1
|
Chi H, Wei C, Ma L, Yu Y, Zhang T, Shi W. The ocular immunological alterations in the process of high-risk corneal transplantation rejection. Exp Eye Res 2024; 245:109971. [PMID: 38871165 DOI: 10.1016/j.exer.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE This study aims to reveal the immunopathogenesis of the high-risk corneal transplantation using a comparative proteomic approach. METHODS The immunological properties of ocular tissues (including corneal grafts, aqueous humour, and iris-ciliary body) were analysed using a high-risk rabbit corneal transplantation model employing a comparative proteomic approach. RESULTS The corneal grafts revealed a dramatic increase in the immune response both at the early (postoperative day 7) and rejection stages, along with the appearance of transplantation stress-induced cellular senescence in the early stage. The aqueous humour (AH) displayed persistent pathological alterations, indicated by the significant enrichment of complement and coagulation cascades pathway in the early stage and interleukin (IL)-17 signalling pathway in the rejection stage. More surprisingly, the pronounced elevation of immune response was also observed in the iris-ciliary body (I-CB) tissues at the early and rejection stages. The enriched immune-related pathways were associated with antigen processing and presentation, complement and coagulation cascades, and IL-17 signalling pathway. Furthermore, proteomic analysis revealed that the implantation of Cyclosporine A drug delivery system (CsA-DDS) into the anterior chamber obviously mitigated corneal transplantation rejection by inhibiting immunoreaction both in the corneal grafts and I-CB tissues. CONCLUSION The results highlighted the involvement of intraocular immunity both in the grafts and I-CB tissues during corneal transplantation rejection, further suggesting the anterior chamber as an optimal drug-delivery site for its treatment.
Collapse
Affiliation(s)
- Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Qingdao Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, 250021, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250117, China.
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Jinan, 250021, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
2
|
Wowra B, Wysocka-Kosmulska M, Dobrowolski D, Wylęgała E. Superficial Keratectomy Alone versus in Combination with Amniotic Membrane Transplantation in Aniridia-Associated Keratopathy and a Short-Term Clinical Outcome. J Clin Med 2024; 13:3258. [PMID: 38892970 PMCID: PMC11173058 DOI: 10.3390/jcm13113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Aniridia-associated keratopathy (AAK) is a potentially vision-threatening pathology in congenital aniridia, for which both the underlying etiopathogenesis and effective treatment remain unclear. Methods:This prospective study was conducted to assess and compare the short-term outcome after superficial keratectomy (SK) alone or in a combination with an amniotic membrane transplantation (AMT). Here, 76 eyes were enrolled in 76 patients with grade 4 AAK. In all eyes, in order to assess preoperatively the efficiency of the limbal epithelial stem cells (LESC), the presence of corneal epithelial cells in confocal microscopy was established. The analyses included: best corrected visual acuity (BCVA), the stage of AAK and the number of corneal quadrants involved in corneal neovascularization (CNV). Results: Six months after surgery, the mean BCVA was 0.05 and ranged from 0.002 up to 0.1 in both groups. Improvement in BCVA occurred in 94.29% patients when *SK alone* was performed, and in 92.68% when in combination with AMT. There were no statistically significant differences in the effect of therapy depending on the type of surgery, regarding BCVA, stage of AAK and the number of quadrants with CNV. Conclusions: SK alone is an effective procedure in short outcomes limited to six months for advanced AAK in association with LESC partial efficiency.
