1
|
Jurkunas UV, Yin J, Johns LK, Li S, Negre H, Shaw KL, Samarakoon L, Ayala AR, Kheirkhah A, Katikireddy K, Gauthier A, Ong Tone S, Kaufman AR, Ellender S, Hernandez Rodriguez DE, Daley H, Dana R, Armant M, Ritz J. Cultivated autologous limbal epithelial cell (CALEC) transplantation: Development of manufacturing process and clinical evaluation of feasibility and safety. SCIENCE ADVANCES 2023; 9:eadg6470. [PMID: 37595035 PMCID: PMC10438443 DOI: 10.1126/sciadv.adg6470] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
To treat unilateral limbal stem cell (LSC) deficiency, we developed cultivated autologous limbal epithelial cells (CALEC) using an innovative xenobiotic-free, serum-free, antibiotic-free, two-step manufacturing process for LSC isolation and expansion onto human amniotic membrane with rigorous quality control in a good manufacturing practices facility. Limbal biopsies were used to generate CALEC constructs, and final grafts were evaluated by noninvasive scanning microscopy and tested for viability and sterility. Cultivated cells maintained epithelial cell phenotype with colony-forming and proliferative capacities. Analysis of LSC biomarkers showed preservation of "stemness." After preclinical development, a phase 1 clinical trial enrolled five patients with unilateral LSC deficiency. Four of these patients received CALEC transplants, establishing preliminary feasibility. Clinical case histories are reported, with no primary safety events. On the basis of these results, a second recruitment phase of the trial was opened to provide longer term safety and efficacy data on more patients.
Collapse
Affiliation(s)
- Ula V. Jurkunas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Lynette K. Johns
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sanming Li
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Helene Negre
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kit L. Shaw
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Ahmad Kheirkhah
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kishore Katikireddy
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Alex Gauthier
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stephan Ong Tone
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Aaron R. Kaufman
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stacey Ellender
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Heather Daley
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Reza Dana
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Myriam Armant
- TransLab, Translational Research Program, Boston Children’s Hospital, Boston, MA, USA
| | - Jerome Ritz
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Jurkunas U, Johns L, Armant M. Cultivated Autologous Limbal Epithelial Cell Transplantation: New Frontier in the Treatment of Limbal Stem Cell Deficiency. Am J Ophthalmol 2022; 239:244-268. [PMID: 35314191 DOI: 10.1016/j.ajo.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Taking into consideration prior human experience with treating limbal stem cell deficiency (LSCD) with cultivated limbal epithelial cells (CLEC) from other countries, we have set a goal to optimize and standardize the techniques of CLEC preparation (called CALEC by our group) for the clinical trial in the United States. METHODS We performed an extensive literature review of all human trials, case series, and reports involving autologous cultivated limbal epithelial cell transplantation. Allogeneic cultivated limbal epithelial cell transplantations were reported only when combined with autologous studies. We also searched prior animal data aiding in detailing regulatory toxicology requirements. RESULTS Between 1997 and 2020, the analysis of human trials revealed 21 studies on autologous grafts, and 13 studies analyzing both autologous grafts and allogeneic grafts. Of a total of 34 studies, 6 studies used good manufacturing process (GMP) facilities, and 11 studies had no animal-derived products or murine feeder layers, whereas only 1 study had both. Overall, the treatment with autologous CLEC grafts was 68.9% successful. In total there were 6 preclinical studies using rabbits, serving as surrogate studies to assess the safety and toxicity of cultivated limbal epithelial cells for human trials. Based on prior human experience, we further optimized the manufacturing conditions with GMP-grade and serum and animal-free reagents, and developed cell characterization assays for the CALEC product release. CONCLUSIONS These data were used to develop a novel and consistent manufacturing process using only qualified and validated reagents for performing the first clinical trial on CALEC transplantation to treat LSCD in the United States.
Collapse
Affiliation(s)
- Ula Jurkunas
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA.
| | - Lynette Johns
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Myriam Armant
- TransLab (M.A.), Translational Research Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Abstract
The corneal epithelium (CE) forms the outermost layer of the cornea. Despite its thickness of only 50 μm, the CE plays a key role as an initial barrier against any insults to the eye and contributes to the light refraction onto the retina required for clear vision. In the event of an injury, the cornea is equipped with many strategies contributing to competent wound healing, including angiogenic and immune privileges, and mechanotransduction. Various factors, including growth factors, keratin, cytokines, integrins, crystallins, basement membrane, and gap junction proteins are involved in CE wound healing and serve as markers in the healing process. Studies of CE wound healing are advancing rapidly in tandem with the rise of corneal bioengineering, which employs limbal epithelial stem cells as the primary source of cells utilizing various types of biomaterials as substrates.
