1
|
Gladkauskas T, Rundgren IM, Cristea I, Bukve T, Rødahl E, Bredrup C. Treatment Options for Alkali Burn-Induced Corneal Neovascularization: A Comparative Analysis of Two Tyrosine Kinase Inhibitors. Cornea 2025:00003226-990000000-00887. [PMID: 40424526 DOI: 10.1097/ico.0000000000003890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/30/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE To evaluate the efficacy of topical dasatinib and axitinib for treating experimentally induced corneal neovascularization (CNV) in a mouse alkali burn model, and to compare these treatments to established therapies like dexamethasone and bevacizumab. METHODS Thirty-six C57BL/6; 129 Sv mice underwent a standardized alkali burn to induce CNV in both eyes by applying a paper disc soaked in 1M NaOH to the cornea for 20 seconds. The mice were randomly assigned to one of 6 treatment groups: saline (0.9% sodium chloride), DMSO (5%), dexamethasone (0.1%), bevacizumab (0.5%), dasatinib (0.5%), or axitinib (0.5%). Treatments were applied topically 3 times daily. After 2 weeks of treatment, the mice were sacrificed. CNV assessments, including corneal neovascularization area (CNA), vessel length index (VLI), and limbus vasculature thickness, were conducted postmortem using corneal flat-mounts stained with a CD31 antibody for immunohistochemistry. RESULTS Dexamethasone proved the most effective in inhibiting alkali burn-induced CNA (P < 0.0001), with bevacizumab showing comparable efficacy (P < 0.001). Axitinib also effectively reduced CNA (P < 0.001) and VLI (P < 0.01). In contrast, dasatinib did not significantly reduce CNA (P = 0.74) or VLI (P = 0.98). All eyes in the dexamethasone group developed cataracts compared with 25%-41.7% in the other groups. CONCLUSIONS Axitinib reduced CNA and VLI, although not as effectively as other established treatment modalities, whereas dasatinib did not demonstrate significant effects.
Collapse
Affiliation(s)
- Titas Gladkauskas
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Bergen Center for Medical Stem Cell Research, University of Bergen, Norway
| | | | - Ileana Cristea
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Bergen Center for Medical Stem Cell Research, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Tone Bukve
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Eyvind Rødahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Bredrup
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Bergen Center for Medical Stem Cell Research, University of Bergen, Norway
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Drzyzga Ł, Śpiewak D, Dorecka M, Wyględowska-Promieńska D. Available Therapeutic Options for Corneal Neovascularization: A Review. Int J Mol Sci 2024; 25:5479. [PMID: 38791518 PMCID: PMC11121997 DOI: 10.3390/ijms25105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Corneal neovascularization can impair vision and result in a poor quality of life. The pathogenesis involves a complex interplay of angiogenic factors, notably vascular endothelial growth factor (VEGF). This review provides a comprehensive overview of potential therapies for corneal neovascularization, covering tissue inhibitors of metalloproteinases (TIMPs), transforming growth factor beta (TGF-β) inhibitors, interleukin-1L receptor antagonist (IL-1 Ra), nitric oxide synthase (NOS) isoforms, galectin-3 inhibitors, retinal pigment epithelium-derived factor (PEDF), platelet-derived growth factor (PDGF) receptor inhibitors, and surgical treatments. Conventional treatments include anti-VEGF therapy and laser interventions, while emerging therapies such as immunosuppressive drugs (cyclosporine and rapamycin) have been explored. Losartan and decorin are potential antifibrotic agents that mitigate TGF-β-induced fibrosis. Ocular nanosystems are innovative drug-delivery platforms that facilitate the targeted release of therapeutic agents. Gene therapies, such as small interfering RNA and antisense oligonucleotides, are promising approaches for selectively inhibiting angiogenesis-related gene expression. Aganirsen is efficacious in reducing the corneal neovascularization area without significant adverse effects. These multifaceted approaches underscore the corneal neovascularization management complexity and highlight ideas for enhancing therapeutic outcomes. Furthermore, the importance of combination therapies and the need for further research to develop specific inhibitors while considering their therapeutic efficacy and potential adverse effects are discussed.
Collapse
Affiliation(s)
- Łukasz Drzyzga
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Dorota Śpiewak
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Clinical Ophthalmology Center Okolux, 40-754 Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, Prof. K. Gibiński University Clinical Center, Medical University of Silesia, 40-055 Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
3
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
4
|
Alshaikh RA, Zaki RGE, El Din RAS, Ryan KB, Waeber C. Siponimod As a Novel Inhibitor of Retinal Angiogenesis: In Vitro and In Vivo Evidence of Therapeutic Efficacy. J Pharmacol Exp Ther 2023; 386:224-241. [PMID: 37188532 DOI: 10.1124/jpet.122.001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) receptors control endothelial cell proliferation, migration, and survival. Evidence of the ability of S1P receptor modulators to influence multiple endothelial cell functions suggests their potential use for antiangiogenic effect. The main purpose of our study was to investigate the potential of siponimod for the inhibition of ocular angiogenesis in vitro and in vivo. We investigated the effects of siponimod on the metabolic activity (thiazolyl blue tetrazolium bromide assay), cell toxicity (lactate dehydrogenase release), basal proliferation and growth factor-induced proliferation (bromodeoxyuridine assay), and migration (transwell migration assay) of human umbilical vein endothelial cells (HUVEC) and retinal microvascular endothelial cells (HRMEC). The effects of siponimod on HRMEC monolayer integrity, barrier function under basal conditions, and tumor necrosis factor alpha (TNF-α)-induced disruption were assessed using the transendothelial electrical resistance and fluorescein isothiocyanate-dextran permeability assays. Siponimod's effect on TNF-α-induced distribution of barrier proteins in HRMEC was investigated using immunofluorescence. Finally, the effect of siponimod on ocular neovascularization in vivo was assessed using suture-induced corneal neovascularization in albino rabbits. Our results show that siponimod did not affect endothelial cell proliferation or metabolic activity but significantly inhibited endothelial cell migration, increased HRMEC barrier integrity, and reduced TNF-α-induced barrier disruption. Siponimod also protected against TNF-α-induced disruption of claudin-5, zonula occludens-1, and vascular endothelial-cadherin in HRMEC. These actions are mainly mediated by sphingosine-1-phosphate receptor 1 modulation. Finally, siponimod prevented the progression of suture-induced corneal neovascularization in albino rabbits. In conclusion, the effects of siponimod on various processes known to be involved in angiogenesis support its therapeutic potential in disorders associated with ocular neovascularization. SIGNIFICANCE STATEMENT: Siponimod is an extensively characterized sphingosine-1-phosphate receptor modulator already approved for the treatment of multiple sclerosis. It inhibited retinal endothelial cell migration, potentiated endothelial barrier function, protected against tumor necrosis factor alpha-induced barrier disruption, and also inhibited suture-induced corneal neovascularization in rabbits. These results support its use for a novel therapeutic indication in the management of ocular neovascular diseases.