Collapse
Affiliation(s)
- Bogumił Wowra
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Marzena Wysocka-Kosmulska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland
| | - Dariusz Dobrowolski
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
- Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| |
Collapse
|
3
|
Holland EJ, Cheung AY, Djalilian AR, Farid M, Mannis MJ. Why Are Corneal Specialists Resistant to Treating Patients Who Have Severe Ocular Surface Disease With Limbal Stem Cell Deficiency? Cornea 2023; 42:1063-1068. [PMID: 37535943 DOI: 10.1097/ico.0000000000003322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/05/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE To highlight the paucity of surgeons performing ocular surface stem cell transplantation with systemic immunosuppression (OSSTx with SI) for limbal stem cell deficiency (LSCD) patients, suboptimal treatments for LSCD, and obstacles to adoption. METHODS A review of the Eye Bank Association of America annual reports and the authors' case volume for OSSTx with SI was performed. Examination of the published literature on corneal surgeries, especially for LSCD, was completed. These findings were combined with our clinical observations to develop this editorial. RESULTS Despite techniques and protocols for OSSTx with SI published more than 30 years ago for the treatment of severe bilateral LSCD, only a small number of corneal specialists have adopted these techniques. There is a paucity of attention to this population of patients, with minimal publications to advance this area of our field. We are too often referred patients with LSCD and severe ocular surface disease that have had suboptimal treatments such as penetrating keratoplasties or primary keratoprostheses. Hesitancy for adopting OSSTx with SI is likely due to a lack of exposure to these procedures during training and fear of systemic immunosuppression. Corneal surgeons are likely unaware of the safety of systemic immunosuppression with appropriate monitoring especially when comanaging these patients with an organ transplant specialist. CONCLUSION There is a large unmet need for the treatment of corneal blindness secondary to conjunctival and LSCD. For the vast majority of patients, OSSTx should be the first surgical choice to treat these eyes. We hope major ophthalmology centers will meet this need by building programs, and groups of corneal surgeons should collaborate to create regional centers to make this treatment more accessible to help this population.
Collapse
Affiliation(s)
- Edward J Holland
- Cincinnati Eye Institute/University of Cincinnati, Cincinnati, OH
| | | | - Ali R Djalilian
- The University of Illinois, College of Medicine, Chicago, IL
| | - Marjan Farid
- Gavin Herbert Eye Institute, UC Irvine, Irvine, CA; and
| | | |
Collapse
|
4
|
Painter SL, Rana M, Barua A, Abbott J, Gupte G, Shah S, Parulekar M. Outcomes following tacrolimus systemic immunosuppression for penetrating keratoplasty in infants and young children. Eye (Lond) 2022; 36:2286-2293. [PMID: 34839362 PMCID: PMC9674676 DOI: 10.1038/s41433-021-01855-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To report outcomes of tacrolimus immunosuppression after penetrating keratoplasty (PK) in very young children. METHODS Retrospective, consecutive, cohort study of children undergoing PK at a tertiary children's hospital between 2005 and 2016. Oral tacrolimus immunosuppression was given for 2 years, followed by topical tacrolimus. RESULTS Fourteen children (20 eyes) had 24 PKs; nineteen eyes had primary PKs, five eyes had repeat PKs. Mean age at primary graft was 95 days (3.1 months) for anterior segment dysgenesis (ASD), 430 days (14.3 months) for non-ASD children. Eleven children (15 eyes) had ASD. Three children (five eyes) had non-ASD: two children (three eyes) had glaucoma-related corneal opacity and one child (two eyes) had congenital hereditary endothelial dystrophy (CHED). One-year rejection-free survival rates following primary PK was 80% for ASD (n = 15) and 100% for non-ASD (n = 4). At final review, 5/15 of primary grafts for ASD were clear. 10/15 failed after a mean of 19 months, specifically attributable to infection (n = 2), rejection (n = 2) and glaucoma (n = 2). 4/4 primary non-ASD grafts are clear at final review (mean follow-up = 77 months). All repeat grafts (n = 5), failed after a mean of 38.25 months. Considering all grafts, 15/24 (62.5%) failed: 5/15 due to infection, 2/15 due to rejection, 8/15 due to glaucoma, phthisis, perforation or vascularised with no rejection. At last review (mean = 58.1 months, range 28-84), overall cohort survival is 37.5%. Final visual acuities range between 0.86 and 2.4 LogMAR. CONCLUSION We compare our results to published literature: 1-year graft survival was higher than previously reported, with lower failure due to rejection. Overall infection rates did not increase, however, proportionally, severe infections were higher. Overall graft survival is at least comparable to reported literature.