Collapse
Affiliation(s)
- Norzana Abd Ghafar
- Pusat Perubatan Universiti Kebangsaan Malaysia, 56000Cheras, Kuala Lumpur, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000Cheras, Kuala Lumpur, Malaysia
| | - Taty Anna Kamarudin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Figueiredo FC, Glanville JM, Arber M, Carr E, Rydevik G, Hogg J, Okonkwo A, Figueiredo G, Lako M, Whiter F, Wilson K. A systematic review of cellular therapies for the treatment of limbal stem cell deficiency affecting one or both eyes. Ocul Surf 2021; 20:48-61. [PMID: 33412337 DOI: 10.1016/j.jtos.2020.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE This systematic review (SR) assessed the efficacy, safety and cost-effectiveness of cell-based therapy to manage limbal stem cell deficiency (LSCD), a sight-threatening orphan condition most frequently associated with severe chemical or thermal burns. LSCD has historically been treated by transplanting limbal tissue. In 1997, a new treatment, cultured limbal epithelial autografts, was described for unilateral LSCD. In cases of bilateral disease cultured autologous oral mucosa stem cells have been used. The relative efficacy of different cultured tissue procedures is unknown. METHODS A protocol was registered with PROSPERO (CRD42017081117). Searches were conducted in 14 databases and 6 conference websites. Two reviewers independently selected studies, conducted data extraction and assessed risk of bias. One reviewer extracted individual patient data (IPD); a second checked extracted data. Data were assessed to determine the feasibility of statistical analysis, with Bayesian synthesis used to estimate improvement achieved by different treatments. RESULTS Fifty-two studies were eligible for inclusion (1113 eyes); 41 studies (716 eyes) reported IPD. No evidence was identified on cost-effectiveness. This SR was unable to confirm that any of the types of ex vivo cultured stem cell transplants identified for LSCD treatment were statistically superior when assessed against the outcomes of interest. CONCLUSIONS We believe this SR is the first to include IPD analysis of LSCD data. There is no evidence for the superiority of any method of limbal stem cell transplant. Confirmation of the safety and efficacy of this treatment modality is challenging due to heterogeneity within and between the studies identified. Therefore, recommendations for future research are proposed.
Collapse
Affiliation(s)
- F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary and University of Newcastle, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK.
| | - J M Glanville
- York Health Economics Consortium, Enterprise House, Innovation Way, University of York, York, YO10 5NQ, UK
| | - M Arber
- York Health Economics Consortium, Enterprise House, Innovation Way, University of York, York, YO10 5NQ, UK
| | - E Carr
- York Health Economics Consortium, Enterprise House, Innovation Way, University of York, York, YO10 5NQ, UK
| | - G Rydevik
- Quantics Biostatistics, West End House, 28 Drumsheugh Gardens, Edinburgh, EH3 7RN, UK
| | - J Hogg
- Department of Ophthalmology, Royal Victoria Infirmary and University of Newcastle, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK
| | - A Okonkwo
- Department of Ophthalmology, Royal Victoria Infirmary and University of Newcastle, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK
| | - G Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary and University of Newcastle, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK
| | - M Lako
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle, NE1 3BZ, UK
| | - F Whiter
- York Health Economics Consortium, Enterprise House, Innovation Way, University of York, York, YO10 5NQ, UK
| | - K Wilson
- York Health Economics Consortium, Enterprise House, Innovation Way, University of York, York, YO10 5NQ, UK
| |
Collapse
|
5
|
Le Q, Chauhan T, Deng SX. Diagnostic criteria for limbal stem cell deficiency before surgical intervention-A systematic literature review and analysis. Surv Ophthalmol 2019; 65:32-40. [PMID: 31276736 DOI: 10.1016/j.survophthal.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022]
Abstract
An accurate diagnosis of limbal stem cell deficiency (LSCD) is the premise of an appropriate treatment; however, there is no consensus about the diagnostic criteria for LSCD. We performed a systematic literature search of the peer-reviewed articles on PubMed, Medline, and Ovid to investigate how LSCD was diagnosed before surgical intervention. The methods used to diagnose LSCD included clinical presentation, impression cytology, and in vivo confocal microscopy. Among 131 eligible studies (4054 eyes), 26 studies (459 eyes, 11.3%) did not mention the diagnostic criteria. In the remaining 105 studies, the diagnosis of LSCD was made on the basis of clinical examination alone in 2398 eyes (62.9%), and additional diagnostic tests were used in 1047 (25.8%) eyes. Impression cytology was used in 981 eyes (24.2%), in vivo confocal microscopy was used in 29 eyes (0.7%), and both impression cytology and in vivo confocal microscopy were used in 37 eyes (0.9%). Our findings suggest that only a small portion of patients underwent a diagnostic test to confirm the diagnosis of LSCD. Treating physicians should be aware of the limitations of clinical examination in diagnosing LSCD and perform a diagnostic test whenever possible before surgical intervention.