Collapse
Affiliation(s)
- Rasha A Alshaikh
- School of Pharmacy (R.A.A., K.B.R., C.W.), SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy (K.B.R.), and Department of Pharmacology and Therapeutics (C.W.), University College Cork, Cork, Ireland; Department of Ophthalmology (R.G.E.Z.) and Department of Anatomy and Embryology (R.A.S.E.D.), Faculty of Medicine, Ain Shams University, Cairo, Egypt; and Department of Anatomy and Embryology, Faculty of Medicine, Newgiza University (R.A.S.E.D.)
| | - Rania Gamal Eldin Zaki
- School of Pharmacy (R.A.A., K.B.R., C.W.), SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy (K.B.R.), and Department of Pharmacology and Therapeutics (C.W.), University College Cork, Cork, Ireland; Department of Ophthalmology (R.G.E.Z.) and Department of Anatomy and Embryology (R.A.S.E.D.), Faculty of Medicine, Ain Shams University, Cairo, Egypt; and Department of Anatomy and Embryology, Faculty of Medicine, Newgiza University (R.A.S.E.D.)
| | - Rania A Salah El Din
- School of Pharmacy (R.A.A., K.B.R., C.W.), SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy (K.B.R.), and Department of Pharmacology and Therapeutics (C.W.), University College Cork, Cork, Ireland; Department of Ophthalmology (R.G.E.Z.) and Department of Anatomy and Embryology (R.A.S.E.D.), Faculty of Medicine, Ain Shams University, Cairo, Egypt; and Department of Anatomy and Embryology, Faculty of Medicine, Newgiza University (R.A.S.E.D.)
| | - Katie B Ryan
- School of Pharmacy (R.A.A., K.B.R., C.W.), SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy (K.B.R.), and Department of Pharmacology and Therapeutics (C.W.), University College Cork, Cork, Ireland; Department of Ophthalmology (R.G.E.Z.) and Department of Anatomy and Embryology (R.A.S.E.D.), Faculty of Medicine, Ain Shams University, Cairo, Egypt; and Department of Anatomy and Embryology, Faculty of Medicine, Newgiza University (R.A.S.E.D.)
| | - Christian Waeber
- School of Pharmacy (R.A.A., K.B.R., C.W.), SSPC The SFI Research Centre for Pharmaceuticals, School of Pharmacy (K.B.R.), and Department of Pharmacology and Therapeutics (C.W.), University College Cork, Cork, Ireland; Department of Ophthalmology (R.G.E.Z.) and Department of Anatomy and Embryology (R.A.S.E.D.), Faculty of Medicine, Ain Shams University, Cairo, Egypt; and Department of Anatomy and Embryology, Faculty of Medicine, Newgiza University (R.A.S.E.D.)
| |
Collapse
|
5
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Gomes Souza L, Antonio Sousa-Junior A, Alves Santana Cintra B, Vieira Dos Anjos JL, Leite Nascimento T, Palmerston Mendes L, de Souza Vieira M, do Nascimento Ducas R, Campos Valadares M, Antônio Mendanha S, Martins Lima E. Pre-clinical safety of topically administered sunitinib-loaded lipid and polymeric nanocarriers targeting corneal neovascularization. Int J Pharm 2023; 635:122682. [PMID: 36754184 DOI: 10.1016/j.ijpharm.2023.122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Three different types of sunitinib-loaded (SUN-loaded) nanocarriers were compared, aiming at the topical treatment of corneal neovascularization (CNV): polymeric nanospheres (NS), liposomes (LIP), and solid lipid nanoparticles (SLN). Three out of eleven formulations prepared for an optimization study - the best SUN-loaded nanocarrier of each assessed type (NS, LIP, and SLN) - were selected, based on their size, polydispersity index (PdI), drug load (DL), and encapsulation efficiency (EE). These three optimal formulations were further characterized by nanoparticle tracking analysis (NTA), electron paramagnetic resonance (EPR) spectroscopy, and zeta potential. In vitro SUN release profiles were obtained for the optimal formulations, along with ex vivo corneal permeability/retention studies, and ocular tolerance assays, namely: the bovine corneal opacity and permeability (BCOP) assay, the HET-CAM test (hen's egg test - chorioallantoic membrane), and hemolytic potential (HP) assay. None of the optimal formulations exhibited toxicity or potential for ocular irritation. SLN showed higher surface fluidity, drug release more suitable for topical ocular applications, besides greater SUN corneal retention. Our results suggest that SLN are the best CNV-targeting SUN-loaded nanocarriers for clinical translation when compared to their NS and LIP analogues.
