1
|
Sakti DH, Cornish EE, Fraser CL, Nash BM, Sandercoe TM, Jones MM, Rowe NA, Jamieson RV, Johnson AM, Grigg JR. Early recognition of CLN3 disease facilitated by visual electrophysiology and multimodal imaging. Doc Ophthalmol 2023; 146:241-256. [PMID: 36964447 PMCID: PMC10256658 DOI: 10.1007/s10633-023-09930-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Clare L Fraser
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Genome Diagnostics, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Trent M Sandercoe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Michael M Jones
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Neil A Rowe
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia
| | - Robyn V Jamieson
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Department of Neurology, Sydney Children's Hospital, University of New South Wales, Sydney, Australia
| | - John R Grigg
- Save Sight Institute, Speciality of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney Eye Hospital Campus, 8 Macquarie St, Sydney, NSW, 2001, Australia.
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia.
- Department of Ophthalmology, Sydney Children's Hospital Network (Westmead), Sydney, Australia.
| |
Collapse
|
2
|
Purzycka-Olewiecka JK, Hetmańczyk-Sawicka K, Kmieć T, Szczęśniak D, Trubicka J, Krawczyński M, Pronicki M, Ługowska A. Deterioration of visual quality and acuity as the first sign of ceroid lipofuscinosis type 3 (CLN3), a rare neurometabolic disease. Metab Brain Dis 2023; 38:709-715. [PMID: 36576693 PMCID: PMC9859910 DOI: 10.1007/s11011-022-01148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Ceroid lipofuscinosis type 3 (CLN3) is an autosomal recessive, neurodegenerative metabolic disease. Typical clinical symptoms include progressive visual loss, epilepsy of unknown etiology and dementia. Presence of lipofuscin deposits with typical pattern of 'fingerprints' and vacuolized lymphocytes suggest the diagnosis of CLN3. Cause of CLN3 are mutations in the CLN3 gene, among which the most frequently found is the large deletion 1.02 kb spreading on exons 7 and 8. We present 4 patients from 2 families, in whom the deterioration of visual quality and acuity was observed as first clinical sign, when they were a few years old and it was successively accompanied by symptoms of neurologic deterioration (like generalized convulsions with consciousness impairment). In all patients the 1.02 kb deletion in the CLN3 gene was detected in homo- or heterozygosity with other CLN3 pathogenic variant. Ultrastructural studies revealed abnormal structures corresponding to 'fingerprint' profiles (FPPs) in conjunctival endothelial cells. It should be emphasized that in patients with blindness of unknown cause the diagnosis of ceroid lipofuscinosis should be considered and in older children-especially CLN3. The facility of the analysis for the presence of 1.02 kb deletion and economic costs are a solid argument for intensive use of this test in the diagnostic procedure of CLN3.
Collapse
Affiliation(s)
| | | | - Tomasz Kmieć
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dominika Szczęśniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Joanna Trubicka
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Center for Medical Genetics GENESIS, Poznan, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
3
|
Kovacs KD, Orlin A, Sondhi D, Kaminsky SM, D'Amico DJ, Crystal RG, Kiss S. Automated Retinal Layer Segmentation in CLN2-Associated Disease: Commercially Available Software Characterizing a Progressive Maculopathy. Transl Vis Sci Technol 2021; 10:23. [PMID: 34313725 PMCID: PMC8322716 DOI: 10.1167/tvst.10.8.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose CLN2-associated disease is a hereditary, fatal lysosomal storage disorder characterized by progressive brain and retinal deterioration. Here, we characterize the inner and outer retinal degeneration using automated segmentation software in optical coherence tomography scans, providing an objective, quantifiable metric for monitoring subtle changes previously identified with a validated disease classification scale (the Weill Cornell Batten Scale). Methods This study is a retrospective, single-center cohort review of images from examinations under anesthesia in treatment-naïve patients with CLN2-associated disease. Automated segmentation software was used to delineate retinal nerve fiber, ganglion cell layer (GCL), and outer nuclear layer (ONL) thickness measurements in the fovea, parafovea, and perifovea based on age groups (months): 30 to 38, 39 to 45, 46 to 52, 53 to 59, 60 to 66, and 67 or older. Results Twenty-seven eyes from 14 patients were included, with 8 serial images yielding 36 interpretable optical coherence tomography scans. There was a significant difference in parafoveal ONL thickness between 39 to 45 and 46 to 52 months of age (P = 0.032) not seen