Collapse
Affiliation(s)
- Qihua Le
- Stein Eye Institute, Cornea Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Tulika Chauhan
- Stein Eye Institute, Cornea Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sophie X Deng
- Stein Eye Institute, Cornea Division, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
6
|
Systematic review and meta-analysis investigating autograft versus allograft cultivated limbal epithelial transplantation in limbal stem cell deficiency. Int Ophthalmol 2019; 39:2685-2696. [PMID: 30826943 DOI: 10.1007/s10792-019-01092-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Currently, regenerative medicine has attracted much attention among researchers investigating new methods to treat ocular surface diseases. Based on this new concept, cultivated limbal epithelial transplantation (CLET), whether in the form of autograft or allograft, has emerged as a promising surgical procedure for treating limbal stem cell deficiency (LSCD). Given that there is no updated comparison between autograft and allograft CLETs, the present review and meta-analysis aims to compare and determine the efficacy of two different CLET techniques, autologous versus allogeneic, based on a literature review of relevant studies. METHODS A comprehensive search of electronic databases, including PubMed, Web of Science, Cochrane Library, Embase and Scopus, for related articles was performed in March 2018 to obtain relevant articles and to conduct a meta-analysis investigating the success rate of ocular surface regeneration and two-line improvement in best-corrected visual acuity (BCVA) using autograft versus allograft transplantations. RESULTS A total of 30 studies, including 1306 eyes from 1288 patients with LSCD, with a sample size ranging from 6 to 200 and follow-up period of 0.6-156 months, were reviewed. Of 1306 eyes, 982 (75.2%) underwent autograft and 324 (24.8%) received allografts from living or deceased donors. Meta-analysis revealed that there was no significant difference between autograft and allograft CLETs in terms of success rate and two-line BCVA improvement. The prospective studies showed a zero difference between the two groups; only two retrospective studies included in the analysis pulled the autografts up to 1.82 and 1.2 times more than allografts in terms of success rate and two-line BCVA improvement, respectively [pooled OR 1.82 (95% CI 0.80-4.11); pooled OR 1.2 (95% CI 0.54-2.65)]. There was no statistically significant evidence of bias in the meta-analysis in terms of success rates and two-line BCVA improvement. CONCLUSIONS The present analysis revealed no significant differences in success rates or visual improvement between autograft and allograft surgical techniques.
Collapse
|
7
|
|
8
|
Williams R, Lace R, Kennedy S, Doherty K, Levis H. Biomaterials for Regenerative Medicine Approaches for the Anterior Segment of the Eye. Adv Healthc Mater 2018; 7:e1701328. [PMID: 29388397 DOI: 10.1002/adhm.201701328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Indexed: 12/13/2022]
Abstract
The role of biomaterials in tissue engineering and regenerative medicine strategies to treat vision loss associated with damage to tissues in the anterior segment of the eye has been studied for several years. This has mostly involved replacement and support for the cornea and conjunctiva. These are complex tissues with specific functional requirements for different parts of the tissue. Amniotic membrane (AM) is used in clinical practice to transplant autologous or allogenic cells to the corneal surface. Fibrin gels have also progressed to clinical use under specific conditions. Alternatives to AM such as collagen gels, other natural materials, for example keratin and silks, and synthetic polymers have received considerable attention in laboratory and animal studies. This experience is building a body of evidence to demonstrate the potential of tissue engineering and regenerative medicine in corneal and conjunctival reconstruction and can also lead to other applications in the anterior segment of the eye, for example, the trabecular meshwork. There is a real clinical need for new procedures to overcome vision loss but there are also opportunities for developments in ocular applications to lead to biomaterials innovations for use in other clinical areas.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rebecca Lace
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Stephnie Kennedy
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kyle Doherty
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Hannah Levis
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
9
|
Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf 2018; 16:58-69. [PMID: 29113917 PMCID: PMC5844504 DOI: 10.1016/j.jtos.2017.11.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/24/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Limbal stem cells (LSCs) maintain the normal homeostasis and wound healing of corneal epithelium. Limbal stem cell deficiency (LSCD) is a pathologic condition that results from the dysfunction and/or an insufficient quantity of LSCs. The diagnosis of LSCD has been made mainly based on medical history and clinical signs, which often are not specific to LSCD. Methods to stage the severity of LSCD have been lacking. With the application of newly developed ocular imaging modalities and molecular methods as diagnostic tools, standardized quantitative criteria for the staging of LSCD can be established. Because of these recent advancements, effective patient-specific therapy for different stages of LSCD may be feasible.