Collapse
Affiliation(s)
- Leonardo Gomes Souza
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Ailton Antonio Sousa-Junior
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Bertilha Alves Santana Cintra
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Jorge Luiz Vieira Dos Anjos
- Federal University of Catalão - UFCAT. Av. Doutor Lamartine P. Avelar, 1120, Catalão/GO - CEP 75704-020, Brazil
| | - Thaís Leite Nascimento
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Lívia Palmerston Mendes
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Marcelo de Souza Vieira
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Rafael do Nascimento Ducas
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Marize Campos Valadares
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Sebastião Antônio Mendanha
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil; Physics Institute, Federal University of Goias, Avenida Esperança, s/n, Campus Samambaia, Goiânia/GO - CEP 74690-900, Brazil; CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil
| | - Eliana Martins Lima
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil; CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goias, Alameda Flamboyant, Qd. K, Ed. LIFE, Parque Tecnológico Samambaia, Goiânia/GO - CEP 74690-631, Brazil.
| |
Collapse
|
7
|
Wilson SE. Magic Bullets: The Coming Age of Meaningful Pharmacological Control of the Corneal Responses to Injury and Disease. J Ocul Pharmacol Ther 2022; 38:594-606. [PMID: 36161879 PMCID: PMC9700362 DOI: 10.1089/jop.2022.0088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Corneal injuries from chemical burns, mechanical trauma, infections, immunological rejections, surgical complications, and some diseases are commonly associated with persistent epithelial defects (PED), neurotrophic epitheliopathy, scarring fibrosis, corneal neovascularization (CNV), and/or corneal endothelial damage that lead to vision loss. Several Food and Drug Administration (FDA) approved medications have recently become available, are currently in clinical trials, or are likely to enter clinical trials in the near future. For example, a 2-week course of topical human recombinant nerve growth factor is frequently an effective treatment for corneal neurotrophic epitheliopathy associated with PEDs. Topical losartan, an angiotensin converting enzyme II receptor antagonist that also inhibits TGF beta signaling, has been shown to effectively decrease myofibroblast generation and scarring fibrosis in alkali burn injury and Descemetorhexis rabbit models. Small molecule topical tyrosine kinase inhibitors, such as sunitinib and axitinib, FDA approved as chemotherapeutic agents to treat specific cancers, have also been found to be effective topical inhibitors of CNV in animal and human trials. Rho-kinase inhibitors, such as ripasudil and netarsudil, that are currently approved agents for the treatment of glaucoma in some countries, have been shown to stimulate corneal endothelial proliferation in animal studies and human trials, and may accelerate the regeneration of Descemet's membrane. These agents, as well as other drugs in development, will be used in targeted combinations to treat corneal pathophysiology associated with epithelial healing disorders, stromal scarring fibrosis, CNV, and corneal endothelial injury during the next decade.
Collapse
|
8
|
Sunitinib malate-loaded biodegradable microspheres for the prevention of corneal neovascularization in rats. J Control Release 2020; 327:456-466. [PMID: 32822742 DOI: 10.1016/j.jconrel.2020.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023]
Abstract
Corneal neovascularization (NV) predisposes patients to compromised corneal transparency and visional acuity. Sunitinib malate (Sunb-malate) targeting against multiple receptor tyrosine kinases, exerts potent antiangiogenesis. However, the rapid clearance of Sunb-malate eye drops administered through topical instillation limits its therapeutic efficacy and poses a challenge for potential patient compliance. Sunb-malate, the water-soluble form of sunitinib, was shown to have higher intraocular penetration through transscleral diffusion following subconjunctival (SCT) injection in comparison to its sunitinib free base formulation. However, it is difficult to load highly water-soluble drugs and achieve sustained drug release. We developed Sunb-malate loaded poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres (Sunb-malate MS) with a particle size of approximately 15 μm and a drug loading of 7 wt%. Sunb-malate MS sustained the drug release for 30 days under the in vitro infinite sink condition. Subconjunctival (SCT) injection of Sunb-malate MS provided a prolonged ocular drug retention and did not cause ocular toxicity at a dose of 150 μg of active agent. Sunb-malate MS following SCT injection more effectively suppressed the suture-induced corneal NV than either Sunb-malate free drug or the placebo MS. Local sustained release of Sunb-malate through the SCT injection of Sunb-malate MS mitigated the proliferation of vascular endothelial cells and the recruitment of mural cells into the cornea. Moreover, the gene upregulation of proangiogenic factors induced by the pathological process was greatly neutralized by SCT injection of Sunb-malate MS. Our findings provide a sustained release platform for local delivery of tyrosine kinase inhibitors to treat corneal NV.
Collapse
|
9
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
10
|
Sunitinib-induced oxidative imbalance and retinotoxic effects in rats. Life Sci 2020; 257:118072. [PMID: 32659367 DOI: 10.1016/j.lfs.2020.118072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
AIMS Sunitinib (Su), a tyrosine kinase inhibitor, is one of the most commonly used anti-angiogenic drugs. Some studies have described retinal detachment and photoreceptor damage following systemic exposure to Su, despite beneficial effects achieved with local treatment of ocular pathologies. The aim of this study was to explore the role of NADPH oxidase system and oxidative stress in eyes from Su-treated animals. MAIN METHODS Male Wistar rats were administered 25 mg Su/kg body weight/day incorporated in the chow for 3 weeks. Upon treatment completion, NADPH oxidase activity and ROS levels were measured in ocular tissue by chemiluminescence and dihydroethidium (DHE) staining, respectively. The expression of NADPH oxidase isoforms (NOX1, NOX2 and NOX4), antioxidant enzymes and endothelial/inducible nitric oxidase isoforms (eNOS/iNOS) in the eyecup and/or retina were measured via immunofluorescence, immunoblotting and RT-qPCR. KEY FINDINGS NADPH oxidase activity/expression increased in eyecup and retinas from Su-treated rats. Immunohistofluorescence studies in retinal layer confirmed a higher signal of NADPH oxidase isoforms after Su treatment. Treated animals also presented with reductions in NO levels and eNOS expression, whereas iNOS was upregulated. Finally, a significant depletion of antioxidant enzyme glutathione peroxidase was measured in eyecups of rats following Su exposure, and the opposite pattern was seen for glutathione reductase and superoxide dismutase. SIGNIFICANCE This study demonstrates that Su treatment is associated with NADPH oxidase-derived oxidative stress in the eye. Long-term treatment of Su should be properly monitored to avoid retinotoxic effects that might result in ocular pathologies and sight-threatening conditions.