Collapse
Affiliation(s)
- Sally L Painter
- Department of Ophthalmology, Birmingham Children's Hospital, Birmingham, UK
| | - Mrinal Rana
- Department of Ophthalmology, North West Anglia Hospitals NHS Trust, Peterborough, UK
| | - Ankur Barua
- Department of Ophthalmology, Birmingham Midlands Eye Centre, Birmingham, UK
| | - Joseph Abbott
- Department of Ophthalmology, Birmingham Children's Hospital, Birmingham, UK
| | - Girish Gupte
- Department of Hepatology, Birmingham Children's Hospital, Birmingham, UK
| | - Sunil Shah
- Department of Ophthalmology, Birmingham Midlands Eye Centre, Birmingham, UK
| | - Manoj Parulekar
- Department of Ophthalmology, Birmingham Children's Hospital, Birmingham, UK.
| |
Collapse
|
5
|
Immunosuppressive Therapy for High-Risk Corneal Transplant. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Abstract
PURPOSE OF REVIEW Corneal graft rejection has been reported after coronavirus disease 2019 (COVID-19) vaccination. The purpose of this review is to evaluate the literature regarding corneal graft rejection after vaccination, including rejection rates and risk factors. We aim to create a framework to identify patients who are at higher risk for graft rejection and may warrant consideration of prophylactic interventions. RECENT FINDINGS Graft rejection has been reported following administration of mRNA, viral vector, and inactivated whole-virion COVID-19 vaccines. Most cases had additional risk factors associated with rejection. Vaccination increases circulation of proinflammatory cytokines, CD4+ and CD8+ T-cell responses, and antispike neutralizing antibody, all of which may contribute to graft rejection. Two prospective studies have found no relationship between recent vaccination and rejection but 20% of cornea specialists report to have seen a vaccine-associated rejection and 22% recommend delaying vaccination in certain circumstances. Many specialists recommend prophylactic topical corticosteroids before and after vaccination to mitigate rejection risk but there is no evidence to support this practice on a wider scale. SUMMARY Our framework identified 96.8% of penetrating keratoplasty patients with vaccine-associated rejection as higher risk. Further research is needed in order to develop evidence-based guidelines.
Collapse
Affiliation(s)
- Sarah P Dugan
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
7
|
Zhu J, Inomata T, Nakamura M, Fujimoto K, Akasaki Y, Fujio K, Yanagawa A, Uchida K, Sung J, Negishi N, Nagino K, Okumura Y, Miura M, Shokirova H, Kuwahara M, Hirosawa K, Midorikawa-Inomata A, Eguchi A, Huang T, Yagita H, Habu S, Okumura K, Murakami A. Anti-CD80/86 antibodies inhibit inflammatory reaction and improve graft survival in a high-risk murine corneal transplantation rejection model. Sci Rep 2022; 12:4853. [PMID: 35318419 PMCID: PMC8941080 DOI: 10.1038/s41598-022-08949-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/15/2022] [Indexed: 12/27/2022] Open
Abstract
We investigated the effects of anti-CD80/86 antibodies in a murine high-risk corneal transplantation rejection model. A mixed lymphocyte reaction (MLR) assay was conducted with anti-CD80/86 antibodies. Inflammatory cytokine levels in the culture supernatant were measured using an enzyme-linked immunosorbent assay. Interferon (IFN)-γ-producing CD4+ T cell frequencies in the MLR were assessed using flow cytometry. In vivo, high-risk corneal allograft survival and IFN-γ-producing CD4+ T cell frequencies in corneal grafts were assessed with intraperitoneal injection of anti-CD80/86 antibodies compared to phosphate-buffered saline (PBS). RNA-sequencing was performed on corneal grafts 2 weeks post-transplantation. Anti-CD80/86 antibodies significantly decreased T-cell proliferation, IFN-γ+-producing CD4+ T cell frequencies, and IFN-γ, interleukin (IL)-1β, IL-2, IL-10, and tumor necrosis factor-α production in the MLR compared to PBS injection. Intraperitoneal injection of anti-CD80/86 antibodies significantly prolonged corneal graft survival and decreased IFN-γ+-producing CD4+ T cell frequencies compared to PBS injection. Gene set enrichment analysis showed that the gene sets mainly enriched in the control group were related to allograft rejection and inflammatory response compared to PBS injection. Anti-CD80/86 antibodies significantly prolonged corneal graft survival by inhibiting T-cell proliferation and inflammatory response.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Subei People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masahiro Nakamura