Collapse
Affiliation(s)
- Qihua Le
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA; Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Sophie X Deng
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
10
|
|
11
|
Ghoubay-Benallaoua D, de Sousa C, Martos R, Latour G, Schanne-Klein MC, Dupin E, Borderie V. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PLoS One 2017; 12:e0188398. [PMID: 29149196 PMCID: PMC5693460 DOI: 10.1371/journal.pone.0188398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial and stromal stem cells are required to maintain corneal transparency. The aim of the study was to develop a new method to isolate and grow both corneal stromal (SSC) and epithelial limbal (LSC) stem cells from small human limbal biopsies under culture conditions in accordance with safety requirements mandatory for clinical use in humans. Superficial limbal explants were retrieved from human donor corneo-scleral rims. Human limbal cells were dissociated by digestion with collagenase A, either after epithelial scraping or with no scraping. Isolated cells were cultured with Essential 8 medium (E8), E8 supplemented with EGF (E8+) or Green’s medium with 3T3 feeder-layers. Cells were characterized by immunostaining, RT-qPCR, colony forming efficiency, sphere formation, population doubling, second harmonic generation microscopy and differentiation potentials. LSC were obtained from unscraped explants in E8, E8+ and Green’s media and were characterized by colony formation and expression of PAX6, ΔNP63α, Bmi1, ABCG2, SOX9, CK14, CK15 and vimentin, with a few cells positive for CK3. LSC underwent 28 population doublings still forming colonies. SSC were obtained from both scraped and unscraped explants in E8 and E8+ media and were characterized by sphere formation, expression of PAX6, SOX2, BMI1, NESTIN, ABCG2, KERATOCAN, VIMENTIN, SOX9, SOX10 and HNK1, production of collagen fibrils and differentiation into keratocytes, fibroblasts, myofibroblasts, neurons, adipocytes, chondrocytes and osteocytes. SSC underwent 48 population doublings still forming spheres, Thus, this new method allows both SSC and LSC to be isolated from small superficial limbal biopsies and to be primary cultured in feeder-free and xeno-free conditions, which will be useful for clinical purposes.
Collapse
Affiliation(s)
- Djida Ghoubay-Benallaoua
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | | | - Raphaël Martos
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Gaël Latour
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM U1182, Université Paris-Saclay, Palaiseau, France
| | - Elisabeth Dupin
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France
| | - Vincent Borderie
- Institut de la Vision, Sorbonne Universités, INSERM, CNRS UMR 7210, UPMC Univ Paris 06, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
12
|
Barut Selver Ö, Yağcı A, Eğrilmez S, Gürdal M, Palamar M, Çavuşoğlu T, Ateş U, Veral A, Güven Ç, Wolosin JM. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation. Turk J Ophthalmol 2017; 47:285-291. [PMID: 29109898 PMCID: PMC5661179 DOI: 10.4274/tjo.72593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 12/01/2022] Open
Abstract
The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using xenobiotic-free systems is becoming widely accepted both in Turkey and worldwide.
