1
|
Saleh MHA, Sabri H, Di Pietro N, Comuzzi L, Geurs NC, Bou Semaan L, Piattelli A. Clinical Indications and Outcomes of Sinus Floor Augmentation With Bone Substitutes: An Evidence-Based Review. Clin Implant Dent Relat Res 2025; 27:e13400. [PMID: 39415739 PMCID: PMC11789849 DOI: 10.1111/cid.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Muhammad H. A. Saleh
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Hamoun Sabri
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Center for Advanced Studies and Technologies (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Luca Comuzzi
- Independent ResearcherSan Vendemiano‐Conegliano VenetoTrevisoItaly
| | - Nicolas C. Geurs
- School of Dentistry, Department of PeriodontologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Layal Bou Semaan
- School of Dentistry, Department of PeriodontologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adriano Piattelli
- School of DentistrySaint Camillus International University of Health and Medical Sciences (UniCamillus)RomeItaly
- Facultad de MedicinaUCAM Universidad Católica San Antonio de MurciaMurciaSpain
| |
Collapse
|
2
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
3
|
Francisco L, Francisco M, Costa R, Vasques MN, Relvas M, Rajão A, Monteiro L, Rompante P, Guerra F, Infante da Câmara M. Sinus Floor Augmentation with Synthetic Hydroxyapatite (NanoBone ®) in Combination with Platelet-Rich Fibrin: A Case Series. Biomedicines 2024; 12:1661. [PMID: 39200126 PMCID: PMC11351586 DOI: 10.3390/biomedicines12081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Several techniques have been described for maxillary sinus graft augmentation, including the lateral window technique and crestal approach with osteotomes or osseodensification. Platelet-rich fibrin has been used in maxillary sinus lift procedures due to its ability to accelerate soft and hard tissue healing. The aim of this study was to evaluate the potential of PRF in combination with the synthetic hydroxyapatite NanoBone® to enhance bone regeneration in sinus floor elevation with the lateral window technique. Out of the 50 individuals screened in a preoperative assessment visit from the CESPU-Famalicão clinical unit and intervened upon between January 2023 and December 2023, only 6 patients who met the study's inclusion criteria consented to participate. In a split-mouth study, twelve sinus graft surgeries were carried out. Our observations reveal that for the test group (NanoBone®/PRF), there is a 27.5 ± 4.9% increase new vital bone, 23.0 ± 3.7% increase in inert bone particles, and 49.4 ± 2.8% increase in connective tissue. Meanwhile, for the control group (NanoBone®), there is a 19.5 ± 3.0% increase in new vital bone, 23.4 ± 5.7% increase in inert bone particles, and 57.0 ± 3.5% increase in connective tissue. The results strongly indicate that mixing liquid PRF with NanoBone® does not have a negative influence on the amount of viable bone formation, and it seems to slightly increase the amount of new bone formation and revascularization in sinus bone graft procedures with the lateral window technique compared to the single use of NanoBone®.
Collapse
Affiliation(s)
- Luís Francisco
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
| | - Manuel Francisco
- Clinical Assistant Professor Postgraduate Implant Program, Famalicão Unit, University Institute of Health Sciences (IUCS-CESPU), Av. Marechal Humberto Delgado, 14, 4760-012 Vila Nova de Famalicão, Portugal;
| | - Rosana Costa
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
- Department of Medicine and Oral Surgery, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Miguel Nunes Vasques
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
- Department of Medicine and Oral Surgery, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Marta Relvas
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
- Department of Medicine and Oral Surgery, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - António Rajão
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Applied Molecular Biosciences Unit (UCIBIO), Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Luís Monteiro
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
- Department of Medicine and Oral Surgery, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Paulo Rompante
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
| | - Fernando Guerra
- Institute of Oral Implantology and Prosthodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal;
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Laboratory of Hard Tissues, Dentistry Department, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Marco Infante da Câmara
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (L.F.); (R.C.); (M.N.V.); (M.R.); (L.M.); (P.R.)
