1
|
Nishie R, Tanaka T, Hirosuna K, Miyamoto S, Murakami H, Tsuchihashi H, Toji A, Ueda S, Morita N, Hashida S, Daimon A, Terada S, Maruoka H, Konishi H, Kogata Y, Taniguchi K, Komura K, Ohmichi M. Creation and Validation of Patient-Derived Cancer Model Using Peritoneal and Pleural Effusion in Patients with Advanced Ovarian Cancer: An Early Experience. J Clin Med 2024; 13:2718. [PMID: 38731247 PMCID: PMC11084603 DOI: 10.3390/jcm13092718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The application of personalized cancer treatment based on genetic information and surgical samples has begun in the field of cancer medicine. However, a biopsy may be painful for patients with advanced diseases that do not qualify for surgical resection. Patient-derived xenografts (PDXs) are cancer models in which patient samples are transplanted into immunodeficient mice. PDXs are expected to be useful for personalized medicine. The aim of this study was to establish a PDX from body fluid (PDX-BF), such as peritoneal and pleural effusion samples, to provide personalized medicine without surgery. Methods: PDXs-BF were created from patients with ovarian cancer who had positive cytology findings based on peritoneal and pleural effusion samples. PDXs were also prepared from each primary tumor. The pathological findings based on immunohistochemistry were compared between the primary tumor, PDX, and PDX-BF. Further, genomic profiles and gene expression were evaluated using DNA and RNA sequencing to compare primary tumors, PDXs, and PDX-BF. Results: Among the 15 patients, PDX-BF was established for 8 patients (5 high-grade serous carcinoma, 1 carcinosarcoma, 1 low-grade serous carcinoma, and 1 clear cell carcinoma); the success rate was 53%. Histologically, PDXs-BF have features similar to those of primary tumors and PDXs. In particular, PDXs-BF had similar gene mutations and expression patterns to primary tumors and PDXs. Conclusions: PDX-BF reproduced primary tumors in terms of pathological features and genomic profiles, including gene mutation and expression. Thus, PDX-BF may be a potential alternative to surgical resection for patients with advanced disease.
Collapse
Affiliation(s)
- Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Kensuke Hirosuna
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Okayama, Japan;
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Hikaru Murakami
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Hiromitsu Tsuchihashi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Akihiko Toji
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Atsushi Daimon
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Hiroshi Maruoka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| |
Collapse
|
2
|
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol Diagn Ther 2021; 26:61-87. [PMID: 34773243 DOI: 10.1007/s40291-021-00562-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the number of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these "alternative" sources of genetic material and their analysis by ddPCR in different kinds of cancers.
Collapse
Affiliation(s)
- Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040, Madrid, Spain
| |
Collapse
|
3
|
Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021; 132:401-420. [PMID: 33940195 PMCID: PMC8969826 DOI: 10.1016/j.actbio.2021.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Intractable human diseases such as cancers, are context dependent, unique to both the individual patient and to the specific tumor microenvironment. However, conventional cancer treatments are often nonspecific, targeting global similarities rather than unique drivers. This limits treatment efficacy across heterogeneous patient populations and even at different tumor locations within the same patient. Ultimately, this poor efficacy can lead to adverse clinical outcomes and the development of treatment-resistant relapse. To prevent this and improve outcomes, it is necessary to be selective when choosing a patient's optimal adjuvant treatment. In this review, we posit the use of personalized, tumor-specific models (TSM) as tools to achieve this remarkable feat. First, using ovarian cancer as a model disease, we outline the heterogeneity and complexity of both the cellular and extracellular components in the tumor microenvironment. Then we examine the advantages and disadvantages of contemporary cancer models and the rationale for personalized TSM. We discuss how to generate precision 3D models through careful and detailed analysis of patient biopsies. Finally, we provide clinically relevant applications of these versatile personalized cancer models to highlight their potential impact. These models are ideal for a myriad of fundamental cancer biology and translational studies. Importantly, these approaches can be extended to other carcinomas, facilitating the discovery of new therapeutics that more effectively target the unique aspects of each individual patient's TME. STATEMENT OF SIGNIFICANCE: In this article, we have presented the case for the application of biomaterials in developing personalized models of complex diseases such as cancers. TSM could bring about breakthroughs in the promise of precision medicine. The critical components of the diverse tumor microenvironments, that lead to treatment failures, include cellular- and extracellular matrix- heterogeneity, and biophysical signals to the cells. Therefore, we have described these dynamic components of the tumor microenvironments, and have highlighted how contemporary biomaterials can be utilized to create personalized in vitro models of cancers. We have also described the application of the TSM to predict the dynamic patterns of disease progression, and predict effective therapies that can produce durable responses, limit relapses, and treat any minimal residual disease.