Collapse
Affiliation(s)
- Özlem Barut Selver
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Ayşe Yağcı
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Sait Eğrilmez
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Mehmet Gürdal
- Ege University Faculty of Medicine, Department of Medical Biochemistry, İzmir, Turkey
| | - Melis Palamar
- Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
| | - Türker Çavuşoğlu
- Ege University Faculty of Medicine, Department of Histology and Embriology, İzmir, Turkey
| | - Utku Ateş
- İstanbul Bilim University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Ali Veral
- Ege University Faculty of Medicine, Department of Pathology, İzmir, Turkey
| | - Çağrı Güven
- Ege University Faculty of Medicine, Department of Gynecology and Obstetrics, İzmir, Turkey
| | - Jose Mario Wolosin
- Icahn Faculty of Medicine at Mount Sinai, Department of Ophthalmology and Black Family Stem Cell Institute, New York, USA
| |
Collapse
|
13
|
Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration. Stem Cells Int 2017; 2017:6978253. [PMID: 28465692 PMCID: PMC5390601 DOI: 10.1155/2017/6978253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.
Collapse
|
14
|
Shah R, Puranik C, Mohamed A, Sangwan VS. Cultivated limbal epithelial transplantation and penetrating keratoplasty postchemical injury: a 14-year follow-up. BMJ Case Rep 2017; 2017:bcr-2016-217372. [PMID: 28179383 DOI: 10.1136/bcr-2016-217372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An 11-year-old girl presented to our tertiary eye care centre with a 9-month-old history of lime injury in the left eye in 1999 with vision of counting fingers close to the face. She initially underwent superficial keratectomy with amniotic membrane graft in 1999. Subsequently, cultivated limbal epithelial transplantation was performed in 2001 which improved her vision to 20/400. Following development of pannus and symblepharon in the left eye, she underwent pannus resection and conjunctival limbal autograft in 2002 and, a month later, optical penetrating keratoplasty (PK) following which her vision improved to 20/125. She was under regular follow-up, underwent exotropia correction and subsequent levator palpebrae superioris resection for ptosis and was maintaining good vision. On her last follow-up 14 years after PK in 2016, her vision in the left eye was 20/40 with lipid keratopathy and her right eye showed no signs of focal limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ritu Shah
- L V Prasad Eye Institute, Tej Kohli Cornea Institute, Hyderabad, Telangana, India
| | - Charuta Puranik
- L V Prasad Eye Institute, Tej Kohli Cornea Institute, Hyderabad, Telangana, India
| | - Ashik Mohamed
- Ophthalmic Biophysics Laboratory, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Virender S Sangwan
- L V Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Fasolo A, Pedrotti E, Passilongo M, Marchini G, Monterosso C, Zampini R, Bohm E, Birattari F, Franch A, Barbaro V, Bertolin M, Breda C, Di Iorio E, Ferrari B, Ferrari S, Meneguzzi M, Ponzin D. Safety outcomes and long-term effectiveness of ex vivo autologous cultured limbal epithelial transplantation for limbal stem cell deficiency. Br J Ophthalmol 2016; 101:640-649. [DOI: 10.1136/bjophthalmol-2015-308272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/11/2016] [Accepted: 07/30/2016] [Indexed: 11/03/2022]
|
16
|
Heydenrych LG, du Toit DF, Aldous CM. Eviscerated Corneas as Tissue Source for Ex Vivo Expansion of Limbal Epithelial Cells on Platelet-Rich Plasma Gels. Curr Eye Res 2016; 41:1543-1547. [DOI: 10.3109/02713683.2016.1141962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Donald F. du Toit
- University of Stellenbosch, Faculty of Medicine, Division of Anatomy, Department of Biomedical Sciences, Parow, Cape Town, South Africa
| | - Colleen M. Aldous
- Nelson R. Mandela School of Medicine, Department of Genetics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int 2015; 2016:9798374. [PMID: 26788074 PMCID: PMC4691643 DOI: 10.1155/2016/9798374] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.
Collapse
|
18
|
Science and Art of Cell-Based Ocular Surface Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:45-106. [DOI: 10.1016/bs.ircmb.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Sangwan VS, Jain R, Basu S, Bagadi AB, Sureka S, Mariappan I, Macneil S. Transforming ocular surface stem cell research into successful clinical practice. Indian J Ophthalmol 2014; 62:29-40. [PMID: 24492499 PMCID: PMC3955067 DOI: 10.4103/0301-4738.126173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed.