- Department of Medicine and Oral Surgery, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
- Coordinator of the Postgraduate Implant Program, Famalicão Unit, University Institute of Health Sciences (IUCS-CESPU), Av. Marechal Humberto Delgado, 14, 4760-012 Vila Nova de Famalicão, Portugal
| |
Collapse
|
4
|
Miron RJ, Gruber R, Farshidfar N, Sculean A, Zhang Y. Ten years of injectable platelet-rich fibrin. Periodontol 2000 2024; 94:92-113. [PMID: 38037213 DOI: 10.1111/prd.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/07/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
The use of platelet-rich fibrin (PRF) has seen widespread advantages over platelet-rich plasma (PRP) in many fields of medicine. However, until 2014, PRF remained clinically available only in its solid clotted form. Modifications to centrifugation protocols and tube technology have led to the development of a liquid injectable version of PRF (i-PRF). This narrative review takes a look back at the technological developments made throughout the past decade and further elaborates on their future clinical applications. Topics covered include improvements in isolation techniques and protocols, ways to further concentrate i-PRF, and the clinical impact and relevance of cooling i-PRF. Next, various uses of i-PRF are discussed, including its use in regenerative periodontology, implantology, endodontics, temporomandibular joint injections, and orthodontic tooth movement. Furthermore, various indications in medicine are also covered, including its use in sports injuries and osteoarthritis of various joints, treatment of diabetic ulcers/wound care, and facial esthetics and hair regrowth. Finally, future applications are discussed, mainly its use as a drug delivery vehicle for small biomolecules, such as growth factors, antibiotics, exosomes, and other medications that may benefit from the controlled and gradual release of biomolecules over time.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Nima Farshidfar
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
5
|
Wang J, Li W, He X, Li S, Pan H, Yin L. Injectable platelet-rich fibrin positively regulates osteogenic differentiation of stem cells from implant hole via the ERK1/2 pathway. Platelets 2023; 34:2159020. [PMID: 36644947 DOI: 10.1080/09537104.2022.2159020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bone regeneration in dentistry is a dynamic approach for treating critical size bone defects that are unlikely to self-heal. Human bone marrow stem cell (hBMSCs) therapies are being tested clinically for various disorders and have remarkable clinical advancements in bone regeneration. Injectable platelet-rich fibrin (i-PRF), which is obtained from autologous blood centrifuged at 700 rpm (60 G) for 3 min can promote osteogenic differentiation of this cell, but the mechanism remains unclear. The objectives of this study were to explore the contents of i-PRF further and investigate its effect on the cell behavior of hBMSCs and the underlying molecular mechanisms. The results showed that i-PRF contained 41 cytokines, including macrophage colony-stimulating factor (M-CSF) and β-nerve growth factor (β-NGF), which had not been reported before. The Cell Counting Kit-8 and wound healing assay showed that 10% and 20% i-PRF improved the proliferation rate and the migration capacity of hBMSCs without toxicity to cells. Besides, the expression of osteogenic markers and the capacity to form mineralized nodules of hBMSCs were promoted by 20% i-PRF. Furthermore, i-PRF activated the ERK pathway, and the ERK inhibitor attenuated its effects. In summary, i-PRF promotes hBMSCs proliferation and migration and facilitates cell osteogenesis through the ERK pathway, which has promising potential in bone regeneration.
Collapse
Affiliation(s)
- Jia Wang
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Wanxin Li
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Xuxia He
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Simei Li
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Hongwei Pan
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Lihua Yin
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother 2023; 168:115795. [PMID: 37918253 DOI: 10.1016/j.biopha.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Platelet-rich fibrin (PRF), as an autologous blood preparation, has been receiving increasing attention in recent years and has been successfully applied in various clinical treatments for alveolar bone regeneration in the oral field. This review focuses on analyzing and summarizing the role and mechanism of PRF in alveolar bone regeneration. We first provide a brief introduction to PRF, then summarize the mechanisms by which PRF promotes alveolar bone regeneration from three aspects: osteogenesis mechanism, bone induction mechanism, and bone conduction mechanism, involving multiple signaling pathways such as Smad, ERK1/2, PI3K/Akt, and Wnt/β-catenin. We also explore the various roles of PRF as a scaffold, filler, and in combination with bone graft materials, detailing how PRF promotes alveolar bone regeneration and provides a wealth of experimental evidence. Finally, we summarize the current applications of PRF in various oral fields. The role of PRF in alveolar bone regeneration is becoming increasingly important, and its role and mechanism are receiving more and more research and understanding. This article will provide a reference of significant value for research in related fields. The exploration of the role and mechanism of PRF in alveolar bone regeneration may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
