1
|
Elsayed OA, Cai J, Liu Y. Exfoliation syndrome genetics in the era of post-GWAS. Vision Res 2025; 226:108518. [PMID: 39549468 PMCID: PMC11624108 DOI: 10.1016/j.visres.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Exfoliation syndrome (XFS), or pseudoexfoliation syndrome, is considered a systemic disorder that leads to glaucoma with progressive visual field loss. A better insight into the underlying pathogenic mechanism will help diagnose the disease and prevent and slow progression. Here, we provide an overview of disease pathogenesis in the light of GWAS and multi-omics research. We discuss possible environmental interactions related to XFS. We investigate the potential interactions in differentially expressed genes from RNA-Seq by using Ingenuity Pathway Analysis. MAPK pathway was identified as the top network of these genes. Further investigation is needed to verify our results in vivo. It is necessary to establish an animal model mimicking exfoliation syndrome phenotypes.
Collapse
Affiliation(s)
- Ola A Elsayed
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Giuffrida E, Platania CBM, Lazzara F, Conti F, Marcantonio N, Drago F, Bucolo C. The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1333. [PMID: 39458974 PMCID: PMC11509888 DOI: 10.3390/ph17101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma management, we employed a network pharmacology approach. Methods: We first retrieved transcriptomic data from GEO, an NCBI database, and carried out GEO2R (an interactive web tool aimed at comparing two or more groups of samples in a GEO dataset). The GEO2R statistical analysis aimed at identifying the top differentially expressed genes (DEGs) and used these as input of STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) app within Cytoscape software, which builds networks of proteins starting from input DEGs. Analyses of centrality metrics using Cytoscape were carried out to identify nodes (genes or proteins) involved in network stability. We also employed the web-server software MIRNET 2.0 to build miRNA-target interaction networks for a re-analysis of the GSE105269 dataset, which reports analyses of microRNA expressions. Results: The pharmacological targets, identified in silico through analyses of the centrality metrics carried out with Cytoscape, were rescored based on correlations with entries in the PubMed and clinicaltrials.gov databases. When there was no match (82 out of 135 identified central nodes, in 8 analyzed networks), targets were considered "potential innovative" targets for the treatment of glaucoma, after further validation studies. Conclusions: Several druggable targets, such as GPCRs (e.g., 5-hydroxytryptamine 5A (5-HT5A) and adenosine A2B receptors) and enzymes (e.g., lactate dehydrogenase A or monoamine oxidase B), were found to be rescored as "potential innovative" pharmacological targets for glaucoma treatment.
Collapse
Affiliation(s)
- Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Nicoletta Marcantonio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| |
Collapse
|
3
|
Rao A. Exfoliation syndrome and exfoliation glaucoma: Current perspectives and clinical paradigms. Indian J Ophthalmol 2024; 72:938-944. [PMID: 38905459 PMCID: PMC11329824 DOI: 10.4103/ijo.ijo_2653_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 06/23/2024] Open
Abstract
Exfoliation syndrome and exfoliation glaucoma comprise a unique age-related ocular aggregopathy characterized by the accumulation of protein complex aggregates in different ocular structures. Recent literature and studies have expanded our knowledge of the clinical characteristic features, phenotypical variations, and molecular pathophysiology associated with disease onset or development of glaucoma. Despite years of studies on the various epidemiological, clinical, and molecular facets of the disease, the exact mechanism of disease onset, formation of aggregates, and the events that trigger the development of glaucoma marking irreversibility in the disease remains elusive. This review elaborates on the existing and new insights that we have gained over the years and highlights gaps in the knowledge about the disease that need future exploration.
Collapse
Affiliation(s)
- Aparna Rao
- Glaucoma Services, LV Prasad Eye Institute, MTC Campus, Patia, Bhubaneswar, India
| |
Collapse
|
4
|
Rao A. Risk factors for exfoliation glaucoma - Current evidence and perspectives. Indian J Ophthalmol 2024; 72:S562-S567. [PMID: 38767565 PMCID: PMC11338424 DOI: 10.4103/ijo.ijo_2685_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
Exfoliation syndrome (XFS) and exfoliation glaucoma (XFG) represent a complex matrix of ocular age-related neurodegenerative changes. Numerous decades of research on this disease entity have highlighted the unique clinical features of ocular protein-complex aggregates, which lead to tissue dysfunction of the ocular outflow channels, leading to irreversible optic nerve damage and glaucoma. While genetic studies have reported several genes associated with XFS and XFG, numerous studies have shown their association with common systemic diseases such as ischemic heart disease, cerebrovascular accidents, and hypertension. Environmental factors are also reported to play a role in the disease pathogenesis by epigenetic control of gene expression and partly explain the difference in the prevalence rates of the disease process. Despite the identification of possible triggers for the disease onset or for the development of glaucoma, the exact mechanisms or the role of several reported risk factors in disease pathogenesis remain a mystery. This review comprehensively evaluated the several risk factors in XFS and XFG while discussing the interactive interplay between the risk factors that determine the disease onset or phenotype in XFS and XFG.