Collapse
Affiliation(s)
- Virender S Sangwan
- Clinical Trial Center, Dr. Paul Dubord Chair in Cornea, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
20
|
He H, Yiu SC. Stem cell-based therapy for treating limbal stem cells deficiency: A review of different strategies. Saudi J Ophthalmol 2014; 28:188-94. [PMID: 25278795 DOI: 10.1016/j.sjopt.2014.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022] Open
Abstract
The self renewal capability of limbal epithelial stem (LEST) cells is fundamental to the maintenance and healing of corneal epithelium. Limbal stem cell deficiency (LSCD), due to dysfunction or loss of LEST cells, therefore presents as persistent epithelial defects, corneal vascularization, conjunctivalization etc. Stem cell-based therapy, in its simplest form - limbal autograft, has been used successfully for more than a decade. For bilateral LSCD, similar approaches with limbal allografts have been unsuccessful largely due to strong immune rejection. Therefore, as an alternate strategy for treating bilateral LSCD, ex vivo expansion of the remaining LEST cells or autologous stem cells sourced from other potential sites is being explored. Different culture systems (with and without xenobiotic supplements) using substrates like amniotic membrane or fibrin gels have been used successfully for ex vivo LEST cell maintenance and reproduction by imitating the stem cell niche. This paper is organized into sections reviewing the LEST cells, LSCD and various stem cell-based approaches for treating LSCD and discussing future direction and challenges.
Collapse
Affiliation(s)
- Hong He
- The Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Samuel C Yiu
- The Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
21
|
Ex-vivo ocular surface stem cell therapies: current techniques, applications, hurdles and future directions. Expert Rev Mol Med 2013; 15:e4. [DOI: 10.1017/erm.2013.5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered tissue derived from ocular surface stem cells (SCs) are a cutting edge biotechnology for repair and restoration of severely damaged eyes as a result of ocular surface dysfunction because of SC failure. Ex-vivo SC expansion techniques have advanced significantly since the first patients were treated in the late 1990s. The techniques and clinical reports reviewed here highlight the evolution and successes of these techniques, while also revealing gaps in our understanding of ocular surface and SC biology that drives further research and development in this field. Although hurdles still remain before stem-cell-based therapies are more widely available for patients with devastating ocular surface disease, recent discoveries in the field of mesenchymal SCs and the potential of induced pluripotent SCs heralds a promising future for clinicians and our patients.
Collapse
|
22
|
Bath C. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling. Acta Ophthalmol 2013; 91 Thesis 4:1-34. [PMID: 23732018 DOI: 10.1111/aos.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles. Isolated total RNA from basal limbal crypts (BLCs), superficial limbal crypts (SLCs), paracentral/central cornea and limbal stroma was amplified and converted to fragmented cDNA libraries for use in deep paired-end next-generation sequencing. Global transcriptional profiling was carried out using bioinformatics. The location of primitive cells in BLCs, migratory and activated cells in SLCs and differentiated cells in paracentral/central cornea was evident from mapping of significantly upregulated genes in each compartment to the gene ontology (GO). Interestingly, many GO terms in BLCs were also involved in neurogenic processes, whereas many GO terms in SLCs were related to vasculature. Mapping upregulated genes in BLCs to pathway annotations in Kyoto Encyclopedia of Genes and Genomes described many active pathways as signalling and cancer-associated pathways. We supply extensive information on possible novel biomarkers, reveal insight into both active pathways and novel regulators of LESCs such as Lrig1 and SOX9 and provide an immense amount of data for future exploration (Bath et al. 2013b). Selective ex vivo expansion of LESCs in hypoxia and the comprehensive molecular characterization of corneal epithelial subpopulations in situ are expected to be beneficial for the future treatment of LSCD by cultured limbal epithelial transplantation.
Collapse
Affiliation(s)
- Chris Bath
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
23
|
Abstract
The transplantation of cultured limbal epithelial cells (LEC) has since its first application in 1997 emerged as a promising technique for treating limbal stem cell deficiency. The culture methods hitherto used vary with respect to preparation of the harvested tissue, choice of culture medium, culture time, culture substrates, and supplementary techniques. In this chapter, we describe a procedure for establishing human LEC cultures using a feeder-free explant culture technique with human amniotic membrane (AM) as the culture substrate.