M A, S T, P S, A G. Efficacy of mixture of injectable-platelet-rich fibrin and type-1 collagen particles on the closure of through-and-through periapical bone defects: A randomized controlled trial. Int Endod J 2023; 56:1197-1211. [PMID: 37418583 DOI: 10.1111/iej.13954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
AIM To determine the efficacy of a combination of injectable-platelet-rich fibrin and type-1 collagen particles on the healing of through-and-through periapical bone defect and subsequent closure of bony window. METHODOLOGY The clinical trial was registered in ClinicalTrials.gov (NCT04391725). Thirty-eight individuals with radiographic evidence of periapical radiolucency in maxillary anterior teeth and confirmed loss of palatal cortical plates in cone beam computed tomographic imaging were randomly assigned to either the experimental group (n = 19) or the control group (n = 19). A mixture of i-PRF and collagen as a graft was applied to the defect in adjunct to periapical surgery in the experimental group. No guided bone regeneration procedures were used in the control group. The healing was evaluated using Molven's (2D) and modified PENN 3D (3D) criteria. Percentage reduction of the buccal and palatal bony window area, and complete closure of through-and-through periapical bony window (tunnel defect) were assessed using Radiant Diacom viewer software (Version 4.0.2). The reduction in the periapical lesion area and volume was measured using Corel DRAW and ITK Snap software. RESULTS Thirty-four participants (18 and 16 in the experimental and control groups respectively) reported for follow-up at 12 months. There was 96.9% and 97.96% reduction of buccal bony window area in the experimental and control groups respectively. Similarly, palatal window showed 99.03% and 100% reduction in the experimental and control groups respectively. No significant difference in both buccal and palatal window reduction was noticed between the groups. A total of 14 cases (seven in the experimental group and seven in the control group) showed complete closure of through-and-through bony window. No significant difference in clinical, 2D and 3D radiographic healing, percentage reduction in area and volume was observed between the experimental and control groups (p > .05). Neither the area nor the volume of lesion, and the size of buccal or palatal window had significant effect on healing of through-and-through defects. CONCLUSION Endodontic microsurgery results in high success rate in large periapical lesions with through-and-through communication with more than 80% reduction in volume of lesion and size of both buccal and palatal window after 1 year. A mixture of type-1 collagen particles and i-PRF, adjunct to periapical micro-surgery did not improve the healing in through-and-through periapical defects.
Collapse
Affiliation(s)
- Arpitha M
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| | - Tewari S
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| | - Sangwan P
- Department of Conservative Dentistry and Endodontics, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| | - Gupta A
- Department of Oral Medicine and Radiology, Post Graduate Institute of Dental Sciences (PGIDS), Rohtak, India
| |
Collapse
|
8
|
Nagrani T, Kumar S, Haq MA, Dhanasekaran S, Gajjar S, Patel C, Sinha S, Haque M. Use of Injectable Platelet-Rich Fibrin Accompanied by Bone Graft in Socket Endurance: A Radiographic and Histological Study. Cureus 2023; 15:e46909. [PMID: 37841989 PMCID: PMC10569439 DOI: 10.7759/cureus.46909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Ridge preservation became a crucial dental health issue and strategy to keep away from ridge defacement after post-tooth loss. The recent scientific evolution of platelet-rich fibrin (PRF) comprises a parenteral formulation of PRF. The combined allograft for socket preservation gives benefits. In this study, bone allografts, demineralized freeze-dried bone allografts (DFDBA) and freeze-dried bone allografts (FDBA) are used in a 30:70 ratio alone or in combination with injectable PRF (I-PRF) for socket preservation. Methods This study is a radiographic and histological examination conducted on 60 participants aged between 19-65 years. Participating patients agreed voluntarily that they would not bear any fixed prosthesis for the next nine months and plan for implanted teeth placement, including multi-rooted mandibular molars denticles. Both groups received atraumatic extraction; then, the socket was preserved with bone allograft alone in the control group and bone allograft mixed with I-PRF, forming sticky bone, in the experimental group. Clinical, radiological, and histological assessments were taken at the inception stage, three months, six months, and nine months. A multivariate regression model and a generalized estimating equation (GEE) model were used to analyse the effects of these changes on outcomes. Results In all the parameters, the test group indicated a good amount of bone growth with increasing intervals of time for bone height radiographically with statistically significant difference present (p<0.05) and histologically after nine months when socket site grafted with bone graft in combination with I-PRF. Conclusion This study's results demonstrated that I-PRF possesses the potential to regenerate and heal in the tooth-extracted socket. This study further recommends the implementation of I-PRF in safeguarding and conserving the raised rim of the tooth. Future research should take place on the osteogenic capability of I-PRF in more comprehensive ridge accession surgical procedures and additional expanding and improving capacities in periodontal reconstruction.