in other regions or retinal layers. Perifoveal ONL demonstrated a difference in thickness between the 60 to 66 and greater than 67 months age cohorts (P = 0.047). There was strong symmetry between eyes, and high segmentation repeatability. Conclusions Parafoveal ONL thickness represents a sensitive, early age indicator of CLN2-associated degeneration. Outer retinal degeneration is apparent at younger ages than inner retinal changes though in treatment-naïve patients all retinal layers showed significant differences between 60 to 66 and more than 67 months of age. Translational Relevance This study establishes sensitive, quantitative biomarkers for assessing retinal degeneration in a large cohort natural history study in anticipation of future clinical trials.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Anton Orlin
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Donald J D'Amico
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Singh RB, Gupta P, Kartik A, Farooqui N, Singhal S, Shergill S, Singh KP, Agarwal A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin Ophthalmol 2021; 36:582-595. [PMID: 34106804 DOI: 10.1080/08820538.2021.1936571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare neurodegenerative storage disorders associated with devastating visual prognosis, with an incidence of 1/1,000,000 in the United States and comparatively higher incidence in European countries. The pathophysiological mechanisms causing NCLs occur due to enzymatic or transmembrane defects in various sub-cellular organelles including lysosomes, endoplasmic reticulum, and cytoplasmic vesicles. NCLs are categorized into different types depending upon the underlying cause i.e., soluble lysosomal enzyme deficiencies or non-enzymatic deficiencies (functions of identified proteins), which are sub-divided based on an axial classification system. In this review, we have evaluated the current evidence in the literature and reported the incidence rates, underlying mechanisms and currently available management protocols for these rare set of neuroophthalmological disorders. Additionally, we also highlighted the potential therapies under development that can expand the treatment of these rare disorders beyond symptomatic relief.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Prakash Gupta
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kartik
- Department of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Naba Farooqui
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sachi Singhal
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sukhman Shergill
- Department of Anesthesiology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Kanwar Partap Singh
- Department of Ophthalmology, Dayanand Medical College & Hospital, Ludhiana, India
| | - Aniruddha Agarwal
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Kuper WFE, Talsma HE, Schooneveld MJ, Pott JWR, Huijgen BCH, Wit GC, Hasselt PM, Genderen MM. Recognizing differentiating clinical signs of CLN3 disease (Batten disease) at presentation. Acta Ophthalmol 2021; 99:397-404. [PMID: 33073538 PMCID: PMC8359263 DOI: 10.1111/aos.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Purpose To help differentiate CLN3 (Batten) disease, a devastating childhood metabolic disorder, from the similarly presenting early‐onset Stargardt disease (STGD1). Early clinical identification of children with CLN3 disease is essential for adequate referral, counselling and rehabilitation. Methods Medical chart review of 38 children who were referred to a specialized ophthalmological centre because of rapid vision loss. The patients were subsequently diagnosed with either CLN3 disease (18 patients) or early‐onset STGD1 (20 patients). Results Both children who were later diagnosed with CLN3 disease, as children who were later diagnosed with early‐onset STGD1, initially presented with visual acuity (VA) loss due to macular dystrophy at 5–10 years of age. VA in CLN3 disease decreased significantly faster than in STGD1 (p = 0.01). Colour vision was often already severely affected in CLN3 disease while unaffected or only mildly affected in STGD1. Optic disc pallor on fundoscopy and an abnormal nerve fibre layer on optical coherence tomography were common in CLN3 disease compared to generally unaffected in STGD1. In CLN3 disease, dark‐adapted (DA) full‐field electroretinogram (ERG) responses were either absent or electronegative. In early‐onset STGD1, DA ERG responses were generally unaffected. None of the STGD1 patients had an electronegative ERG. Conclusion Already upon presentation at the ophthalmologist, the retina in CLN3 disease is more extensively and more severely affected compared to the retina in early‐onset STGD1. This results in more rapid VA loss, severe colour vision abnormalities and abnormal DA ERG responses as the main differentiating early clinical features of CLN3 disease.
