1
|
Szuplewska M, Sentkowska D, Lasek R, Decewicz P, Hałucha M, Funk Ł, Chmielowska C, Bartosik D. Genome-wide comparative analysis of clinical and environmental strains of the opportunistic pathogen Paracoccus yeei ( Alphaproteobacteria). Front Microbiol 2024; 15:1483110. [PMID: 39568992 PMCID: PMC11578231 DOI: 10.3389/fmicb.2024.1483110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Paracoccus yeei is the first species in the genus Paracoccus to be implicated in opportunistic infections in humans. As a result, P. yeei strains provide a valuable model for exploring how bacteria shift from a saprophytic to a pathogenic lifestyle, as well as for investigating the role of horizontally transferred DNA in this transition. In order to gain deeper insights into the unique characteristics of this bacterium and the molecular mechanisms underlying its opportunistic behavior, a comparative physiological and genomic analysis of P. yeei strains was performed. Results Complete genomic sequences of 7 P. yeei isolates (both clinical and environmental) were obtained and analyzed. All genomes have a multipartite structure comprising numerous extrachromosomal replicons (59 different ECRs in total), including large chromids of the DnaA-like and RepB families. Within the mobile part of the P. yeei genomes (ECRs and transposable elements, TEs), a novel non-autonomous MITE-type element was identified. Detailed genus-wide comparative genomic analysis permitted the identification of P. yeei-specific genes, including several putative virulence determinants. One of these, the URE gene cluster, determines the ureolytic activity of P. yeei strains-a unique feature among Paracoccus spp. This activity is induced by the inclusion of urea in the growth medium and is dependent on the presence of an intact nikR regulatory gene, which presumably regulates expression of nickel (urease cofactor) transporter genes. Discussion This in-depth comparative analysis provides a detailed insight into the structure, composition and properties of P. yeei genomes. Several predicted virulence determinants (including URE gene clusters) were identified within ECRs, indicating an important role for the flexible genome in determining the opportunistic properties of this bacterium.
Collapse
Affiliation(s)
- Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Hałucha
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łukasz Funk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Madsen AM, Moslehi-Jenabian S, Frankel M, White JK, Frederiksen MW. Airborne bacterial species in indoor air and association with physical factors. UCL OPEN ENVIRONMENT 2023; 5:e056. [PMID: 37229345 PMCID: PMC10208329 DOI: 10.14324/111.444/ucloe.000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study is to obtain knowledge about which cultivable bacterial species are present in indoor air in homes, and whether the concentration and diversity of airborne bacteria are associated with different factors. Measurements have been performed for one whole year inside different rooms in five homes and once in 52 homes. Within homes, a room-to-room variation for concentrations of airborne bacteria was found, but an overlap in bacterial species was found across rooms. Eleven species were found very commonly and included: Acinetobacter lowffii, Bacillus megaterium, B. pumilus, Kocuria carniphila, K. palustris, K. rhizophila, Micrococcus flavus, M. luteus, Moraxella osloensis and Paracoccus yeei. The concentrations of Gram-negative bacteria in general and the species P. yeei were significantly associated with the season with the highest concentrations in spring. The concentrations of P. yeei, K. rhizophila and B. pumilus were associated positively with relative humidity (RH), and concentrations of K. rhizophila were associated negatively with temperature and air change rate (ACR). Micrococcus flavus concentrations were associated negatively with ACR. Overall, this study identified species which are commonly present in indoor air in homes, and that the concentrations of some species were associated with the factors: season, ACR and RH.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Saloomeh Moslehi-Jenabian
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Mika Frankel
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - John Kerr White