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiological Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Qi X, Wang L, Zhang X, Liu M, Gao H. Topical administration of tacrolimus and corticosteroids in tapering doses is effective in preventing immune rejection in high-risk keratoplasty: a 5-year follow-up study. BMC Ophthalmol 2022; 22:101. [PMID: 35246084 PMCID: PMC8896080 DOI: 10.1186/s12886-022-02318-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background To evaluate the efficacy of the topical administration of immunosuppressants and corticosteroids in tapering doses in the management of patients with high-risk keratoplasty. Methods One hundred and six patients treated with topical immunosuppressants (50 eyes in the FK506 group and 56 eyes in the CsA group) and corticosteroid eye drops in tapering doses were enrolled in the study. The rates of rejection episodes, irreversible rejection, graft survival, and related influential factors were evaluated. Results The mean follow-up period was 48.1 ± 7.9 months (range, 36–60 months). The rates of rejection episodes and irreversible rejection were 14.0% and 6.00% in the FK506 group and 37.5% and 7.1% in the CsA group, respectively. Kaplan-Meier survival analysis demonstrated a significantly higher graft survival rate in the FK506 group (81.6%±5.3%, 71.1%±6.3%) compared with that in the CsA group (71.1%±6.3%, 57.5%±7.5%) at 3 and 5 years after surgery (P = 0.006). Multivariate logistic regression revealed that preoperative risk score ≥ 3 (P = 0.016) and endothelial immune rejection (P = 0.033) were risk factors associated with graft survival. Conclusions Topical administration of tacrolimus and corticosteroids in tapering doses is effective in decreasing the incidence of immune rejection in high-risk keratoplasty. Careful instruction of patients on the reasonable use of topical tacrolimus is critical to avoid immune rejection induced by sudden discontinuation of medication.
Collapse
Affiliation(s)
- Xiaolin Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lichao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China. .,Shandong Eye Hospital, 372 Jingsi Road, 250021, Jinan, China.
| |
Collapse
|
9
|
Xue JF, Li DF, Wang YN, Chen C, Yang RF, Zhou QJ, Liu T, Xie LX, Dong YL. Midterm outcomes of penetrating keratoplasty following allogeneic cultivated limbal epithelial transplantation in patients with bilateral limbal stem cell deficiency. Int J Ophthalmol 2021; 14:1690-1699. [PMID: 34804858 DOI: 10.18240/ijo.2021.11.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate the midterm outcomes of penetrating keratoplasty (PK) following allogeneic cultivated limbal epithelial transplantation (CLET) for bilateral total limbal stem cell deficiency (LSCD). METHODS Ten patients (10 eyes) with bilateral LSCD were enrolled in this prospective noncomparative case series study. Each participant underwent PK approximately 6mo after a CLET. Topical tacrolimus, topical and systemic steroids, and oral ciclosporin were administered postoperatively. Best-corrected visual acuity (BCVA), intraocular pressure (IOP), ocular surface grading scores (OSS), corneal graft epithelial rehabilitation, persistent epithelial defect (PED), immunological rejection, and graft survival rate were assessed. RESULTS The time interval between PK and allogeneic CLET was 6.90±1.29 (6-10)mo. BCVA improved from 2.46±0.32 logMAR preoperatively to 0.77±0.55 logMAR post-PK (P<0.001). Kaplan-Meier analysis of mean graft survival revealed graft survival rates of 100% at 12 and 24mo and 80.0% at 36mo. PEDs appeared in 5 eyes at different periods post-PK, and graft rejection occurred in 4 eyes. The total OSS decreased from 12.4±4.4 before allogeneic CLET to 1.4±1.51 after PK. CONCLUSION A sequential therapy design of PK following allogeneic CLET can maintain a stable ocular surface with improved BCVA despite the relatively high graft rejection rate.