Collapse
|
11
|
Mahmoudzadeh R, Heidari-Keshel S, Mehrpour M, Asadi Amoli F, Aghajanpour L, Lashay A. Comparison of Topical Pigment Epithelium-Derived Factor (PEDF) with Topical Bevacizumab for Accelerating the Regression of Corneal Neovascularization in an Experimental Model of Rabbit Corneal Angiogenesis. Ocul Immunol Inflamm 2020; 29:1471-1477. [PMID: 32407187 DOI: 10.1080/09273948.2020.1751211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To evaluate the anti-angiogenic effect of topical administration of Pigment epithelium-derived factor (PEDF) on the reduction of corneal neovascularization (NV) in comparison to topical Bevacizumab.Methods: 18 eyes of 18 New Zealand rabbits were enrolled. Corneal NV was induced by a 7-0 silk suture. After suture removal, rabbits were randomly divided into three groups. In every group, one eye randomly treated with topical bevacizumab or topical PEDF or saline for 14 days. The area and length of neovascularization were measured by Image J. Histological studies were done in three groups.Results: After 14 days, the mean decrease of corneal NV length was 1.84 ± 0.17 mm (P < .001) in PEDF group and 1.6 ± 0.07 mm (P < .001) in bevacizumab group which was significantly more than the saline group (P = .001 and P < .001, respectively). There was no significant difference between PEDF and bevacizumab group in the reduction of corneal NV length (P = .85). The mean decrease of corneal NV area was 4.94 ± 0.55 mm2 (P < .001) in PEDF group and 4.23 ± 0.29 mm2 in the bevacizumab group (P < .001). PEDF and bevacizumab significantly decreased corneal NV area in comparison to the saline group (p = .017, p = .001, respectively). The mean decrease of corneal NV area did not show a significant difference between PEDF and bevacizumab groups (P = .72).Conclusion: Topical PEDF might be an effective and safe treatment option as bevacizumab in a short-term use, indicating that it is as good as the standard. However, long-term effect is required to be investigated.
Collapse
Affiliation(s)
- Raziyeh Mahmoudzadeh
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari-Keshel
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehrpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Asadi Amoli
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Aghajanpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Lashay
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Comparison of the Effects of Dovitinib and Bevacizumab on Reducing Neovascularization in an Experimental Rat Corneal Neovascularization Model. Cornea 2019; 38:1161-1168. [PMID: 31180924 DOI: 10.1097/ico.0000000000002012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare the inhibitory effects of dovitinib and bevacizumab for treatment of corneal neovascularization (CNV). METHODS Thirty-nine adult female Sprague Dawley rats weighing 180 to 250 g were used. CNV was induced by silver nitrate in the right eye of each rat. After the chemical burn, the animals were randomized into 5 groups. Group 1 did not receive any chemical substance. Group 2 received dimethyl sulfoxide, group 3 received bevacizumab 5 mg/mL, group 4 received dovitinib 5 mg/mL, and group 5 received bevacizumab 5 mg/mL + dovitinib 5 mg/mL topically administered twice daily for 14 days. On the 14th day, slit-lamp examination was performed, and anterior segment photographs were taken. The corneal neovascular area was measured on photographs as the percentage of the cornea's total area using computer imaging analysis. The corneal sections were stained with hematoxylin and eosin for histopathological examination. RESULTS A statistically significant decrease in the percentage of CNV was found in all treatment groups (group 3, group 4, and group 5) compared with the control group (group 1) (P < 0.01). A statistically significant difference in the percentage of CNV was found among group 3, group 4, and group 5 (P = 0.003). The percentage of CNV in group 4 was significantly higher than that in group 3 and group 5 (P1 = 0.004; P2 = 0.006). There was no statistically significant difference in the percentage of CNV between group 3 and group 5 (P = 0.228). CONCLUSIONS Dovitinib is a newly developed multitargeted tyrosine kinase inhibitor. Topical administration of dovitinib effectively inhibited CNV, but this effect of dovitinib was found less than topical bevacizumab.