Collapse
Affiliation(s)
- Willemijn F. E. Kuper
- Department of Metabolic Diseases Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Herman E. Talsma
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
| | - Mary J. Schooneveld
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
- Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
| | - Jan Willem R. Pott
- Department of Ophthalmology University Medical Center GroningenUniversity of Groningen Groningen The Netherlands
| | | | - Gerard C. Wit
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
| | - Peter M. Hasselt
- Department of Metabolic Diseases Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Maria M. Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
- Department of Ophthalmology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
6
|
A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol 2021; 4:161. [PMID: 33547385 PMCID: PMC7864947 DOI: 10.1038/s42003-021-01682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.
Collapse
|
7
|
Kovacs KD, Patel S, Orlin A, Kim K, Van Everen S, Conner T, Sondhi D, Kaminsky SM, D'Amico DJ, Crystal RG, Kiss S. Symmetric Age Association of Retinal Degeneration in Patients with CLN2-Associated Batten Disease. Ophthalmol Retina 2020; 4:728-736. [PMID: 32146219 DOI: 10.1016/j.oret.2020.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Mutations in the CLN2 gene lead to a neurodegenerative and blinding lysosomal storage disorder: late infantile neuronal ceroid lipofucinosis, also known as "CLN2 disease." The purpose of the current study was to characterize the evolution of CLN2-associated retinal manifestations using the Weill Cornell Batten Scale (WCBS) and the age association of the retinal degeneration using central subfield thickness (CST) measurements and then correlate these findings with fundus photography and OCT to determine a critical period for retinal intervention. DESIGN Retrospective, single-center cohort. PARTICIPANTS Eighty-four eyes of 42 treatment-naïve patients with CLN2 disease. METHODS Clinical records, fundus photographs, and OCT imaging for patients with CLN2 disease collected during examinations under anesthesia were reviewed. Imaging was categorized per WCBS criteria by 3 masked graders. MAIN OUTCOME MEASURES CLN2-associated retinopathy assessed using WCBS scores, fundus photographs, and OCT imaging, correlated with patient age. RESULTS Eighty-four eyes of 42 patients had baseline fundus photographs, with baseline OCT in 31 eyes of 16 patients. Fundus photographs were obtained serially for 26 eyes of 13 patients, and serial OCT scans were obtained in 10 eyes of 5 patients. At baseline, bilateral WCBS scores were highly correlated for OCT and fundus photographs (r = 0.96 and 0.82, respectively). Central subfield thickness was negatively correlated with left and right eye WCBS OCT scores (r = -0.92 and -0.83, respectively; P < 0.001) and fundus photograph scores (r = -0.80 and -0.83, respectively; P < 0.001). OCT thickness was symmetrical between each eye. Baseline OCT data with age fit using a sigmoid function demonstrated a period of accelerated loss between 48 and 72 months of age. CONCLUSIONS Retinal degeneration associated with CLN2 disease manifests as a progressive, symmetrical decline, which appears to accelerate during a critical period at 48 to 72 months of age, suggesting intervention with retina-specific CLN2 gene therapy should occur ideally before or as early as possible within this critical period. The WCBS is a valuable tool and is highly correlated with the extent of retinal degeneration observed in OCT or fundus photographs; by using the fellow eye as a control, this grading scale can be used to monitor the effect of CLN2 gene therapy in future trials.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York
| | | | - Anton Orlin
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York
| | | | | | | | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Donald J D'Amico
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
8
|
Wright GA, Georgiou M, Robson AG, Ali N, Kalhoro A, Holthaus SK, Pontikos N, Oluonye N, de Carvalho ER, Neveu MM, Weleber RG, Michaelides M. Juvenile Batten Disease (CLN3): Detailed Ocular Phenotype, Novel Observations, Delayed Diagnosis, Masquerades, and Prospects for Therapy. Ophthalmol Retina 2019; 4:433-445. [PMID: 31926949 PMCID: PMC7479512 DOI: 10.1016/j.oret.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
Abstract