Collapse
Affiliation(s)
- Jun-Fa Xue
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan 271016, Shandong Province, China.,State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Dong-Fang Li
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Ya-Ni Wang
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Department of Ophthalmology, Shandong University, Jinan 250100, Shandong Province, China
| | - Ru-Fei Yang
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| | - Qing-Jun Zhou
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| | - Li-Xin Xie
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| | - Yan-Ling Dong
- State Key Laboratory Cultivation Base, Shandong Province Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
10
|
Immunology and Donor-Specific Antibodies in Corneal Transplantation. Arch Immunol Ther Exp (Warsz) 2021; 69:32. [PMID: 34741683 PMCID: PMC8572187 DOI: 10.1007/s00005-021-00636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
The first human corneal transplantation was performed in 1905 by Eduard Zirm in the Olomouc Eye Clinic, now Czech Republic. However, despite great advancements in microsurgical eye procedures, penetrating keratoplasty in high-risk patients (e.g., vascularized or inflamed corneal tissue, consecutive transplants) remains a challenge. The difficulty is mainly due to the risk of irreversible allograft rejection, as an ocular immune privilege in these patients is abolished and graft rejection is the main cause of corneal graft failure. Therefore, tailored immunosuppressive treatment based on immunological monitoring [e.g., donor-specific antibodies (DSA)] is considered one of the best strategies to prevent rejection in transplant recipients. Although there is indirect evidence on the mechanisms underlying antibody-mediated rejection, the impact of DSA on cornea transplantation remains unknown. Determining the role of pre-existing and/or de novo DSA could advance our understanding of corneal graft rejection mechanisms. This may help stratify the immunological risk of rejection, ultimately leading to personalized treatment for this group of transplant recipients.
Collapse
|
11
|
Farah CJ, Fries FN, Latta L, Käsmann-Kellner B, Seitz B. An attempt to optimize the outcome of penetrating keratoplasty in congenital aniridia-associated keratopathy (AAK). Int Ophthalmol 2021; 41:4091-4098. [PMID: 34324101 PMCID: PMC8572819 DOI: 10.1007/s10792-021-01982-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Purpose To propose an optimized microsurgical and medical approach to reduce the risk of complications after penetrating keratoplasty (PKP) in patients with aniridia-associated keratopathy (AAK). Methods Retrospective observational case series of 25 PKP performed in 16 patients with AAK. Preoperative indications were endothelial decompensation and vascularized scars (68%) or graft failure (32%) due to limbal stem cell deficiency. The optimized approach included a combination of a small corneal graft size (around 7.0 mm), interrupted 10–0nylon sutures, simultaneous AMT as a patch, large bandage contact lens, temporary lateral tarsorrhaphy, postoperative autologous serum eye drops, and systemic immunosuppression. Main outcome measures included: visual acuity, transplant survival, and complications encountered during follow-up of 107 weeks on average. Results A complete modified keratoplasty scheme was used in 10 of 25 PKP (group 1), while at least one of the modifications was missing in the other 15 PKP (group 2). After 8 weeks of follow-up, the epithelium was closed in 23 eyes. Visual acuity improved in 19 eyes at 6 months of follow-up, and remained stable in six eyes. None of the eyes showed a decrease in visual acuity. At the last post-operative follow-up, this visual improvement persisted in 14 eyes and graft survival rate after 156 weeks (3 years) was 69% in group 1 versus 44% in group 2 (p = 0.39, log-rank test). Secondary corneal neovascularization (8%), scarring (4%), ulcer (4%), or graft rejection (8%) happened mostly in the second group which was missing at least one of the suggested modifications. Conclusions PKP in congenital aniridia must be considered as a high-risk keratoplasty. An optimized therapeutic approach seems to be promising in order to reduce the postoperative complication rate in these most difficult eyes.