Collapse
|
13
|
Ekim Y, Kara S, Gencer B, Karaca T. Efficacy of Sunitinib, Sunitinib-Hesperetin, and Sunitinib-Doxycycline Combinations on Experimentally-Induced Corneal Neovascularization. Curr Eye Res 2019; 44:590-598. [PMID: 30803276 DOI: 10.1080/02713683.2019.1584320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: To investigate the preventive effects of topical sunitinib, sunitinib-hesperetin and sunitinib-doxycycline combinations on corneal neovascularization (CNV), apoptosis and fibrosis in a corneal alkali burn model. Materials and Methods: The corneas of 32 Wistar albino rats were cauterized with silver nitrate to induce CNV. Four groups were created receiving artificial tears (sham), sunitinib (0.5 mg/ml), sunitinib-hesperetin (0.5 mg/ml-0.2 mg/ml), and sunitinib-doxycycline (0.5 mg/ml-20 mg/ml) treatments. Corneal photographs were taken on days 0, 7 and 15. Photographs of the cornea were digitally analyzed to measure the size of the neovascularization area in comparison to the total corneal surface area. On the 15th day, the animals were euthanized, and the eyes were enucleated for immunohistochemical staining to investigate neovascularization, apoptosis, and fibrosis. Results: CNV areas on the 7th day in the sunitinib (4.8% ± 0.07%) and sunitinib-hesperetin (1.1% ± 0.03%) groups were smaller than those in the sham group (33.9% ± 0.12%) (p = 0.001 and, p < 0.001 respectively). On the 15th day, the CNV area in the sunitinib-hesperetin (20.8% ± 0.37%) group was significantly smaller than that of the sham group (74.6% ± 0.32%) (p = 0.039). The combination groups had lower levels of VEGF, TUNEL and α-SMA positivity than the sunitinib monotherapy group. TUNEL positivity was lowest in the sunitinib-hesperetin and sunitinib-doxycycline groups, and α-SMA positivity was lowest in the sunitinib-hesperetin group. Conclusion: Topical sunitinib-hesperetin was more effective than sunitinib alone and the sunitinib-doxycycline combination in the treatment of CNV. The combination of sunitinib and hesperetin seems to be a promising treatment for preventing corneal fibrosis and apoptosis.
Collapse
Affiliation(s)
- Yeliz Ekim
- a Department of Ophthalmology , Canakkale State Hospital , Canakkale , Turkey
| | - Selcuk Kara
- b Dunyagoz Eye Hospitals , Istanbul , Turkey
| | | | - Turan Karaca
- c Faculty of Medicine, Department of Histology and Embryology , Trakya University , Edirne , Turkey
| |
Collapse
|
14
|
Lledó Riquelme M, Campos-Mollo E, Fernández-Sánchez L. Topical axitinib is a potent inhibitor of corneal neovascularization. Clin Exp Ophthalmol 2018; 46:1063-1074. [PMID: 29888852 DOI: 10.1111/ceo.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study evaluated the effects of topically applied axitinib, a tyrosine kinase inhibitor, in an experimental model of corneal neovascularization (CNV). METHODS A total of 48 New Zealand rabbits were used. CNV was induced by placing five silk sutures in the upper cornea of one eye per rabbit. Rabbits were randomized into four groups (12 rabbits each): 0.9% saline (control group), 0.02 mg/mL axitinib, 0.35 mg/mL axitinib and 0.5 mg/mL axitinib groups. All treatments were administered three times daily for 14 days. Photographs were taken using a slit lamp on days 7 and 14. The area of neovascularization was measured in mm2 , as the percentage of total corneal area and as the percentage of corneal surface covered by sutures (SCS). RESULTS On day 14, the CNV area in the control group (31.50 ± 7.47 mm2 ; 115.00 ± 22.55% of the corneal SCS) was larger than that in the 0.02 mg/mL axitinib group (19.20 ± 8.92 mm2 ; 73.89 ± 34.98%), the 0.35 mg/mL axitinib group (8.83 ± 3.92 mm2 ; 31.90 ± 13.59%) and the 0.5 mg/mL axitinib group (5.12 ± 3.97 mm2 ; 18.38 ± 13.65%). Compared with saline, CNV was inhibited 39.04% by 0.02 mg/mL axitinib, 71.96% by 0.35 mg/mL axitinib and 84.73% by 0.5 mg/mL axitinib. CONCLUSION Topical administration of the three axitinib concentrations inhibited CNV in rabbits, blocking both vascular endothelial growth factor and platelet-derived growth factor pathways. Axitinib at 0.5 mg/mL induced profound inhibition of corneal angiogenesis.
Collapse
Affiliation(s)
| | | | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
15
|
Heiduschka P, Plagemann T, Li L, Alex AF, Eter N. Different effects of various anti-angiogenic treatments in an experimental mouse model of retinopathy of prematurity. Clin Exp Ophthalmol 2018; 47:79-87. [PMID: 30073769 DOI: 10.1111/ceo.13368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Anti-vascular endothelial growth factor (VEGF) drugs are an option for the treatment of retinopathy of prematurity (ROP). Blocking of other angiogenic factors is also of interest. We therefore investigated in which effects would result blocking of placental growth factor (PlGF). METHODS C57BL/6 mice were exposed to 75% oxygen from P7 to P12. Intravitreal injections were performed at P12. Mice of control groups remained untouched after oxygen treatment, or phosphate buffered saline or neutral IgG molecules were injected. In the treatment groups, antibodies against VEGF or PlGF, a mixture of anti-VEGF and anti-PlGF, aflibercept or sunitinib were injected. On P17, electroretinographic (ERG) measurements were performed. Avascular zones and neovascularization were evaluated in retinal flat-mounts. Results are expressed as percent of total retinal area (median with median absolute deviation, MAD). RESULTS Eyes of control groups showed similar neovascularization (1.4-3.3%, MAD 0.4-0.9%). Neovascularization was significantly less (0.5-0.7%, MAD 0.1-0.3%) in all treatment groups. Avascular zones in the retinas of control groups showed similar values (18.3-25.7%, MAD 4.8-8.8%). Avascular zones were significantly reduced down to 3.6 ± 1.3% after anti-VEGF injection, but they were not reduced significantly in the other treatment groups (13.3-22%, MAD 3.6-6.1%). ERG measurements did not reveal significant differences between the controls and the treatment groups. CONCLUSIONS Blocking of PlGF or injection of sunitinib results in a similar inhibition of neovascularization as by anti-VEGF treatment in the mouse model of ROP. However, physiological angiogenesis that occurs after anti-VEGF treatment is blocked by anti-PlGF or sunitinib treatment, indicating that pathological neovascularization may follow different pathways than physiological angiogenesis.