Collapse
Affiliation(s)
- Tanya Nagrani
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Md Ahsanul Haq
- Bio-Statistics, Infectious Diseases Division, icddr, b, Dhaka, BGD
| | | | - Shreya Gajjar
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Chandni Patel
- Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
9
|
Farshidfar N, Jafarpour D, Firoozi P, Sahmeddini S, Hamedani S, de Souza RF, Tayebi L. The application of injectable platelet-rich fibrin in regenerative dentistry: A systematic scoping review of In vitro and In vivo studies. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:89-123. [PMID: 35368368 PMCID: PMC8971935 DOI: 10.1016/j.jdsr.2022.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ongoing research in the dental field has begun to focus on the use of injectable platelet-rich fibrin (I-PRF) as a regenerative tool with the potential to prompt tissue regeneration. In this regard, this systematic scoping review aimed to collect, map, and appraise the in vitro and in vivo studies regarding the role of I-PRF in or soft and hard tissue regeneration in relation to oral and maxillofacial structures. METHODS A systematic electronic search of Medline, Scopus, Web of Science, and Embase databases was performed from 2000 to December 2021 using a combination of keywords. All in vitro and in vivo studies, written in English and concerning the potential role of I-PRF in regenerative dentistry were considered. RESULTS In total, 18 in vitro studies, 5 animal studies, 6 case reports, and 31 clinical studies have evaluated the effect of I-PRF on oral and maxillofacial soft and hard tissue regeneration. The investigated studies verified the anti-inflammatory, anti-microbial efficacy and the positive effects of I-PRF application for wound, periodontal, bone, cartilage, and pulp regeneration, as well as acceleration in tooth movement during orthodontic treatment. CONCLUSIONS Current literature approves the feasibility of I-PRF application as a promising regenerative adjunct to dental procedures.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dana Jafarpour
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Parsa Firoozi
- Student Research Committee, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sarina Sahmeddini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences,Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
10
|
Espitia-Quiroz LC, Fernández-Orjuela AL, Anaya-Sampayo LM, Acosta-Gómez AP, Sequeda-Castañeda LG, Gutiérrez-Prieto SJ, Roa-Molina NS, García-Robayo DA. Viability and Adhesion of Periodontal Ligament Fibroblasts on a Hydroxyapatite Scaffold Combined with Collagen, Polylactic Acid-Polyglycolic Acid Copolymer and Platelet-Rich Fibrin: A Preclinical Pilot Study. Dent J (Basel) 2022; 10:dj10090167. [PMID: 36135161 PMCID: PMC9497794 DOI: 10.3390/dj10090167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Conventional periodontal therapy relies on bone regeneration strategies utilizing scaffolds made of diverse materials, among which collagen, to promote cell adhesion and growth. Objective: To evaluate periodontal ligament fibroblast (HPdLF) cell adhesion and viability for periodontal regeneration purposes on hydroxyapatite scaffolds containing collagen (HAp-egg shell) combined with polylactic acid−polyglycolic acid copolymer (PLGA) and Platelet-Rich Fibrin (PRF). Methods: Four variations of the HAp-egg shell were used to seed HPdLF for 24 h and evaluate cell viability through a live/dead assay: (1) (HAp-egg shell/PLGA), (2) (HAp-egg shell/PLGA + collagen), (3) (HAp-egg shell/PLGA + PRF) and (4) (HAp-egg shell/PLGA + PRF + collagen). Cell adhesion and viability were determined using confocal microscopy and quantified using central tendency and dispersion measurements; significant differences were determined using ANOVA (p < 0.05). Results: Group 1 presented low cell viability and adhesion (3.70−10.17%); groups 2 and 3 presented high cell viability and low cell adhesion (group 2, 59.2−11.1%, group 3, 58−4.6%); group 4 presented the highest cell viability (82.8%) and moderate cell adhesion (45%) (p = 0.474). Conclusions: The effect of collagen on the HAp-egg shell/PLGA scaffold combined with PRF favored HPdLF cell adhesion and viability and could clinically have a positive effect on bone defect resolution and the regeneration of periodontal ligament tissue.