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Margit W. Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Ji X, Dong K, Pu J, Yang J, Zhang Z, Ning X, Ma Q, Kang Z, Xu J, Sun B. Comparison of the ocular surface microbiota between thyroid-associated ophthalmopathy patients and healthy subjects. Front Cell Infect Microbiol 2022; 12:914749. [PMID: 35959376 PMCID: PMC9360483 DOI: 10.3389/fcimb.2022.914749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Thyroid-associated ophthalmopathy (TAO) is a chronic autoimmune disease. In this study, high-throughput sequencing was used to investigate the diversity and composition of the ocular microbiota in patients with TAO. Methods Patients with TAO did not receive treatment for the disease and did not have exposed keratitis. Patients with TAO (TAO group) and healthy individuals (control group) were compared. All samples were swabbed at the conjunctival vault of the lower eyelid. The V3 to V4 region of the 16S rDNA was amplified using polymerase chain reaction and sequenced on the Illumina HiSeq 2500 Sequencing Platform. Statistical analysis was performed to analyze the differences between the groups and the correlation between ocular surface microbiota and the disease. The ocular surface microbiota of patients and healthy individuals were cultured. Results The ocular surface microbiota structure of TAO patients changed significantly. The average relative abundance of Bacillus and Brevundimonas increased significantly in the TAO group. Corynebacterium had a significantly decreased relative abundance (P<0.05). Paracoccus, Haemophilus, Lactobacillus, and Bifidobacterium were positively correlated with the severity of clinical manifestations or disease activity (P<0.05). Bacillus cereus and other opportunistic pathogens were obtained by culture from TAO patients. Conclusions This study found that the composition of ocular microbiota in patients with TAO was significantly different from that in healthy individuals. The ocular surface opportunistic pathogens, such as Bacillus, Brevundimonas, Paracoccus, and Haemophilus in TAO patients, increase the potential risk of ocular surface infection. The findings of this study provide a new avenue of research into the mechanism of ocular surface in TAO patients.
Collapse
Affiliation(s)
- Xuan Ji
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
| | - Kui Dong
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoxia Zhang
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
| | - Xiaoling Ning
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
| | - Qin Ma
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
| | - Zhiming Kang
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Sun
- Shanxi Eye Hospital, Shanxi Province Key Laboratory of Ophthalmology, Taiyuan, China
- *Correspondence: Bin Sun,
| |
Collapse
|
4
|
The porcine corneal surface bacterial microbiome: A distinctive niche within the ocular surface. PLoS One 2021; 16:e0247392. [PMID: 33606829 PMCID: PMC7895408 DOI: 10.1371/journal.pone.0247392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Purpose The ocular surface microbiome has been described as paucibacterial. Until now, studies investigating the bacterial community associated with the ocular surface through high-throughput sequencing have focused on the conjunctiva. Conjunctival samples are thought to reflect and be representative of the microbiome residing on the ocular surface, including the cornea. Here, we hypothesized that the bacterial community associated with the corneal surface was different from those of the inferonasal and superotemporal conjunctival fornices, and from the tear film. Methods Both eyes from 15 healthy piglets were sampled using swabs (inferonasal fornix, superotemporal fornix, and corneal surface, n = 30 each) and Schirmer tear test strips (STT, n = 30). Negative sampling controls (swabs and STT, n = 2 each) and extraction controls (n = 4) were included. Total DNA was extracted and high-throughput sequencing targeting the 16S rRNA gene was performed. Bioinformatic analyses included multiple contamination-controlling steps. Results Corneal surface samples had a significantly lower number of taxa detected (P<0.01) and were compositionally different from all other sample types (Bray-Curtis dissimilarity, P<0.04). It also harbored higher levels of Proteobacteria (P<0.05), specifically Brevundimonas spp. (4.1-fold) and Paracoccus spp. (3.4-fold) than other sample types. Negative control STT strip samples yielded the highest amount of 16S rRNA gene copies across all sample types (P<0.05). Conclusions Our data suggests that the corneal surface provides a distinct environmental niche within the ocular surface, leading to a bacterial community compositionally different from all other sample types.