Collapse
Affiliation(s)
- C J Farah
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany.
| | - F N Fries
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany
| | - L Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell Research and Congenital Aniridia, Saarland University Medical Center, Homburg, Saar, Germany
| | - B Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany
| | - B Seitz
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany
| |
Collapse
|
12
|
Armitage WJ, Winton HL, Jones MNA, Downward L, Crewe JM, Rogers CA, Tole DM, Dick AD. Corneal Transplant Follow-up Study II: a randomised trial to determine whether HLA class II matching reduces the risk of allograft rejection in penetrating keratoplasty. Br J Ophthalmol 2020; 106:42-46. [PMID: 33268345 DOI: 10.1136/bjophthalmol-2020-317543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A randomised trial to test the hypothesis that human leucocyte antigen (HLA) class II matching reduces the risk of allograft rejection in high-risk penetrating keratoplasty (PK). METHODS All transplants were matched for HLA class I antigens (≤2 mismatches at the A and B loci) and corneas were allocated to patients by cohort minimisation to achieve 0, 1 or 2 HLA class II antigen mismatches. The corneal transplants (n=1133) were followed for 5 years. The primary outcome measure was time to first rejection episode. RESULTS Cox regression analysis found no influence of HLA class II mismatching on risk of immunological rejection (HR 1.13; 95% CI 0.79 to 1.63; p=0.51). The risk of rejection in recipients older than 60 years was halved compared with recipients ≤40 years (HR 0.51; 95% CI 0.36 to 0.73; p=0.0003). Rejection was also more likely where cataract surgery had been performed after PK (HR 3.68; 95% CI 1.95 to 6.93; p<0.0001). In univariate analyses, preoperative factors including chronic glaucoma (p=0.02), vascularisation (p=0.01), inflammation (p=0.03), ocular surface disease (p=0.0007) and regrafts (p<0.001) all increased the risk of rejection. In the Cox model, however, none of these factors was individually significant but rejection was more likely where≥2 preoperative risk factors were present (HR 2.11; 95% CI 1.26 to 3.47; p<0.003). CONCLUSIONS HLA class II matching, against a background of HLA class I matching, did not reduce the risk of allograft rejection. Younger recipient age, the presence of ≥2 preoperative risk factors and cataract surgery after PK all markedly increased the risk of allograft rejection. TRIAL REGISTRATION NUMBER ISRCTN25094892.
Collapse
Affiliation(s)
- W John Armitage
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Helen L Winton
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | | | - Julie M Crewe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Chris A Rogers
- Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Tetramethylpyrazine (TMP) ameliorates corneal neovascularization via regulating cell infiltration into cornea after alkali burn. Biomed Pharmacother 2018; 109:1041-1051. [PMID: 30551354 DOI: 10.1016/j.biopha.2018.10.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022] Open
Abstract
In the present study, we investigated the underlying mechanism of tetramethylpyrazine (TMP)-medicated inhibition of corneal neovascularization (CNV). Our data showed that TMP could effectively downregulate the expression levels of CXCR4 mRNA and protein, as well as inhibit HUVECs, endothelial cells, tubule formation in vitro. In vivo, alkali burn (1 M NaOH) could remarkably upregulate CXCR4 expression and increase the migration of TNF-α-positive cells to corneal stroma. TMP drops could significantly downregulate CXCR4 expression in cornea, compared to the control. However, there was no difference in the downregulation of CXCR4 between TMP and FK506, an immunosuppressive drug. Moreover, the immunofluorescent staining of CD45 showed TMP and FK506 could significantly restrain the bone marrow (BM)-derived infiltration while the F4/80 staining reflects the suppression of macrophage aggregation. Meanwhile TMP could regulate the Interleukin 10 (IL-10) and FK506 could restrain the Interleukin 2 (IL-2). Furthermore, TMP and FK506 significantly ameliorate corneal opacity and neovascularization. Clinical assessment detected an obvious improvement in TMP and FK506 treatment groups, compared to controls in vivo. Thus, TMP had similar effects in inhibition of immune response and CNV by suppressing BM-infiltrating cells into cornea as FK506. TMP could be a potential agent in eye-drop therapy for cornea damaged by Alkali Burn.