Collapse
Affiliation(s)
- Eric N Horst
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael E Bregenzer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Catherine S Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Taylor Repetto
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States; Precision Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
4
|
Dai L, Wang W, Liu Y, Song K, Di W. Inhibition of sphingosine kinase 2 down-regulates ERK/c-Myc pathway and reduces cell proliferation in human epithelial ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:645. [PMID: 33987343 PMCID: PMC8106111 DOI: 10.21037/atm-20-6742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Epithelial ovarian cancer (EOC) is the leading cause of death from female cancers. In our previous study, sphingosine kinase 2 (SphK2) inhibitor was shown to display anti-EOC activities. The purpose of this study was to evaluate further the expression characteristics and clinical significance of SphK2 in EOC and to explore the roles and underlying mechanisms of SphK2 in EOC cell survival. Methods The expression of SphK2 was examined by immunohistochemistry (IHC) and Western blot, and its clinical implications and prognostic significance were analyzed. We performed a cellular proliferation assay, and a mouse xenograft model was established to confirm the roles of SphK2 in vitro and in vivo. Cell cycle analysis, apoptosis assay, and Western blot were performed to examine cell cycle progression and apoptosis rate. Gene set enrichment analysis (GSEA), and Western blot were used to investigate the downstream signaling pathways related to SphK2 function. Results The expression level of SphK2 was shown to be associated with stage, histological grade, lymph node metastasis, and ascites status. More importantly, a high SphK2 expression level was a prognostic indicator of overall survival (OS) and relapse-free survival (RFS). Moreover, knockdown of SphK2 arrested cell cycle progression and inhibited EOC cell proliferation both in vitro and in vivo. Furthermore, ERK/c-Myc, the key pathway in EOC progression, was important for SphK2-mediated mitogenic action in EOC cells. Conclusions Our findings provided the first evidence that SphK2 played a crucial role in EOC proliferation by regulating the ERK/c-Myc pathway. This indicated that SphK2 might serve as a prognostic marker and potential therapeutic target in EOC.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Yi X, Liu Y, Zhou B, Xiang W, Deng A, Fu Y, Zhao Y, Ouyang Q, Liu Y, Sun Z, Zhang K, Li X, Zeng F, Zhou H, Chen BT. Incorporating SULF1 polymorphisms in a pretreatment CT-based radiomic model for predicting platinum resistance in ovarian cancer treatment. Biomed Pharmacother 2021; 133:111013. [DOI: 10.1016/j.biopha.2020.111013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023] Open
|
6
|
Wang Z, Sun X, Huang T, Song J, Wang Y. A Sandwich Nanostructure of Gold Nanoparticle Coated Reduced Graphene Oxide for Photoacoustic Imaging-Guided Photothermal Therapy in the Second NIR Window. Front Bioeng Biotechnol 2020; 8:655. [PMID: 32695755 PMCID: PMC7338568 DOI: 10.3389/fbioe.2020.00655] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
We explore a sandwich-type gold nanoparticle coated reduced graphene oxide (rGO-AuNP) as an effective nanotheranostic platform for the second near-infrared (NIR-II) window photoacoustic (PA) imaging-guided photothermal therapy (PTT) in ovarian cancer. The PEG was loaded onto the AuNPs surface to increase the stability of nanostructure. The forming rGO-AuNPs- PEG revealed very strong SERS signal, NIR-II PA signal and high photothermal efficiency against tumor upon 1,061 nm laser irradiation. The prominent performance was attributed to the plasmonic coupling of AuNPs, and the enhanced response of rGO and the plasmonic AuNP. Thus, our study demonstrates that the rGO-AuNP nanocomposite could promise to be a potential photothermal agent and pave the way for the diagnosis and therapy of ovarian cancer in the future.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Ting Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yudong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
7
|
ATM-Mutated Pancreatic Cancer: Clinical and Molecular Response to Gemcitabine/Nab-Paclitaxel After Genome-Based Therapy Resistance. Pancreas 2020; 49:143-147. [PMID: 31856090 PMCID: PMC6946099 DOI: 10.1097/mpa.0000000000001461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastatic pancreatic cancer (PC) is an aggressive malignancy, with most patients deriving benefit only from first-line chemotherapy. Increasingly, the recommended treatment for those with a germline mutation in a gene involved in homologous recombination repair is with a platinum drug followed by a poly (ADP-ribose) polymerase (poly adenosine phosphate-ribose polymerase [PARP]) inhibitor. Yet, this is based largely on studies of BRCA1/2 or PALB2 mutated PC. We present the case of a 44-year-old woman with ATM-mutated PC who achieved stable disease as the best response to first-line fluorouracil, leucovorin, irinotecan, and oxaliplatin, followed by progression on a PARP inhibitor. In the setting of jaundice, painful hepatomegaly, and a declining performance status, she experienced rapid disease regression with the nonplatinum regimen, gemcitabine plus nab-paclitaxel. Both physical stigmata and abnormal laboratory values resolved, imaging studies showed a reduction in metastases and her performance status returned to normal. Measurement of circulating tumor DNA for KRAS G12R by digital droplet polymerase chain reaction confirmed a deep molecular response. This case highlights that first-line treatment with a platinum-containing regimen followed by PARP inhibition may not be the best choice for individuals with ATM-mutated pancreatic cancer. Additional predictors of treatment response are needed in this setting.