Collapse
Affiliation(s)
- Peter Heiduschka
- Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Tanja Plagemann
- Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Lu Li
- Department of Ophthalmology, University of Münster Medical School, Münster, Germany.,Renmin Hospital of Wuhan University, Department of Ophthalmology, Wuhan, China
| | - Anne F Alex
- Department of Ophthalmology, University of Münster Medical School, Münster, Germany.,Argus Centre of Ophthalmology/Argus Augenzentrum Mittelhessen, Giessen, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| |
Collapse
|
16
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Topical treatment of corneal alkali burns with Gly-thymosin β 4 solutions and in situ hydrogels via inhibiting corneal neovascularization and improving corneal epidermal recovery in experimental rabbits. Burns 2017; 43:1742-1747. [DOI: 10.1016/j.burns.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/09/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023]
|
18
|
Cakmak H, Gokmen E, Bozkurt G, Kocaturk T, Ergin K. Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization. Cutan Ocul Toxicol 2017; 37:191-195. [DOI: 10.1080/15569527.2017.1375943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harun Cakmak
- Department of Ophthalmology, Adnan Menderes University Medical Faculty, Aydin, Turkey
| | - Esra Gokmen
- Department of Histology and Embryology, Adnan Menderes University Medical Faculty, Aydin, Turkey
| | - Gokay Bozkurt
- Department of Medical Genetics, Adnan Menderes University Medical Faculty, Aydin, Turkey
| | - Tolga Kocaturk
- Department of Ophthalmology, Adnan Menderes University Medical Faculty, Aydin, Turkey
| | - Kemal Ergin
- Department of Histology and Embryology, Adnan Menderes University Medical Faculty, Aydin, Turkey
| |
Collapse
|
19
|
Liu X, Wang S, Wang X, Liang J, Zhang Y. Recent drug therapies for corneal neovascularization. Chem Biol Drug Des 2017; 90:653-664. [PMID: 28489275 DOI: 10.1111/cbdd.13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyao Liu
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Shurong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Xuanzhong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Jiaming Liang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Yan Zhang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|
20
|
Hashemian MN, Mahrjerdi HZ, Mazloumi M, Safizadeh MS, Shakiba Y, Rahimi F, Afarideh M, Zare MA, Tafti MF, Sepidan BB, Abtahi MA, Abtahi SH. Comparison of different doses of subconjunctival sunitinib with bevacizumab in the treatment of corneal neovascularization in experimental rats. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:16. [PMID: 28458707 PMCID: PMC5367213 DOI: 10.4103/1735-1995.200266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 11/12/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND To compare the efficacy of subconjunctival administration of bevacizumab and different doses of sunitinib malate in reducing corneal neovascularization (CNV). MATERIALS AND METHODS In this experimental study, central corneal cauterization was created in the right eye of fifty male Sprague-Dawley rats. On day 1 (1 week after cauterization), rats were randomly assigned into five treatment groups. Group control (n = 10) received subconjunctival injection of 0.02 ml of base saline solution. Group 1 (n = 10) received 0.02 ml of bevacizumab (25 mg/ml). Group 2, 3, and 4 (n = 10 for each group) were treated with 0.02 ml of sunitinib malate (10, 20, and 50 μg/ml, respectively). On days 1, 7, and 14, digital photographs of the cornea were taken, and the area of CNV was measured. RESULTS During the 2-week follow-up, CNV area in treatment groups was less than in control group (P < 0.05). On day 7, corneal avascular area was highest in Group 3 at 63%. On day 14, the area of CNV in Groups 2 and 3 was less than in Group 1 (P = 0.031 and 0.011, respectively), but the difference between Groups 2 and 3 was not statistically significant (P = 0.552). The decreased CNV area on day 14 in Group 4 was significant in comparison to bevacizumab, but it was not significant on day 7 (P = 0.25 on day 7 and 0.002 on day 14). CONCLUSION Subconjunctival sunitinib malate is more effective than bevacizumab in regressing CNV. This effect is more prominent on day 14.
Collapse
Affiliation(s)
| | - Hadi Z Mahrjerdi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Students Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mazloumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona S Safizadeh
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Yadollah Shakiba
- Research Center of Immunologic Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Firouzeh Rahimi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Afarideh
- Students Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Ali Zare
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahram Bohrani Sepidan
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Abtahi
- Isfahan Eye Research Center, Feiz Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed-Hossein Abtahi
- Isfahan Eye Research Center, Feiz Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Comparison of Topical Low-Molecular-Weight Heparin-Taurocholate and Bevacizumab for Treatment and Prevention of Corneal Neovascularization. Cornea 2016; 36:497-501. [PMID: 27941385 DOI: 10.1097/ico.0000000000001105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To compare the therapeutic and preventive effects of topically administered 7-taurocholic acid-conjugated low-molecular-weight heparin (LHT7) and bevacizumab in experimentally induced corneal neovascularization (CoNV). METHODS CoNV was induced using sutures in the right eyes of 24 mice. To investigate the therapeutic effects, CoNV was allowed to develop for 1 week before treatment. To ascertain the preventive effects, the treatments were applied immediately after the suture. In each experiment, 12 eyes were divided into 3 groups and treated topically using bevacizumab (bevacizumab group), LHT7 (LHT7 group), and normal saline (control group). The treatments were instilled 3 times daily for 2 weeks. The CoNV area was measured before instillation and after 1 and 2 weeks after instillation. RESULTS In the investigation of therapeutic effects, the CoNV area had decreased significantly 1 week after treatment in the bevacizumab group (1.58-0.75 mm; P = 0.036) and LHT7 group (1.38-0.74 mm; P = 0.018). Two weeks after treatment, the CoNV area was significantly smaller in the bevacizumab groups (0.60 mm; P = 0.005) and LHT7 group (0.64 mm; P = 0.015) than in the control group (1.68 mm), but the bevacizumab group did not differ significantly from the LHT7 group. In the experiment addressing the preventive effects, CoNV was less developed in the bevacizumab group (0.70 mm; P = 0.003) and LHT7 group (0.54 mm; P = 0.003) than in the control group (1.75 mm), and the CoNV area was smaller in the LHT7 group than in the bevacizumab group (P = 0.021). CONCLUSIONS The effects of LHT7 on CoNV regression are comparable to those of bevacizumab. Topical administration of LHT7 prevents CoNV more effectively than bevacizumab.