Purpose To characterize the retinal phenotype of juvenile neuronal ceroid lipofuscinosis (JNCL), highlight delayed and mistaken diagnosis, and propose an algorithm for early identification. Design Retrospective case series. Participants Eight children (5 female) with JNCL. Methods Review of clinical notes, retinal imaging including fundus autofluorescence and OCT, electroretinography (ERG), and both microscopy and molecular genetic testing. Main Outcome Measurements Demographic data, signs and symptoms, visual acuity (VA), fundus autofluorescence and OCT findings, ERG phenotype, and microscopy/molecular genetics. Results Participants presented with rapid bilateral vision loss over 1 to 18 months, with mean VA deteriorating from 0.44 logarithm of the minimum angle of resolution (logMAR) (range, 0.20–1.78 logMAR) at baseline to 1.34 logMAR (0.30 logMAR - light perception) at last follow-up. Age of onset ranged from 3 to 7 years (mean, 5.3 years). The age at diagnosis of JNCL ranged from 7 to 10 years (mean, 8.3 years). Six children displayed eccentric fixation, and 6 children had cognitive or neurologic signs at the time of diagnosis (75%). Seven patients had bilateral bull’s-eye maculopathy at presentation. Coats-like exudative vasculopathy, not previously reported in JNCL, was observed in 1 patient. OCT imaging revealed near complete loss of outer retinal layers and marked atrophy of the nerve fiber and ganglion cell layers at the central macula. An electronegative ERG was present in 4 patients (50%), but with additional a-wave reduction, there was an undetectable ERG in the remaining 4 patients. Blood film microscopy revealed vacuolated lymphocytes, and electron microscopy showed lysosomal (fingerprint) inclusions in all 8 patients. Conclusions In a young child with bilateral rapidly progressive vision loss and macular disturbance, blood film microscopy to detect vacuolated lymphocytes is a rapid, readily accessible, and sensitive screening test for JNCL. Early suspicion of JNCL can be aided by detailed directed history and high-resolution retinal imaging, with subsequent targeted microscopy/genetic testing. Early diagnosis is critical to ensure appropriate management, counseling, support, and social care for children and their families. Furthermore, although potential therapies for this group of disorders are in early-phase clinical trial, realistic expectations are that successful intervention will be most effective when initiated at the earliest stage of disease.
Collapse
Affiliation(s)
- Genevieve A Wright
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Naser Ali
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | | | - Sm Kleine Holthaus
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | | | | | - Magella M Neveu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
9
|
Chen FK, Zhang X, Eintracht J, Zhang D, Arunachalam S, Thompson JA, Chelva E, Mallon D, Chen SC, McLaren T, Lamey T, De Roach J, McLenachan S. Clinical and molecular characterization of non-syndromic retinal dystrophy due to c.175G>A mutation in ceroid lipofuscinosis neuronal 3 (CLN3). Doc Ophthalmol 2018; 138:55-70. [PMID: 30446867 DOI: 10.1007/s10633-018-9665-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Mutation of the CLN3 gene, associated with juvenile neuronal ceroid lipofuscinosis, has recently been associated with late-onset, non-syndromic retinal dystrophy. Herein we describe the multimodal imaging, immunological and systemic features of an adult with compound heterozygous CLN3 mutations. METHODS A 50-year-old female with non-syndromic retinal dystrophy from the age of 36 years underwent multimodal retinal imaging, electroretinography, neuroimaging, immunological studies and genetic testing. CLN3 transcripts were amplified from patient leukocytes by reverse transcriptase polymerase chain reaction and characterized by Sanger sequencing. RESULTS Visual acuity declined to 6/12 and 6/76 due to asymmetrical central scotoma. ERG responses became electronegative and patient's serum contained anti-retinal antibodies. Final visual acuity stabilized at 6/60 bilaterally 3 years after peri-ocular steroid and rituximab infusion. Genetic testing revealed compound heterozygous CLN3 mutations: the 1.02 kb deletion and a novel missense mutation (c.175G>A). In silico, analyses predicted the c.175G>A mutation disrupted an exonic splice enhancer site in exon 3. In patient leukocytes, CLN3 expression was reduced and novel CLN3 transcripts lacking exon 3 were detected. CONCLUSIONS Our case study shows that (1) non-syndromic CLN3 disease leads to rod and delayed primary cone degeneration resulting in constricting peripheral field and enlarging central scotoma and, (2) the c.175G>A CLN3 mutation, altered splicing of the CLN3 gene. Overall, we provide comprehensive clinical characterization of a patient with non-syndromic CLN3 disease.