Collapse
|
5
|
Aliste-Fernández M, Sanfeliu-Sala I, Sánchez-Delgado J. Bacteremia caused by Paracoccus yeei in patient with compensated cirrhosis of the liver. Enferm Infecc Microbiol Clin 2020; 38:451-452. [DOI: 10.1016/j.eimc.2020.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 10/24/2022]
|
6
|
Fritz B, Schäfer K, März M, Wahl S, Ziemssen F, Egert M. Eye-Catching Microbes-Polyphasic Analysis of the Microbiota on Microscope Oculars Verifies Their Role as Fomites. J Clin Med 2020; 9:jcm9051572. [PMID: 32455878 PMCID: PMC7290821 DOI: 10.3390/jcm9051572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
Microscopes are used in virtually every biological and medical laboratory. Previous cultivation-based studies have suggested that direct contact with microscope eyepieces increases the risk of eye infections. To obtain a deeper insight into the microbiota on oculars, we analysed 10 recently used university microscopes. Their left oculars were used for a cultivation-based approach, while the right oculars served for massive gene sequencing. After cleaning with isopropyl alcohol, the oculars were re-sampled and analysed again. All oculars were found to be contaminated with bacteria, with a maximum load of 1.7 × 103 CFU cm-2. MALDI Biotyping revealed mainly Cutibacterium (68%), Staphylococcus (14%) and Brevibacterium (10%), with the most abundant species being Cutibacterium acnes (13%) and Staphylococcus capitis (6%). Cleaning reduced the microbial load by up to 2 log scales. Within 10 uncleaned and 5 cleaned samples, 1480 ASVs were assigned to 10 phyla and 262 genera. The dominant genera before cleaning were Cutibacterium (78%), Paracoccus (13%), Pseudomonas (2%) and Acinetobacter (1%). The bacteriota composition on the cleaned oculars was similar; however, it probably largely represented dead bacteria. In summary, used oculars were significantly contaminated with skin and environmental bacteria, including potential pathogens. Regular cleaning is highly recommended to prevent eye and skin infections.
Collapse
Affiliation(s)
- Birgit Fritz
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
| | - Karin Schäfer
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
| | - Melanie März
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430 Aalen, Germany;
- Institute for Ophthalmic Research, Eberhard-Karls University, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany
| | - Focke Ziemssen
- Center for Ophthalmology, Eberhard-Karls University, Elfriede-Aulhorn-Strasse 7, 72076 Tuebingen, Germany;
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany; (B.F.); (K.S.); (M.M.)
- Correspondence: ; Tel.: +49-7720-307-4554
| |
Collapse
|
7
|
Abstract
Background:In microbial keratitis, infection of the cornea can threaten vision through permanent corneal scarring and even perforation resulting in the loss of the eye. A literature review was conducted by Karsten, Watson and Foster (2012) to determine the spectrum of microbial keratitis. Since this publication, there have been over 2600 articles published investigating the causative pathogens of microbial keratitis.Objective:To determine the current spectrum of possible pathogens implicated in microbial keratitis relative to the 2012 study.Methods:An exhaustive literature review was conducted of all the peer-reviewed articles reporting on microbial pathogens implicated in keratitis. Databases including MEDLINE, EMBASE, Scopus and Web of Science were searched utilising their entire year limits (1950-2019).Results:Six-hundred and eighty-eight species representing 271 genera from 145 families were implicated in microbial keratitis. Fungal pathogens, though less frequent than bacteria, demonstrated the greatest diversity with 393 species from 169 genera that were found to cause microbial keratitis. There were 254 species of bacteria from 82 genera, 27 species of amoeba from 11 genera, and 14 species of virus from 9 genera, which were also identified as pathogens of microbial keratitis.Conclusion:The spectrum of pathogens implicated in microbial keratitis is extremely diverse. Bacteria were most commonly encountered and in comparison, to the review published in 2012, further 456 pathogens have been identified as causative pathogens of microbial keratitis. Therefore, the current review provides an important update on the potential spectrum of microbes, to assist clinicians in the diagnosis and treatment of microbial keratitis.