Collapse
Affiliation(s)
- Aparna Rao
- Glaucoma Services, LV Prasad Eye Institute, KAR Campus, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Liu X, Qin Y, Wei B, Ding L. Identification of potential core genes in pseudoexfoliation using bioinformatics analysis and retrospective analysis of 84 patients with this disease. Int Ophthalmol 2024; 44:161. [PMID: 38536501 DOI: 10.1007/s10792-024-03092-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Pseudoexfoliation (XFS) is a common cause of glaucoma in nowadays. Because of XFS causing irreversible blindness secondary to glaucoma (XFG), this study aims to identify the current prevalence of XFS among Xinjiang Province of China, and identify the hub genes involved in XFS. METHODS A retrospective chart review was conducted from 2007 to 2019 for patients aged 50 and older. All patients with XFS or XFG diagnosed by slit lamp exam were identified through chart review. RESULTS Of the 84 patient charts available for review, 50% of the patients identified as male, with a mean age of 67 years. The top ten genes evaluated by connectivity degree in the PPI network were identified. The results showed that Tyrobp was the most outstanding gene, followed by Ptprc, Fcgr3, Itgb2, Emr1, Cd68, Syk, Fcerlg, Hck, and Lyz2. All of these hub genes were downregulated in XFS. CONCLUSION Our findings show a considerably biomarkers of XFS for diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaodi Liu
- Center for Ophthalmology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Yanli Qin
- Center for Ophthalmology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Bixia Wei
- Center for Ophthalmology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, People's Republic of China
| | - Ling Ding
- Center for Ophthalmology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, People's Republic of China.
| |
Collapse
|
6
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
7
|
Hanyuda A, Rosner BA, Wiggs JL, Negishi K, Pasquale LR, Kang JH. Long-term Alcohol Consumption and Risk of Exfoliation Glaucoma or Glaucoma Suspect Status among United States Health Professionals. Ophthalmology 2023; 130:187-197. [PMID: 36041586 DOI: 10.1016/j.ophtha.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To assess the association between intakes of total alcohol and individual alcoholic beverages and the incidence of exfoliation glaucoma/glaucoma suspect (XFG/XFGS) status. DESIGN Prospective cohort study. PARTICIPANTS A total of 195 408 participants in the Nurses' Health Study (1980-2018), the Health Professionals Follow-up Study (1986-2018), and the Nurses' Health Study II (1991-2019) were followed biennially. Eligible participants at each 2-year risk period were ≧ 40 years and free of XFG/XFGS status with available data on diet and ophthalmic examination findings. METHODS Cumulatively averaged total (primary exposure) and individual alcoholic beverage (beer, wine, and liquor) intakes from validated dietary information every 2-4 years. MAIN OUTCOME MEASURES Confirmed incident XFG/XFGS status using medical records. We used per-eye Cox proportional hazards models, accounting for intereye correlations, to estimate multivariate-adjusted relative risks (MVRRs) and 95% confidence intervals (CIs). RESULTS During 6 877 823 eye-years of follow-up, 705 eyes with XFG/XFGS status were documented. Greater total alcohol consumption was associated significantly with higher XFG/XFGS status risk: the MVRR for XFG/XFGS status for cumulatively averaged alcohol consumption of ≧15 g/day or more versus nondrinking was 1.55 (95% CI, 1.17-2.07; P = 0.02 for trend). Long- and short-term alcohol intake was associated significantly with XFG/XFGS status risk, with the strongest associations with cumulatively averaged alcohol intake as of 4 years before diagnosis (MVRR ≥ 15 g/day vs. nondrinking, 1.65; 95% CI, 1.25-2.18; P = 0.002 for trend). Compared with nondrinkers, consuming ≧ 3.6 drinks of beer, wine, or liquor per week was associated with the following MVRRs for XFG/XFGS status: 1.26 (95% CI, 0.89-1.77; P = 0.40 for trend), 1.30 (95% CI, 1.00-1.68; P = 0.15 for trend), and 1.46 (95% CI, 1.15-1.85; P = 0.01 for trend), respectively. We did not observe interactions by age, latitude, residential tier, or intakes of folate or vitamin A (P > 0.40 for interaction); however, the association between alcohol and XFG/XFGS status was suggestively stronger for those without a family history of glaucoma (P = 0.10 for interaction). CONCLUSIONS Long-term alcohol consumption was associated with a higher risk of XFG/XFGS status. Our findings provide further clues regarding the XFG/XFGS etiology.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Bernard A Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jae H Kang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Callaghan B, Vallabh NA, Willoughby CE. Deuterated polyunsaturated fatty acids provided protection against oxidative stress in ocular fibroblasts derived from glaucoma patients. Mech Ageing Dev 2023; 211:111778. [PMID: 36716826 DOI: 10.1016/j.mad.2023.