Collapse
|
24
|
Wright B, Connon CJ. Limbal epithelial stem cell identification using immunoblotting analysis. Methods Mol Biol 2013; 1014:79-99. [PMID: 23690007 DOI: 10.1007/978-1-62703-432-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The unambiguous identification of limbal epithelial stem cells is currently a major challenge in corneal stem cell biology. Specific molecular markers which characterize these cells are lacking. At present, the best strategy for identification of limbal epithelial stem cells is to investigate a variety of putative markers for these cells in a differentiated (cytokeratin (CK) 3: CK3, integrin α6), undifferentiated (CK14), and naive state (∆Np63α, ATP-binding cassette subfamily G member 2 (ABCG2), integrin α9, Notch-1), alongside functional assays which indicate their stemness. The focus of this chapter is to highlight advances in the Western blotting technique for quantitative assessment of corneal epithelial cell markers, and the use of this technique for investigation of a range of different protein markers which identify limbal epithelial stem cells.
Collapse
|
25
|
Abstract
The cornea, the clear window at the front of the eye, transmits light to the retina to enable vision. The corneal surface is renewed by stem cells located at the peripheral limbal region. These cells can be destroyed by a number of factors, including chemical burns, infections, and autoimmune diseases, which result in limbal stem cell deficiency (LSCD), a condition that can lead to blindness. Established therapy for LSCD based on ex vivo expanded limbal epithelial cells is currently at a stage of refinement. Therapy for LSCD is also rapidly evolving to include alternative cell types and clinical approaches as treatment modalities. In the present perspectives chapter, strategies to treat LSCD are discussed and advances in this important field of regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Wright B, Cave RA, Cook JP, Khutoryanskiy VV, Mi S, Chen B, Leyland M, Connon CJ. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel. Regen Med 2012; 7:295-307. [PMID: 22594324 DOI: 10.2217/rme.12.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. MATERIALS & METHODS In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. RESULTS Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. CONCLUSION Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.
Collapse
Affiliation(s)
- Bernice Wright
- Stem Cells & Nanomaterials Laboratory, Reading School of Pharmacy, Hopkins Building, University of Reading, Berkshire, RG6 6UB, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sel S, Schilling UM, Nass N, Simm A, Garreis F, Knak M, Storsberg J, Kaiser M, Kalinski T, Ehrich D, Bredehorn-Mayr T, Paulsen F. Bone marrow cells and CD117-positive haematopoietic stem cells promote corneal wound healing. Acta Ophthalmol 2012; 90:e367-73. [PMID: 22520039 DOI: 10.1111/j.1755-3768.2012.02388.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The present study was conducted to evaluate the therapeutic effects of topically applied bone marrow (BM) cells and CD117-positive haematopoietic stem (CD117(+)) cells on alkali-induced corneal ulcers. METHODS Bone marrow cells and CD117(+) cells were isolated from syngenic mice and labelled with an intracellular cell tracer. Defined corneal wounds were produced in 89 eyes of syngenic mice and allowed to partially heal in vivo for 6 hr. The alkali-burned eyes were enucleated 6 hr postinjury and randomly divided into three groups. Control group (33 eyes) was incubated with medium only. The treatment groups received either BM cells (30 eyes) or CD117(+) cells (26 eyes) suspended in medium. Re-epithelialization process of corneal defects was qualitatively and quantitatively assessed and statistically analysed. The corneas were examined by histological and immunohistochemical methods. RESULTS We found that the re-epithelialization of corneal wounds in both treatment groups was significantly accelerated as compared to the control group. During the follow-up period (85 hr), the corneal transparency was comparable in all groups. Morphological investigations of corneas from control and treatment group showed no evident differences in the phenotype of the regenerated epithelium. Additionally, corneas in the treatment groups were devoid of donor-derived BM cells and CD117(+) cells, respectively. CONCLUSIONS This study provides evidence that topical application of BM cells or CD117(+) cells can be used to reconstruct corneal surfaces. Because neither BM cells nor CD117(+) cells were integrated into the corneal epithelium, we suggest that soluble factors could be responsible for the positive effect of BM cells and CD117(+) cells on corneal wound healing.