Collapse
Affiliation(s)
- Leonor C. Espitia-Quiroz
- Resident in Periodontics, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Dentistry Faculty, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, Mexico
| | | | - Lina M. Anaya-Sampayo
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Adriana P. Acosta-Gómez
- Periodontal System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Luis Gonzalo Sequeda-Castañeda
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Chemistry Department, Sciences Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Correspondence: (L.G.S.-C.); (S.J.G.-P.); (D.A.G.-R.)
| | - Sandra Janeth Gutiérrez-Prieto
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Dental System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Correspondence: (L.G.S.-C.); (S.J.G.-P.); (D.A.G.-R.)
| | - Nelly S. Roa-Molina
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Oral System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
| | - Dabeiba A. García-Robayo
- Dentistry Research Center, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Oral System Department, Dentistry Faculty, Pontificia Universidad Javeriana, Bogota 110231, Colombia
- Correspondence: (L.G.S.-C.); (S.J.G.-P.); (D.A.G.-R.)
| |
Collapse
|
11
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. BIOMATERIALS ADVANCES 2022; 134:112557. [DOI: https:/doi.org/10.1016/j.msec.2021.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. BIOMATERIALS ADVANCES 2022; 134:112557. [PMID: 35527147 PMCID: PMC9295636 DOI: 10.1016/j.msec.2021.112557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Among all the biomaterials introduced in the field of bone tissue engineering, injectable platelet-rich fibrin (I-PRF) has recently gained considerable attention. I-PRF, as a rich source of biologically active molecules, is a potential candidate which can be easily obtained in bedside and constitutes several biological factors which can result in higher anti-bacterial, anti-inflammatory and regenerative capabilities. According to the studies evaluating the osteogenic efficacy of I-PRF, this biomaterial has exhibited favorable outcomes in terms of adhesion, differentiation, migration, proliferation and mineralization potential of stem cells. In addition, the injectability and ease-of-applicability of this biomaterial has led to its various clinical applications in the oral and maxillofacial bone regeneration such as ridge augmentation, sinus floor elevation, cleft palate reconstruction and so on. Furthermore, to enhance the clinical performance of I-PRF, albumin gel-PRF as a long-lasting material for long-term utilization has been recently introduced with a gradual increase in growth factor release pattern. This review provides a comprehensive approach to better evaluate the applicability of I-PRF by separately appraising its performance in in-vitro, in-vivo and clinical situations. The critical approach of this review toward the different production protocols and different physical and biological aspects of I-PRF can pave the way for future studies to better assess the efficacy of I-PRF in bone regeneration.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dana Jafarpour
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Farshidfar N, Amiri MA, Jafarpour D, Hamedani S, Niknezhad SV, Tayebi L. The feasibility of injectable PRF (I-PRF) for bone tissue engineering and its application in oral and maxillofacial reconstruction: From bench to chairside. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021. [DOI: https://doi.org/10.1016/j.msec.2021.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Shah R, Gowda TM, Thomas R, Kumar T. Second generation liquid platelet concentrates: A literature review. Curr Pharm Biotechnol 2021; 23:1315-1326. [PMID: 34425742 DOI: 10.2174/1389201022666210823102618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
Liquid or injectable platelet rich fibrin (PRF) is a second-generation platelet concentrate which is completely autologous and free of external additives like bovine thrombin and calcium chloride. Additionally, it is the only one to be obtained in a liquid form among the second generation platelet concentrates. This allows for wide applications such as to maximize injections or mixing with biomaterials such as bone grafts or antibiotics. Since it was first introduced in 2015, several modifications of the original protocol have been proposed which aim at maximizing its biological and mechanical properties. This includes changes in centrifugation speed, time, and so on. The aim of this review is to summarize the various modifications of the injectable/liquid formation of PRF as well as to discuss the potential applications and future research direction.
