PMC9844494 DOI: 10.3390/neurolint15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
In recent decades, significant progress has been achieved in understanding the mechanisms of disturbance and restoration of consciousness in patients after severe brain damage resulting in prolonged disorders of consciousness (pDOC). MicroRNAs (miRs) may be potential candidates as possible biomarkers for the classification of disease subtypes, and prognosis in patients with pDOC. The aim of the study was to analyze miRs expression levels (hsa-miR-21-5p, hsa-miR-93-5p, hsa-miR-191-5p, mmu-miR-499-5p, hsa-let-7b-5p) by a real-time polymerase chain reaction in plasma and cerebrospinal fluid (CSF) from patients with pDOC and to identify a potential biomarker for dividing patients into groups according to disease severity. We analyzed the levels of investigated miRs in pDOC patients, divided by etiology, CRSI, and the total group compared with controls. Our results showed that dividing patients with pDOC into groups according to the etiology of the disease resulted in the most significant differences in the levels of miR-93, -21, and -191 in CSF and plasma samples between groups of patients. Among the analyzed miRs, we did not find a marker that would help to distinguish VS/UWS patient groups from MCS. Examining of miRs as possible prognostic markers in patients with pDOC, the starting point seems to be the cause that led to the development of the disease.
Collapse
Affiliation(s)
- Tatiana A. Petrova
- Almazov National Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 St. Petersburg, Russia
- Correspondence:
| | - Sergey A. Kondratyev
- Almazov National Medical Research Centre, Polenov Neurosurgical Institute, 191014 St. Petersburg, Russia
| | - Anna A. Kostareva
- Almazov National Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 St. Petersburg, Russia
| | - Roman V. Rutkovskiy
- Almazov National Medical Research Centre, Anesthesiology and Intensive Care Department #12, 197341 St. Petersburg, Russia
| | - Irina A. Savvina
- Almazov National Medical Research Centre, Polenov Neurosurgical Institute, 191014 St. Petersburg, Russia
- Almazov National Medical Research Centre, Anesthesiology and Intensive Care Department #12, 197341 St. Petersburg, Russia
| | - Ekaterina A. Kondratyeva
- Almazov National Medical Research Centre, Polenov Neurosurgical Institute, 191014 St. Petersburg, Russia
| |
Collapse
|
6
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|