Collapse
Affiliation(s)
- Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Xiao Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Jonathan Eintracht
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Sukanya Arunachalam
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Enid Chelva
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Dominic Mallon
- Department of Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - Shang-Chih Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia
| | - Terri McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Tina Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - John De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Ocular Tissue Engineering Laboratory, Lions Eye Institute, 2 Verdun Street, Perth, Nedlands, WA, Australia.
| |
Collapse
|
10
|
Abstract
PURPOSE To report a case of Batten disease due to a previously unreported mutation in PPT1. METHODS A 9-year-old girl presented with classic clinical findings of Batten Disease. RESULTS Genetic testing for the mutations in the most common Batten disease gene, CLN3, was negative. Evaluation of a panel of genes known to be implicated in neuronal ceroid lipofuscinoses revealed disease causing mutations in PPT1, one of which was novel. CONCLUSION Mutations in PPT1 typically cause the infantile form of neuronal ceroid lipofuscinosis. Clinical diagnosis of the juvenile form of neuronal ceroid lipofuscinosis, Batten disease, should still be considered in cases with negative CLN3 genetic testing. Batten disease can occur due to genetic heterogeneity. Testing of other members of the neuronal ceroid lipofuscinosis gene family can lead to confirmation of the correct diagnosis.
Collapse
|
11
|
Ouseph MM, Kleinman ME, Wang QJ. Vision loss in juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Ann N Y Acad Sci 2016; 1371:55-67. [PMID: 26748992 DOI: 10.1111/nyas.12990] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL; also known as CLN3 disease) is a devastating neurodegenerative lysosomal storage disorder and the most common form of Batten disease. Progressive visual and neurological symptoms lead to mortality in patients by the third decade. Although ceroid-lipofuscinosis, neuronal 3 (CLN3) has been identified as the sole disease gene, the biochemical and cellular bases of JNCL and the functions of CLN3 are yet to be fully understood. As severe ocular pathologies manifest early in disease progression, the retina is an ideal tissue to study in the efforts to unravel disease etiology and design therapeutics. There are significant discrepancies in the ocular phenotypes between human JNCL and existing murine models, impeding investigations on the sequence of events occurring during the progression of vision impairment. This review focuses on current understanding of vision loss in JNCL and discusses future research directions toward molecular dissection of the pathogenesis of the disease and associated vision problems in order to ultimately improve the quality of patient life and cure the disease.
Collapse
Affiliation(s)
| | | | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry.,Department of Toxicology and Cancer Biology.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
WHITE ANNULAR RETINAL DYSTROPHY WITH SEVERE GLAUCOMA: A New Autosomal Dominant Condition. Retina 2015; 36:619-23. [PMID: 26539796 DOI: 10.1097/iae.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To report a family with a previously unreported characteristic retinal dystrophy and glaucoma. METHODS Seven family members were diagnosed with an atypical retinal dystrophy and open-angle glaucoma with rapid evolution. Ophthalmic examination, fluorescein angiography, color photography, optic coherence tomography, central visual-field examination, and ultrasonography were performed. RESULTS Of the 7 patients, 3 had 360° of peripheral white retina and a broad white ring around the optic disc. In three others, it was not possible to observe the peripheral retina, but they also showed a white retinal ring around the optic disc. One patient showed posterior synechiae and iris neovascularization in one eye. The 37-year-old uncle of the proband had a probably related maculopathy. Five patients had severe glaucoma, and the youngest showed borderline intraocular pressure. CONCLUSION The authors report a new dominant retinal dystrophy associated with open-angle glaucoma. The early onset and rapidly progressive glaucoma of the patients is atypical.