Collapse
Affiliation(s)
- Saadettin Sel
- Department of Ophthalmology, University Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clinical outcomes of penetrating keratoplasty after autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol 2012; 153:782-3; author reply 783-4. [PMID: 22445641 DOI: 10.1016/j.ajo.2012.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 12/31/2011] [Accepted: 01/10/2012] [Indexed: 11/22/2022]
|
29
|
Basu S, Sangwan VS. Reply. Am J Ophthalmol 2012. [DOI: 10.1016/j.ajo.2012.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Shafiq MA, Gemeinhart RA, Yue BYJT, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods 2011; 18:340-8. [PMID: 22082039 DOI: 10.1089/ten.tec.2011.0072] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this project, we strived to develop a decellularized human cornea to use as a scaffold for reconstructing the corneal epithelium and anterior stroma. Human cadaver corneas were decellularized by five different methods, including detergent- and nondetergent-based approaches. The success of each method on the removal of cells from the cornea was investigated. The structural integrity of decellularized corneas was compared with the native cornea by electron microscopy. The integrity of the basement membrane of the epithelium was analyzed by histology and by the expression of collagen type IV, laminin, and fibronectin. Finally, the ability of the decellularized corneas to support the growth of human corneal epithelial cells and fibroblasts was assessed in vitro. Corneas processed using Triton X-100, liquid nitrogen, and poly(ethylene glycol) resulted in incomplete removal of cellular material. Corneas processed with the use of sodium dodecyl sulfate (SDS) or with sodium chloride (NaCl) plus nucleases successfully removed all cellular material; however, only the NaCl plus nuclease treatment kept the epithelial basement membrane completely intact. Corneas processed with NaCl plus nuclease supported both fibroblast and epithelial cell growth in vitro, while corneas treated with SDS supported the growth of only fibroblasts and not epithelial cells. Decellularized human corneas provide a scaffold that can support the growth of corneal epithelial cells and stromal fibroblasts. This approach may be useful for reconstructing the anterior cornea and limbus using autologous cells.
Collapse
Affiliation(s)
- Maryam A Shafiq
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
31
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
32
|
Marchini G, Pedrotti E, Pedrotti M, Barbaro V, Di Iorio E, Ferrari S, Bertolin M, Ferrari B, Passilongo M, Fasolo A, Ponzin D. Long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clin Exp Ophthalmol 2011; 40:255-67. [PMID: 21668791 DOI: 10.1111/j.1442-9071.2011.02609.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemical burns cause depletion of limbal stem cells and eventually lead to corneal opacity and visual loss. We investigated the long-term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency. DESIGN Prospective, non-comparative interventional case series. PARTICIPANTS Sixteen eyes from 16 patients with severe, unilateral limbal stem cell deficiency caused by chemical burns. METHODS Autologous ex vivo cultured limbal stem cells were grafted onto the recipient eye after superficial keratectomy. MAIN OUTCOME MEASURES Clinical parameters of limbal stem cell deficiency (stability/transparency of the corneal epithelium, superficial corneal vascularization and pain/photophobia), visual acuity, cytokeratin expression on impression cytology specimens and histology on excised corneal buttons. RESULTS At 12 months post-surgery, evaluation of the 16 patients showed that 10 (62.6%) experienced complete restoration of a stable and clear epithelium and 3 (18.7%) had partially successful outcomes (re-appearance of conjunctiva in some sectors of the cornea and instable corneal surface). Graft failure (no change in corneal surface conditions) was seen in three (18.7%) patients. Penetrating keratoplasty was performed in seven patients, with visual acuity improving up to 0.8 (best result). For two patients, regeneration of the corneal epithelium was confirmed by molecular marker (p63, cytokeratin 3, 12 and 19, mucin 1) analysis. Follow-up times ranged from 12 to 50 months. CONCLUSIONS Grafts of autologous limbal stem cells cultured onto fibrin glue discs can successfully regenerate the corneal epithelium in patients with limbal stem cell deficiency, allowing to perform successful cornea transplantation and restore vision.
Collapse
Affiliation(s)
- Giorgio Marchini
- Ophthalmology Unit, Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Baylis O, Figueiredo F, Henein C, Lako M, Ahmad S. 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem 2011; 112:993-1002. [PMID: 21308743 DOI: 10.1002/jcb.23028] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cornea is the clear tissue at the front of the eye which enables the transmission of light to the retina for normal vision. The surface of the cornea is composed of an epithelium which is renewed by stem cells located at the periphery of the cornea, a region known as the limbus. These limbal stem cells can become deficient as a result of various diseases of the eye's surface, resulting in the blinding disease of limbal stem cell deficiency. The treatment of this disease is often difficult and complex. In 1997, it was proposed that a small amount of limbal tissue containing limbal stem cells could be culture expanded and then transplanted. Since then various case reports and case series have been reported showing promising results. Here, we review the outcomes of this procedure over the past 13 years with the aim of highlighting the best culture and surgical techniques to date.
Collapse
Affiliation(s)
- Oliver Baylis
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|