Collapse
Affiliation(s)
- Rucha Shah
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| | - Triveni M Gowda
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| | - Raison Thomas
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| | - Tarun Kumar
- Department of Periodontology, Bapuji Dental College and Hospital, Davangere. India
| |
Collapse
|
15
|
Iozon S, Caracostea GV, Páll E, Şoriţău O, Mănăloiu ID, Bulboacă AE, Lupşe M, Mihu CM, Roman AL. Injectable platelet-rich fibrin influences the behavior of gingival mesenchymal stem cells. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:189-198. [PMID: 32747910 PMCID: PMC7728122 DOI: 10.47162/rjme.61.1.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we examined the effects of injectable platelet-rich fibrin (iPRF) on proliferation and osteodifferentiation in mesenchymal stem cells (MSCs) isolated from human gingiva. Gingival MSCs (gMSCs) were grown in experimental culture media with different concentrations of iPRF [5%, 10%, and replacement of fetal calf serum (FCS) in the standard media with 10% iPRF–10% iPRF-FCS]. Immunophenotyping of gMSCs was performed after seven days by flow cytometry, and their proliferation was examined after three and seven days using the Cell Counting Kit-8 method. After 14 days in culture, spontaneous osteogenic differentiation of gMSCs was evaluated via real-time polymerase chain reaction. All gMSCs were positive for cluster of differentiation (CD) 105, CD73, CD90, and CD44, and negative for CD34/45, CD14, CD79a, and human leukocyte antigen, DR isotype (HLA-DR). Reduced expression of some surface antigens was observed in the gMSCs grown in 10% iPRF-FCS medium compared to the other groups. After three days, gMSCs grown in 10% iPRF had proliferated significantly less than the other groups. After seven days, proliferation was significantly higher in the 5% iPRF cells compared to the control, while proliferation in the 10% iPRF and 10% iPRF-FCS groups was significantly lower. No spontaneous osteogenic differentiation was observed in the presence of iPRF, as observed by low runt-related transcription factor 2 (RUNX2) expression. Some expression of secreted protein acidic and cysteine rich (SPARC) and collagen 1 alpha (COL1A) was observed for all the gMSCs regardless of the culture medium composition. gMSCs grown in 10% iPRF had significantly lower SPARC expression. In conclusion, 5% iPRF stimulated gMSC proliferation, and an excessively high concentration of iPRF can impair osteogenic induction.
Collapse
Affiliation(s)
- Sofia Iozon
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guided bone regeneration simultaneous with implant placement using bovine-derived xenograft with and without liquid platelet-rich fibrin: a randomized controlled clinical trial. Clin Oral Investig 2021; 25:5563-5575. [PMID: 34047835 DOI: 10.1007/s00784-021-03987-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess augmentation success after guided bone regeneration (GBR) carried out simultaneously with implant placement using bovine-derived xenograft alone and in combination with liquid platelet-rich fibrin (liquid-PRF). METHODS This randomized controlled clinical trial was conducted on patients with horizontal bone deficiency in the posterior regions of the mandible. After implant placement, GBR procedures were randomly performed using liquid-PRF-enriched bovine-derived xenograft (for the test group) and with bovine-derived xenograft alone (for the control group). To assess the change in augmentation thickness, the primary outcome of the study, cone beam computed tomography was carried out at the implant sites on completion and 6 months after surgery. The secondary outcomes were marginal bone level and implant survival rate at prosthetic delivery and at 6 months, 1 year, and 2 years follow-up after loading. The significance level was set at p<0.05 for all analysis. RESULTS Twenty patients with 50 implants were analyzed for the test group and 20 patients with 48 implants for the control group. At 6 months postoperatively, the mean values of augmentation thickness were 1.63 ± 0.21 mm, 2.59 ± 0.34 mm, and 3.11 ± 0.36 mm for the test group and 1.34 ± 0.14 mm, 2.49 ± 0.24 mm, and 2.97 ± 0.24 mm for the control group at 2 mm, 4 mm, and 6 mm below to the implant shoulder (p < 0.001, p = 0.007, and p = 0.036, respectively). The mean marginal bone loss was found to be less than 1 mm for both study groups during the 2 years of follow-up after prosthetic loading. Implant survival rate was 100% for both study groups. CONCLUSION Bovine-derived xenograft alone and in combination with liquid-PRF are both successful in achieving bone augmentation around the implants and produce a small change in marginal bone level and a high implant survival rate after loading. CLINICAL RELEVANCE There is a lack of evidence in the literature regarding the augmentation success of liquid-PRF used in combination with bone graft substitutes. This study indicates that liquid-PRF could be used as a supportive material with bovine-derived xenograft in GBR procedures carried out simultaneously with implant placement.