Collapse
|
8
|
Lasek R, Szuplewska M, Mitura M, Decewicz P, Chmielowska C, Pawłot A, Sentkowska D, Czarnecki J, Bartosik D. Genome Structure of the Opportunistic Pathogen Paracoccus yeei ( Alphaproteobacteria) and Identification of Putative Virulence Factors. Front Microbiol 2018; 9:2553. [PMID: 30410477 PMCID: PMC6209633 DOI: 10.3389/fmicb.2018.02553] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Paracoccus are common components of the microbiomes of many naturally- and anthropogenically shaped environments. One species, Paracoccus yeei, is unique within the genus because it is associated with opportunistic human infections. Therefore, strains of P. yeei may serve as an interesting model to study the transition from a saprophytic to a pathogenic lifestyle in environmental bacteria. Unfortunately, knowledge concerning the biology, genetics and genomic content of P. yeei is fragmentary; also the mechanisms of pathogenicity of this bacterium remain unclear. In this study we provide the first insight into the genome composition and metabolic potential of a clinical isolate, P. yeei CCUG 32053. This strain has a multipartite genome (4,632,079 bp) composed of a circular chromosome plus eight extrachromosomal replicons pYEE1–8: 3 chromids and 5 plasmids, with a total size of 1,247,173 bp. The genome has been significantly shaped by the acquisition of genomic islands, prophages (Myoviridae and Siphoviridae phage families) and numerous insertion sequences (ISs) representing seven IS families. Detailed comparative analysis with other complete genomic sequences of Paracoccus spp. (including P. yeei FDAARGOS_252 and TT13, as well as non-pathogenic strains of other species in this genus) enabled us to identify P. yeei species-specific genes and to predict putative determinants of virulence. This is the first attempt to identify pathoadaptive genetic information of P. yeei and to estimate the role of the mobilome in the evolution of pathogenicity in this species.
Collapse
Affiliation(s)
- Robert Lasek
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Mitura
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Pawłot
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Deposition of Bacteria and Bacterial Spores by Bathroom Hot-Air Hand Dryers. Appl Environ Microbiol 2018; 84:AEM.00044-18. [PMID: 29439992 DOI: 10.1128/aem.00044-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Hot-air hand dryers in multiple men's and women's bathrooms in three basic science research areas in an academic health center were screened for their deposition on plates of (i) total bacteria, some of which were identified, and (ii) a kanamycin-resistant Bacillus subtilis strain, PS533, spores of which are produced in large amounts in one basic science research laboratory. Plates exposed to hand dryer air for 30 s averaged 18 to 60 colonies/plate; but interior hand dryer nozzle surfaces had minimal bacterial levels, plates exposed to bathroom air for 2 min with hand dryers off averaged ≤1 colony, and plates exposed to bathroom air moved by a small fan for 20 min had averages of 15 and 12 colonies/plate in two buildings tested. Retrofitting hand dryers with HEPA filters reduced bacterial deposition by hand dryers ∼4-fold, and potential human pathogens were recovered from plates exposed to hand dryer air whether or not a HEPA filter was present and from bathroom air moved by a small fan. Spore-forming colonies, identified as B. subtilis PS533, averaged ∼2.5 to 5% of bacteria deposited by hand dryers throughout the basic research areas examined regardless of distance from the spore-forming laboratory, and these were almost certainly deposited as spores. Comparable results were obtained when bathroom air was sampled for spores. These results indicate that many kinds of bacteria, including potential pathogens and spores, can be deposited on hands exposed to bathroom hand dryers and that spores could be dispersed throughout buildings and deposited on hands by hand dryers.IMPORTANCE While there is evidence that bathroom hand dryers can disperse bacteria from hands or deposit bacteria on surfaces, including recently washed hands, there is less information on (i) the organisms dispersed by hand dryers, (ii) whether hand dryers provide a reservoir of bacteria or simply blow large amounts of bacterially contaminated air, and (iii) whether bacterial spores are deposited on surfaces by hand dryers. Consequently, this study has implications for the control of opportunistic bacterial pathogens and spores in public environments including health care settings. Within a large building, potentially pathogenic bacteria, including bacterial spores, may travel between rooms, and subsequent bacterial/spore deposition by hand dryers is a possible mechanism for spread of infectious bacteria, including spores of potential pathogens if present.
Collapse
|
10
|
Sastre A, González-Arregoces J, Romainoik I, Mariño S, Lucas C, Monfá E, Stefan G, de León B, Prieto M. Paracoccus yeei peritonitis in peritoneal dialysis. Nefrologia 2016; 36:445-6. [PMID: 27039709 DOI: 10.1016/j.nefro.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022] Open
Affiliation(s)
- Aránzazu Sastre
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España.
| | | | - Igor Romainoik
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| | - Santiago Mariño
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| | - Cristina Lucas
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| | - Elena Monfá
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| | - George Stefan
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| | - Benjamin de León
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| | - Mario Prieto
- Sección de Nefrología, Complejo Asistencial Universitario de León, León, España
| |
Collapse
|