Collapse
|
8
|
Pandya D, Camacho SC, Padron MM, Camacho-Vanegas O, Billaud JN, Beddoe AM, Irish J, Yoxtheimer L, Kalir T, RoseFigura J, Dottino P, Martignetti JA. Rapid development and use of patient-specific ctDNA biomarkers to avoid a "rash decision" in an ovarian cancer patient. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004648. [PMID: 31628202 PMCID: PMC6913138 DOI: 10.1101/mcs.a004648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Epithelial ovarian cancer (OvCa) is the most lethal female reproductive tract malignancy. A major clinical hurdle in patient management and treatment is that when using current surveillance technologies 80% of patients will be clinically diagnosed as having had a complete clinical response to primary therapy. In fact, the majority of women nonetheless develop disease recurrence within 18 mo. Thus, without more accurate surveillance protocols, the diagnostic question regarding OvCa recurrence remains framed as "when" rather than "if." With this background, we describe the case of a 61-yr-old female who presented with a 3-mo history of unexplained whole-body rash, which unexpectedly led to a diagnosis of and her treatment for OvCa. The rash resolved immediately following debulking surgery. Nearly 1 yr later, however, the rash reappeared, prompting the prospect of tumor recurrence and requirement for additional chemotherapy. To investigate this possibility, we undertook a genomics-based tumor surveillance approach using a targeted 56-gene NGS panel and biobanked tumor samples to develop personalized ctDNA biomarkers. Although tumor-specific TP53 and PTEN mutations were detectable in all originally collected tumor samples, pelvic washes, and blood samples, they were not detectable in any biosample collected beyond the first month of treatment. No additional chemotherapy was given. The rash spontaneously resolved. Now, 2 yr beyond the patient's original surgery, and in the face of continued negative ctDNA findings, the patient remains with no evidence of disease. As this single case report suggests, we believe for the first time that ctDNA can provide an additional layer of information to avoid overtreatment.
Collapse
Affiliation(s)
- Deep Pandya
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, Connecticut 06810, USA
| | - Sandra Catalina Camacho
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Maria M Padron
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Olga Camacho-Vanegas
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | - Ann-Marie Beddoe
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jon Irish
- Swift Biosciences, Ann Arbor, Michigan 48103, USA
| | - Lorene Yoxtheimer
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Tamara Kalir
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | - Peter Dottino
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - John A Martignetti
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, Connecticut 06810, USA.,Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
9
|
Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett 2019; 468:59-71. [PMID: 31610267 DOI: 10.1016/j.canlet.2019.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 01/06/2023]
Abstract
Liquid biopsies hold the potential to inform cancer patient prognosis and to guide treatment decisions at the time when direct tumor biopsy may be impractical due to its invasive nature, inaccessibility and associated complications. Specifically, circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) have shown promising results as companion diagnostic biomarkers for screening, prognostication and/or patient surveillance in many cancer types. In ovarian cancer (OC), CTC and ctDNA analysis allow comprehensive molecular profiling of the primary, metastatic and recurrent tumors. These biomarkers also correlate with overall tumor burden and thus, they provide minimally-invasive means for patient monitoring during clinical course to ascertain therapy response and timely treatment modification in the context of disease relapse. Here, we review recent reports of the potential clinical value of CTC and ctDNA in OC, expatiating on their use in diagnosis and prognosis. We critically appraise the current evidence, and discuss the issues that still need to be addressed before liquid biopsies can be implemented in routine clinical practice for OC management.
Collapse
Affiliation(s)
- Du-Bois Asante
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Australia; School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Tarek M Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Australia; School of Medicine, University of Western Australia, Crawley, Western Australia, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Australia.
| |
Collapse
|