Collapse
|
13
|
Dulz S, Wagenfeld L, Nickel M, Richard G, Schwartz R, Bartsch U, Kohlschütter A, Schulz A. Novel morphological macular findings in juvenile CLN3 disease. Br J Ophthalmol 2015; 100:824-8. [PMID: 26486417 DOI: 10.1136/bjophthalmol-2015-307320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/25/2015] [Indexed: 11/03/2022]
Abstract
AIMS Juvenile CLN3 disease, one of the most common forms of a group of lysosomal storage diseases called neuronal ceroid lipofuscinoses (NCLs), is a progressive neurodegenerative disorder with initial visual deterioration. The objective of this study was to analyse the retinal phenotype of patients with CLN3 disease with the help of recent ophthalmic imaging modalities to distinguish CLN3 disease from other inherited retinal dystrophies. METHODS Patients underwent ophthalmic evaluations, including anterior and posterior segment examinations, optical coherence tomography, fundus autofluorescence, near infrared imaging and fundus photography. Patients were also assessed according to the Hamburg juvenile NCL (JNCL) score. Each ophthalmic finding was assessed by three independent examiners and assigned to a clinical severity score. RESULTS 22 eyes of 11 patients were included. The mean age at examination was 14.4 years (range 11.8-26.4 years), with an average age at initial diagnosis of 8 years (range 4.5-11 years). The mean Hamburg JNCL score was 7.3 (range 0-13). All patients showed a specific macular striation pattern on optical coherence tomography that was independent of age and progression of the disease. Other previously described retinal features of CLN3 disease were classified into four severity grades. CONCLUSIONS This study represents the first prospective observational case series documenting retinal abnormalities in CLN3 disease with the aid of the spectral domain optical coherence tomography. The major finding was a characteristic, striated macular pattern in all patients studied. Particularly in early disease cases, macular striae can potentially help to discriminate CLN3 disease from other inherited forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- S Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Wagenfeld
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Nickel
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G Richard
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Schwartz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - U Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Kohlschütter
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Schulz
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Multifocal retinopathy in Dachshunds with CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2015; 134:123-32. [PMID: 25697710 DOI: 10.1016/j.exer.2015.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/24/2022]
Abstract
The CLN2 form of neuronal ceroid lipofuscinosis is an autosomal recessively inherited lysosomal storage disease that is characterized by progressive vision loss culminating in blindness, cognitive and motor decline, neurodegeneration, and premature death. CLN2 disease results from mutations in the gene that encodes the soluble lysosomal enzyme tripeptidyl peptidase-1. A null mutation in the TPP1 gene encoding this enzyme causes a CLN2-like disease in Dachshunds. Dachshunds that are homozygous for this mutation serve as a model for human CLN2 disease, exhibiting clinical signs and neuropathology similar to those of children with this disorder. Affected dogs reach end-stage terminal disease status at 10-11 months of age. In addition to retinal changes typical of CLN2 disease, a retinopathy consisting of multifocal, bullous retinal detachment lesions was identified in 65% of (TPP1-/-) dogs in an established research colony. These lesions did not occur in littermates that were heterozygous or homozygous for the normal TPP1 allele. Retinal changes and the functional effects of this multifocal retinopathy were examined objectively over time using ophthalmic examinations, fundus photography, electroretinography (ERG), quantitative pupillary light response (PLR) recording, fluorescein angiography, optical coherence tomography (OCT) and histopathology. The retinopathy consisted of progressive multifocal serous retinal detachments. The severity of the disease-related retinal thinning was no more serious in most detached areas than in adjacent areas of the retina that remained in close apposition to the retinal pigment epithelium. The retinopathy observed in these dogs was somewhat similar to canine multifocal retinopathy (CMR), a disease caused by a mutation of the bestrophin gene BEST1. ERG a-wave amplitudes were relatively preserved in the Dachshunds with CLN2 disease, whether or not they developed the multifocal retinopathy. The retinopathy also had minimal effects on the PLR. Histological evaluation indicated that the CLN2 disease-related retinal degeneration was not exacerbated in areas where the retina was detached except where the detached areas were very large. DNA sequence analysis ruled out a mutation in the BEST1 exons or splice junctions as a cause for the retinopathy. Perfect concordance between the TPP1 mutation and the retinopathy in the large number of dogs examined indicates that the retinopathy most likely occurs as a direct result of the TPP1 mutation. Therefore, inhibition of the development and progression of these lesions can be used as an indicator of the efficacy of therapeutic interventions currently under investigation for the treatment of CLN2 disease in the Dachshund model. In addition, these findings suggest that TPP1 mutations may underlie multifocal retinopathies of unknown cause in animals and humans.