Collapse
|
22
|
Eren K, Turgut B, Akin MM, Demir T. The Suppression of Wound Healing Response with Sirolimus and Sunitinib Following Experimental Trabeculectomy in a Rabbit Model. Curr Eye Res 2015; 41:367-76. [PMID: 25897981 DOI: 10.3109/02713683.2015.1023460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the effects of sirolimus and sunitinib on wound healing in experimental glaucoma filtering surgery (GFS). MATERIAL AND METHODS Thirty-five male New Zealand pigmented rabbits were randomly assigned to five groups, each including seven rabbits: The rabbits in the control group were not operated on and did not receive any treatment. The rabbits in the sham group underwent trabeculectomy and had one drop of saline instilled four times a day for 14 days. The rabbits in the mitomycin-C (MMC) group underwent trabeculectomy, and a sponge soaked in 0.4 mg/mL MMC was applied intraoperatively to the scleral surgical site for three minutes. The rabbits in the sirolimus group underwent trabeculectomy and 30 ng/mL sirolimus-soaked sponge was applied intraoperatively to the scleral surgical site for three minutes. Sunitinib 0.5 mg/mL four drops in a day were applied in the sunitinib group for 14 days after surgery. On day 14 of the experiment, eyes were enucleated and histologically and immunohistochemically analyzed. Statistical analyses of the study were performed with Kruskal-Wallis variance analysis and Mann-Whitney U test. RESULTS The mean fibroblast and MNC numbers and the mean immunostaining intensities of transforming growth factor-β (TGF-β), fibroblast growth factor-β (FGF-β) and platelet derived growth factor (PDGF) in the MMC, sirolimus and sunitinib groups were statistically significantly lower than those of the sham group (p < 0.01). The mean fibroblast and MNC numbers and the mean immunostaining intensities of TGF-β, FGF-β and PDGF in the MMC, sirolimus and sunitinib groups were similar (p > 0.05). CONCLUSIONS Our study suggests that the applications of sirolimus and sunitinib effectively suppress the subconjunctival scarring after experimental GFS.
Collapse
Affiliation(s)
- Kenan Eren
- a Department of Ophthalmology , Firat University, School of Medicine , Elazig , Turkey and
| | - Burak Turgut
- a Department of Ophthalmology , Firat University, School of Medicine , Elazig , Turkey and
| | - Mehmet Mustafa Akin
- b Department of Pathology , Firat University, School of Medicine , Elazig , Turkey
| | - Tamer Demir
- a Department of Ophthalmology , Firat University, School of Medicine , Elazig , Turkey and
| |
Collapse
|
23
|
Çakmak H, Ergin K, Bozkurt G, Kocatürk T, Evliçoğlu GE. The effects of topical everolimus and sunitinib on corneal neovascularization. Cutan Ocul Toxicol 2015; 35:97-103. [PMID: 25864572 DOI: 10.3109/15569527.2015.1034360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the effects of topical everolimus and sunitinib on corneal neovascularization (CNV). METHODS CNV was induced by application of silver nitrate to the cornea for all groups. Rats were divided into four groups of 10 rats each, and two corneas were obtained from each rat. Group I received 1 mg/ml everolimus, Group II received 0.5 mg/ml sunitinib, Group IV received no treatment (control group) and Group IV received 1% Dimethylsulfoxide (DMSO). All treatments were administrated twice daily for 2 weeks. The right corneas were used for extracellular signal-regulated kinase 1/2 (ERK 1/2) protein analysis by western blot analysis and the left corneas were used for ERK 1/2 and vascular endothelial growth factor-receptor (VEGFR-2) gene expression analysis by quantitative real-time PCR. RESULTS VEGFR-2 mRNA expression levels (ΔCt, median, min-max) were reduced in the everolimus 1.0 (0.25-1.81) and sunitinib 1.06 (0.24-2.68) treated groups compared with the control 4.74 (1.02-14.74) and DMSO groups 7.41 (0.72-13.10). The expression of ERK 1/2 protein and mRNA levels were reduced in everolimus group compared with the control group (p < 0.05). These differences were not seen between the sunitinib and control groups. CONCLUSION Topical administration of both everolimus and sunitinib reduced VEGFR-2 levels and inhibited CNV. In additon, everolimus reduced ERK 1/2 levels and seems to be more effective than sunitinib on CNV.