Collapse
|
17
|
Which substances loaded onto collagen scaffolds influence oral tissue regeneration?-an overview of the last 15 years. Clin Oral Investig 2020; 24:3363-3394. [PMID: 32827278 DOI: 10.1007/s00784-020-03520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Collagen scaffolds are widely used for guided bone or tissue regeneration. Aiming to enhance their regenerative properties, studies have loaded various substances onto these scaffolds. This review aims to provide an overview of existing literature which conducted in vitro, in vivo, and clinical testing of drug-loaded collagen scaffolds and analyze their outcome of promoting oral regeneration. MATERIALS AND METHODS PubMed, Scopus, and Ovid Medline® were systematically searched for publications from 2005 to 2019. Journal articles assessing the effect of substances on oral hard or soft tissue regeneration, while using collagen carriers, were screened and qualitatively analyzed. Studies were grouped according to their used substance type-biological medical products, pharmaceuticals, and tissue-, cell-, and matrix-derived products. RESULTS A total of 77 publications, applying 36 different substances, were included. Collagen scaffolds were demonstrating favorable adsorption behavior and release kinetics which could even be modified. BMP-2 was investigated most frequently, showing positive effects on oral tissue regeneration. BMP-9 showed comparable results at lower concentrations. Also, FGF2 enhanced bone and periodontal healing. Antibiotics improved the scaffold's anti-microbial activity and reduced the penetrability for bacteria. CONCLUSION Growth factors showed promising results for oral tissue regeneration, while other substances were investigated less frequently. Found effects of investigated substances as well as adsorption and release properties of collagen scaffolds should be considered for further investigation. CLINICAL RELEVANCE Collagen scaffolds are reliable carriers for any of the applied substances. BMP-2, BMP-9, and FGF2 showed enhanced bone and periodontal healing. Antibiotics improved anti-microbial properties of the scaffolds.
Collapse
|
18
|
Thanasrisuebwong P, Kiattavorncharoen S, Surarit R, Phruksaniyom C, Ruangsawasdi N. Red and Yellow Injectable Platelet-Rich Fibrin Demonstrated Differential Effects on Periodontal Ligament Stem Cell Proliferation, Migration, and Osteogenic Differentiation. Int J Mol Sci 2020; 21:ijms21145153. [PMID: 32708242 PMCID: PMC7404021 DOI: 10.3390/ijms21145153] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
The biological benefits of using two fractions derived from injectable platelet-rich fibrin (i-PRF) in bone regeneration remain unclear. Thus, the current study examined two fractionation protocols producing yellow i-PRF and red i-PRF on periodontal ligament stem cells (PDLSCs). The i-PRF samples from five donors were harvested from two different levels, with and without a buffy coat layer, to obtain red and yellow i-PRF, respectively. The PDLSCs were isolated and characterized before their experimental use. The culture medium in each assay was loaded with 20% of the conditioned medium containing the factors released from the red and yellow i-PRF. Cell proliferation and cell migration were determined with an MTT and trans-well assay, respectively. Osteogenic differentiation was investigated using alkaline phosphatase and Alizarin red staining. The efficiency of both i-PRFs was statistically compared. We found that the factors released from the red i-PRF had a greater effect on cell proliferation and cell migration. Moreover, the factors released from the yellow i-PRF stimulated PDLSC osteogenic differentiation earlier compared with the red i-PRF. These data suggest that the red i-PRF might be suitable for using in bone regeneration because it induced the mobilization and growth of bone regenerative cells without inducing premature mineralization.
Collapse
Affiliation(s)
- Prakan Thanasrisuebwong
- Dental Implant Center, Dental Hospital, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Sirichai Kiattavorncharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Chareerut Phruksaniyom
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Nisarat Ruangsawasdi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
- Correspondence:
| |
Collapse
|
19
|
Biofunctionalization of porcine-derived collagen matrices with platelet rich fibrin: influence on angiogenesis in vitro and in vivo. Clin Oral Investig 2020; 24:3425-3436. [DOI: 10.1007/s00784-020-03213-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Objectives
Porcine-derived collagen matrices (CM) can be used for oral tissue regeneration, but sufficient revascularization is crucial. The aim of this study was to analyze the influence of platelet-rich fibrin (PRF) on angiogenesis of different CM in vitro and in vivo.