Collapse
|
15
|
Groh J, Stadler D, Buttmann M, Martini R. Non-invasive assessment of retinal alterations in mouse models of infantile and juvenile neuronal ceroid lipofuscinosis by spectral domain optical coherence tomography. Acta Neuropathol Commun 2014; 2:54. [PMID: 24887158 PMCID: PMC4035096 DOI: 10.1186/2051-5960-2-54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
Introduction The neuronal ceroid lipofuscinoses constitute a group of fatal inherited lysosomal storage diseases that manifest in profound neurodegeneration in the CNS. Visual impairment usually is an early symptom and selective degeneration of retinal neurons has been described in patients suffering from distinct disease subtypes. We have previously demonstrated that palmitoyl protein thioesterase 1 deficient (Ppt1-/-) mice, a model of the infantile disease subtype, exhibit progressive axonal degeneration in the optic nerve and loss of retinal ganglion cells, faithfully reflecting disease severity in the CNS. Here we performed spectral domain optical coherence tomography (OCT) in Ppt1-/- and ceroid lipofuscinosis neuronal 3 deficient (Cln3-/-) mice, which are models of infantile and juvenile neuronal ceroid lipofuscinosis, respectively, in order to establish a non-invasive method to assess retinal alterations and monitor disease severity in vivo. Results Blue laser autofluorescence imaging revealed increased accumulation of autofluorescent storage material in the inner retinae of 7-month-old Ppt1-/- and of 16-month-old Cln3-/- mice in comparison with age-matched control littermates. Additionally, optical coherence tomography demonstrated reduced thickness of retinae in knockout mice in comparison with age-matched control littermates. High resolution scans and manual measurements allowed for separation of different retinal composite layers and revealed a thinning of layers in the inner retinae of both mouse models at distinct ages. OCT measurements correlated well with subsequent histological analysis of the same retinae. Conclusions These results demonstrate the feasibility of OCT to assess neurodegenerative disease severity in mouse models of neuronal ceroid lipofuscinosis and might have important implications for diagnostic evaluation of disease progression and therapeutic efficacy in patients. Moreover, the non-invasive method allows for longitudinal studies in experimental models, reducing the number of animals used for research.