Collapse
Affiliation(s)
| | - Kemal Ergin
- b Department of Histology and Embryology , and
| | - Gökay Bozkurt
- c Department of Genetics, Adnan Menderes University Medical Faculty , Aytepe , Aydin , Turkey
| | | | | |
Collapse
|
24
|
Effects of subconjunctival tocilizumab versus bevacizumab in treatment of corneal neovascularization in rabbits. Cornea 2015; 33:1088-94. [PMID: 25119962 DOI: 10.1097/ico.0000000000000220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The aim of this study was to compare the antiangiogenic effects of subconjunctival application of bevacizumab and tocilizumab on the regression of corneal neovascularization (NV) in rabbits. METHODS Corneal neovascularization was induced in 48 eyes of 24 rabbits. Seven days after suture placement, the rabbits were divided into 4 groups of 6 rabbits each and treated subconjunctivally with 0.1 mL balanced salt solution (group 1), 0.1 mL tocilizumab (0.25 mg per 0.1 mL and 2.5 mg per 0.1 mL, groups 2 and 3), or 0.1 mL bevacizumab (2.5 mg per 0.1 mL) (group 4). Digital photographs of the eyes were obtained and the surface areas of corneal neovascularization were measured on days 7 and 14 after subconjunctival injections. On days 7 and 14, 3 rabbits were randomly chosen and the eyes were extracted. Half of the corneal specimens were analyzed histopathologically, and the other half were used to measure the concentrations of vascular endothelial growth factor (VEGF) and IL-6 using a multiplex bead assay, and the levels were compared with those of the controls. RESULTS The surface areas of induced corneal neovascularization were significantly smaller in groups 3 and 4 (2.5 mg of tocilizumab and 2.5 mg of bevacizumab) compared with the control group on days 7 and 14 (P < 0.05). Group 2 did not show significant difference from the control group on days 7 and 14. There were no differences observed in the reduced neovascularization areas in groups 3 and 4 on days 7 and 14. The concentrations of VEGF in groups 3 and 4 were significantly lower than in the control group, and IL-6 mRNA levels were significantly lower in group 3 than in the other groups (P < 0.001) on days 7 and 14. Immunohistochemical analysis confirmed the reduced expression of VEGF in all 3 experimental groups compared with the control group. CONCLUSIONS An antiangiogenic effect was observed after subconjunctival injection of 2.5 mg tocilizumab to an extent similar to that seen with 2.5 mg bevacizumab, which indicates that subconjunctival application of tocilizumab is effective for the inhibition of corneal neovascularization.
Collapse
|
25
|
Goktas S, Sakarya R, Erdogan E, Sakarya Y, Ozcimen M, Dursunoglu D, Kocacan M, Alpfidan I, Erdogan E, Bukus A, Ivacık IS. Antiangiogenic effect of itraconazole on corneal neovascularization: a pilot experimental investigation. Ophthalmic Res 2014; 52:170-4. [PMID: 25342430 DOI: 10.1159/000366283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the antiangiogenic effect of itraconazole for the prevention of experimentally induced corneal neovascularization and whether the efficacy depends on the route of administration. MATERIALS AND METHODS Thirty-six rats were randomly divided into 6 groups with 6 rats in each group. Chemical cauterization of the cornea was performed using silver nitrate/potassium nitrate sticks, and the rats were subsequently treated daily with topical (10 mg/ml), subconjunctival (10 mg/ml) or intraperitoneal (19 mg/kg) itraconazole for 7 days. Control rats received topical, subconjunctival or intraperitoneal 0.9% saline. On the 8th day of the experiment, the rat corneas were photographed to determine the percentage area of the cornea covered by neovascularization. The maximum density of corneal neovascularization was determined by microscopy. RESULTS The median percentage of corneal neovascularization for group 1 was 31.5% (95% confidence interval, 27.5-35.5%); in group 3, it was 32% (23.5-39.8%); in group 5, it was 47% (36.3-60.0%). The percentages of corneal neovascularization in groups 2, 4 and 6 (the control groups) were 70% (95% confidence interval, 60.7-77.3%), 69% (63.0-77.7%) and 68% (56.5-78.5%), respectively. The area of neovascularization was smaller after itraconazole treatment as compared to saline treatment. Further, the area of neovascularization was smaller after topical and subconjunctival administration than after intraperitoneal administration. Histological evaluation of the corneas showed the most extensive corneal neovascularization in the control group. No local or systemic adverse effects were seen from either treatment group. CONCLUSION Itraconazole reduces corneal neovascularization shortly after chemical burn. However, a larger experimental study is necessary to confirm the data of this investigation.
Collapse
Affiliation(s)
- Sertan Goktas
- Department of Ophthalmology, Konya Training and Research Hospital, Konya, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Stewart MW. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind VEGF. Expert Rev Clin Pharmacol 2014; 7:167-80. [PMID: 24483136 DOI: 10.1586/17512433.2014.884458] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drugs that prevent the binding of VEGF to its trans-membrane cognate receptors have revolutionized the treatment of the most important chorioretinal vascular disorders: exudative age-related macular degeneration, diabetic macular edema, and retinal vein occlusions. Pegaptanib, which binds to VEGF165 and longer isoforms, ranibizumab and bevacizumab, which bind all VEGF-A isoforms, and aflibercept, which binds VEGF-A, VEGF-B, and placental growth factor, all bind VEGF165 with high affinity. The drugs have relatively long half-lives (7 to 10 days) after intravitreal depot injections and clinical durations of action that usually exceed 4 weeks. Plasma VEGF concentrations decrease after intravitreal injections of bevacizumab and aflibercept because their systemic half-lives are extended by their Fc fragments. Extensive in vitro and in vivo testing shows that the drugs prevent VEGF-mediated activation of endothelial cells while exhibiting little evidence of toxicity. Further anti-VEGF drug development is on-going.
Collapse
Affiliation(s)
- Michael W Stewart
- Department of Ophthalmology, Mayo School of Medicine, 4500 San Pablo Rd, Jacksonville, 32224 FL, USA
| |
Collapse
|
27
|
Ivacik IS, Goktas S, Sakarya Y, Ozcimen M, Sakarya R. Inhibition of Corneal Neovascularization by Subconjunctival and Topical Bevacizumab and Sunitinib in a Rabbit Model. Cornea 2013; 32:e193. [DOI: 10.1097/ico.0b013e3182a9e734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Reply: To PMID 23377751. Cornea 2013; 32:e193-4. [PMID: 24162752 DOI: 10.1097/ico.0b013e3182a9e74d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|