Materials and methods
Three different CM (mucoderm, jason, collprotect) were combined with PRF in a plotting process. Growth factor release (VEGF, TGF-β) was measured in vitro via ELISA quantification after 1,4 and 7 days in comparison to PRF alone. In ovo yolk sac (YSM) and chorion allantois membrane (CAM) model, angiogenic potential were analyzed in vivo with light- and intravital fluorescence microscopy after 24 h, then verified with immunohistochemical staining for CD105 and αSMA.
Results
Highest growth factor release was seen after 24 h for all three activated membranes in comparison to the native CM (VEGF 24 h: each p < 0.05; TGF-β: each p < 0.001) and the PRF (no significant difference). All activated membranes revealed a significantly increased angiogenic potential in vivo after 24 h (vessels per mm2: each p < 0.05; branching points per mm2: each p < 0.01; vessel density: each p < 0.05) and with immunohistochemical staining for CD105 (each p < 0.01) and αSMA (each p < 0.05).
Conclusions
PRF improved the angiogenesis of CM in vitro and in vivo.
Clinical relevance
Bio-functionalization of CM with PRF could easily implemented in the clinical pathway and may lead to advanced soft tissue healing.
Collapse
|
20
|
Ortega-Mejia H, Estrugo-Devesa A, Saka-Herrán C, Ayuso-Montero R, López-López J, Velasco-Ortega E. Platelet-Rich Plasma in Maxillary Sinus Augmentation: Systematic Review. MATERIALS 2020; 13:ma13030622. [PMID: 32019255 PMCID: PMC7040697 DOI: 10.3390/ma13030622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Background: Sinus augmentation can be performed with or without grafting biomaterials, and to date, there is no quality evidence regarding the augmentation of the sinus floor using only platelet concentrates, which can improve the healing period and enhance bone regeneration by stimulating angiogenesis and bone formation. The main objective of this paper was to assess the effect of the sole use of platelet concentrates in sinus augmentation in terms of newly formed bone, augmented bone height, and clinical outcomes and to assess the additional beneficial effects of platelet-rich fibrin (PRF) in combination with other grafting biomaterials. Methods: A systematic review was conducted following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Pooled analyses were performed with the Review Manager software. Results: For sinus elevation only using platelet concentrates, 11 studies met the inclusion criteria and were included for qualitative synthesis. Only one study was a clinical trial, which reported improved outcomes for the allograft group compared to the titanium-PRF (T-PRF) group. A total of 12 studies where PRF was used in addition to grafting biomaterials met eligibility criteria and were included in the review. Results from meta-analyses provided no additional beneficial effects of PRF in sinus augmentation in terms of bone height and percentage of soft tissue area. There was a statistically significant lower percentage of residual bone substitute material in the PRF (+) group compared to the PRF (−) group. The percentage of newly formed bone was slightly higher in the PRF (+) group, but this was not statistically significant. Conclusion: There is no robust evidence to make firm conclusions regarding the beneficial effects of the sole use of platelet concentrates in sinus augmentation. However, studies have shown favorable outcomes regarding implant survival, bone gain, and bone height. The use of PRF with other grafting biomaterials appears to provide no additional beneficial effects in sinus lift procedures, but they may improve the healing period and bone formation. Well-conducted randomized clinical trials (RCTs) are necessary to confirm the available results to provide recommendations for the clinical practice.
Collapse
Affiliation(s)
- Holmes Ortega-Mejia
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (H.O.-M.); (C.S.-H.)
| | - Albert Estrugo-Devesa
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (A.E.-D.); (R.A.-M.)
| | - Constanza Saka-Herrán
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (H.O.-M.); (C.S.-H.)
| | - Raúl Ayuso-Montero
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (A.E.-D.); (R.A.-M.)
| | - José López-López
- Oral Health and Masticatory System Group (Bellvitge Biomedical Research Institute) IDIBELL, Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08970 Barcelona, Spain; (A.E.-D.); (R.A.-M.)
- Service of the Medical-Surgical Area of Dentistry Hospital, University of Barcelona, 08970 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-402-42-71; Fax: +34-93-402-42-48
| | - Eugenio Velasco-Ortega
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41013 Seville, Spain
| |
Collapse
|