Collapse
|
16
|
Orlin A, Sondhi D, Witmer MT, Wessel MM, Mezey JG, Kaminsky SM, Hackett NR, Yohay K, Kosofsky B, Souweidane MM, Kaplitt MG, D’Amico DJ, Crystal RG, Kiss S. Spectrum of ocular manifestations in CLN2-associated batten (Jansky-Bielschowsky) disease correlate with advancing age and deteriorating neurological function. PLoS One 2013; 8:e73128. [PMID: 24015292 PMCID: PMC3756041 DOI: 10.1371/journal.pone.0073128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
Background Late infantile neuronal ceroid lipofuscinosis (LINCL), one form of Batten’s disease is a progressive neurodegenerative disorder resulting from a CLN2 gene mutation. The spectrum of ophthalmic manifestations of LINCL and the relationship with neurological function has not been previously described. Methods Patients underwent ophthalmic evaluations, including anterior segment and dilated exams, optical coherence tomography, fluorescein and indocyanine green angiography. Patients were also assessed with the LINCL Neurological Severity Scale. Ophthalmic findings were categorized into one of five severity scores, and the association of the extent of ocular disease with neurological function was assessed. Results Fifty eyes of 25 patients were included. The mean age at the time of exam was 4.9 years (range 2.5 to 8.1). The mean ophthalmic severity score was 2.6 (range 1 to 5). The mean neurological severity score was 6.1 (range 2 to 11). Significantly more severe ophthalmic manifestations were observed among older patients (p<0.005) and patients with more severe neurological findings (p<0.03). A direct correlation was found between the Ophthalmic Severity Scale and the Weill Cornell Neurological Scale (p<0.002). A direct association was also found between age and the ophthalmic manifestations (p<0.0002), with older children having more severe ophthalmic manifestations. Conclusions Ophthalmic manifestations of LINCL correlate closely with the degree of neurological function and the age of the patient. The newly established LINCL Ophthalmic Scale may serve as an objective marker of LINCL severity and disease progression, and may be valuable in the evaluation of novel therapeutic strategies for LINCL, including gene therapy.
Collapse
Affiliation(s)
- Anton Orlin
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthew T. Witmer
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthew M. Wessel
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Stephen M. Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Kaleb Yohay
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Barry Kosofsky
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Mark M. Souweidane
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Michael G. Kaplitt
- Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Donald J. D’Amico
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Dhamija R, Patterson MC, Wirrell EC. Epilepsy in children--when should we think neurometabolic disease? J Child Neurol 2012; 27:663-71. [PMID: 22378665 DOI: 10.1177/0883073811435829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seizures are often the first manifestation of central nervous system dysfunction and are common in many inborn errors of metabolism, especially in neonates, infants, and children. A high index of suspicion is required to diagnose inborn errors of metabolism as the cause of seizures. It is also important to recognize these metabolic disorders early, as specific disease-modifying treatments are available for some with favorable long-term outcomes. This review discusses the classification of metabolic disorders as a cause of seizures based on pathogenesis and age and proposes a tiered approach for cost-effective diagnosis of metabolic disorders.
Collapse
Affiliation(s)
- Radhika Dhamija
- Division of Child and Adolescent Neurology, Mayo Clinic Children's Center, Rochester, MN 55905, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Robert J Courtney
- Case Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
19
|
Sanders DN, Kanazono S, Wininger FA, Whiting REH, Flournoy CA, Coates JR, Castaner LJ, O'Brien DP, Katz ML. A reversal learning task detects cognitive deficits in a Dachshund model of late-infantile neuronal ceroid lipofuscinosis. GENES BRAIN AND BEHAVIOR 2011; 10:798-804. [PMID: 21745338 DOI: 10.1111/j.1601-183x.2011.00718.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive lysosomal storage diseases characterized by progressive neurodegeneration and by accumulation of autofluorescent storage material in the central nervous system and other tissues. One of the most prominent clinical signs of NCL is progressive decline in cognitive function. We previously described a frame shift mutation of TPP1 in miniature long-haired Dachshunds which causes an early-onset form of NCL analogous to classical late-infantile onset NCL (CLN2) in children. Dogs homozygous for the TPP1 mutation exhibit progressive neurological signs similar to those exhibited by human patients. In order to establish biomarkers for evaluating the efficacy of ongoing therapeutic studies in this canine model, we characterized phenotypic changes in 13 dogs through 9 months of age. Cognitive function was assessed using a T-maze reversal learning (RL) task. Cognitive dysfunction was detected in affected dogs as early as 6 months of age and worsened as the disease progressed. Physical and neurological examination, funduscopy and electroretinography (ERG) were performed at regular intervals. Only the changes in ERG responses showed signs of disease progression earlier than the RL task. In the later stages of the disease clinical signs of visual and motor deficits became evident. The visual and motor deficits were not severe enough to affect the performance of dogs in the T-maze. Declining performance on the RL task is a sensitive measure of higher-order cognitive dysfunction which can serve as a useful biomarker of disease progression.
Collapse
Affiliation(s)
- D N Sanders
- Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|