Collapse
|
15
|
Figueiredo GS, Salvador-Culla B, Baylis OJ, Mudhar HS, Lako M, Figueiredo FC. Outcomes of Penetrating Keratoplasty Following Autologous Cultivated Limbal Epithelial Stem Cell Transplantation. Stem Cells 2018; 36:925-931. [DOI: 10.1002/stem.2803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/11/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Gustavo S. Figueiredo
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| | - Borja Salvador-Culla
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
| | - Oliver J. Baylis
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| | - Hardeep S. Mudhar
- Department of Histopathology; Royal Hallamshire Hospital; Sheffield United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| | - Francisco C. Figueiredo
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| |
Collapse
|
16
|
Abstract
Objectives: To report the outcomes of penetrating keratoplasty (PKP) surgeries in eyes with failed PKP. Methods: This was a retrospective, non-comparative, descriptive case series. Thirty eyes of 30 patients with failed PKP comprised our study group, they were reviewed from January 2007 to December 2012 at the King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. Data were collected on best corrected visual acuity before and after one week, one month, 3 months, 6 months, one year, and 2 years following PKP. Intraoperative and postoperative complications, changes in intraocular pressure (IOP), additional surgical procedure and other ocular comorbidities were also documented. The visual outcomes at 6 months and one year were associated with risk factors. Results: Before intervention, 18 (60%) eyes had vision <20/400. Vision was 20/20 to 20/60 in 10 (30%) eyes at 6 months, 17 (57%) eyes at 12 months, and 22 (73%) eyes at 24 months. The variation in IOP at different follow up periods was not significant (p=0.2). The presence of other ocular comorbidity was not significantly associated with functional visual outcome (p=0.4). Additional surgical procedure after repeat PKP enabled a regain of excellent vision in 9 (47%) eyes at one year. The numbers for past corneal surgeries were significantly associated with the visual outcome at 6 months. Conclusion: Penetrating keratoplasty to manage failed PKP resulted in reducing visual disabilities.
Collapse
Affiliation(s)
- Abdulrahman S Khairallah
- Division of Ophthalmology, Department of Surgery, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
17
|
Jabbehdari S, Rafii AB, Yazdanpanah G, Hamrah P, Holland EJ, Djalilian AR. Update on the Management of High-Risk Penetrating Keratoplasty. CURRENT OPHTHALMOLOGY REPORTS 2017; 5:38-48. [PMID: 28959505 DOI: 10.1007/s40135-017-0119-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In this article, we review the indications and latest management of high-risk penetrating keratoplasty. RECENT FINDINGS Despite the immune-privilege status of the cornea, immune-mediated graft rejection still remains the leading cause of corneal graft failure. This is particularly a problem in the high-risk graft recipients, namely patients with previous graft failure due to rejection and those with inflamed and vascularized corneal beds. A number of strategies including both local and systemic immunosuppression are currently used to increase the success rate of high-risk corneal grafts. Moreover, in cases of limbal stem cell deficiency, limbal stem cells transplantation is employed. SUMMARY Corticosteroids are still the top medication for prevention and treatment in cases of corneal graft rejection. Single and combined administration of immunosuppressive agents e.g. tacrolimus, cyclosporine and mycophenolate are promising adjunctive therapies for prolonging graft survival. In the future, cellular and molecular therapies should allow us to achieve immunologic tolerance even in high-risk grafts.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Alireza Baradaran Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Pedram Hamrah
- Department of Ophthalmology, Tufts University Medical School, Boston, MA
| | - Edward J Holland
- Cincinnati Eye Institute, University of Cincinnati, Cincinnati, Ohio
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|