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Glaucoma is a complex neurodegenerative disease of the optic nerve that leads to irreversible sight loss. Lowering intraocular pressure (IOP) medically or surgically represents the mainstay of treatment but despite adequate treatment optic nerve function can continue to deteriorate leading to blindness. There is significant clinical and experimental evidence that oxidative stress is involved in the pathogenesis of glaucoma. Decreasing the formation of lipid peroxidation products or scavenging them chemically could be beneficial in limiting the deleterious effects of oxidative stress in glaucoma. A solution to control the susceptibility of PUFAs to noxious lipid peroxidation reactions is by regioselective deuteration. Deuterium incorporated into PUFAs at bis-allylic positions (D-PUFAs) inhibits the rate-limiting step of lipid peroxidation. In this study, we have shown that Tenon's ocular fibroblasts from glaucoma patients have significantly increased basal oxidative stress compared to non-glaucomatous control patients. Furthermore, we have shown that deuterated polyunsaturated fatty acids (D-PUFAs) provide an enhanced rescue of menadione induced lipid peroxidation in both non-glaucomatous and glaucomatous Tenon's ocular fibroblasts using malondialdehyde (MDA) levels as a marker. Our study suggests that D-PUFAs may provide a potentially safe and effective method to reduce cytotoxic oxidative stress in glaucoma.
Collapse
Affiliation(s)
- Breedge Callaghan
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Neeru A Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Colin E Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, United Kingdom; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| |
Collapse
|
9
|
Exfoliation Syndrome and Exfoliation Glaucoma in the Navajo Nation. VISION (BASEL, SWITZERLAND) 2022; 6:vision6040061. [PMID: 36278673 PMCID: PMC9590032 DOI: 10.3390/vision6040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
(1) Background: Exfoliation syndrome (XFS) is a common cause of secondary open angle glaucoma. In 1971, Faulkner et al. estimated the prevalence of XFS among 50 Navajo Nation residents as 38%. Given that XFS can cause irreversible blindness secondary to glaucoma (XFG), this study aims to identify the current prevalence of XFS among Navajo Nation residents within the Four Corners region of the U.S. (2) Methods: A retrospective chart review was conducted from 2016 to 2021 for patients aged 18 and older. All patients with XFS or XFG diagnosed by slit lamp exam were identified through chart review. (3) Results: Of the 1152 patient charts available for review, eight patients (11 eyes) were diagnosed with XFS with three patients (4 eyes) demonstrating concomitant XFG. Within this XFS population, 50% of the patients identified as male, with a mean age of 73 years. The overall prevalence of XFS was 0.7% and the overall prevalence of XFG was found to be 0.26%. The rate of XFG among patients with XFS was 37.5%. (4) Conclusion: Compared to Faulkner's study of Navajo Nation residents in 1971, our findings show a considerably lower prevalence of XFS at 0.7%. We present the largest study to date of XFS among this population.
Collapse
|
10
|
Eliseeva NV, Ponomarenko IV, Churnosov MI. Analysis of Associations of Polymorphic Loci of the LOXL1 Gene with the Development of Primary Open-Angle Glaucoma in Women of the Central Chernozem Region of Russia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mullany S, Marshall H, Zhou T, Thomson D, Schmidt JM, Qassim A, Knight LSW, Hollitt G, Berry EC, Nguyen T, To MS, Dimasi D, Kuot A, Dubowsky J, Fogarty R, Sun M, Chehade L, Kuruvilla S, Supramaniam D, Breen J, Sharma S, Landers J, Lake S, Mills RA, Hassall MM, Chan WO, Klebe S, Souzeau E, Siggs OM, Craig JE. RNA Sequencing of Lens Capsular Epithelium Implicates Novel Pathways in Pseudoexfoliation Syndrome. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35348588 PMCID: PMC8982629 DOI: 10.1167/iovs.63.3.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Pseudoexfoliation syndrome (PEX) is a common systemic disease that results in severe and often irreversible vision loss. Despite considerable research effort, PEX remains incompletely understood. This study sought to perform the first RNAseq study in elucidate the pathophysiology of PEX, and contribute a publicly available transcriptomic data resource for future research. Methods Human ocular lens capsular epithelium samples were collected from 25 patients with PEX and 39 non-PEX controls undergoing cataract surgery. RNA extracted from these specimens was subjected to polyadenylated (mRNA) selection and deep bulk RNA sequencing. Differential expression analysis investigated protein-coding gene transcripts. Exploratory analyses used pathway analysis tools, and curated class- and disease-specific gene sets. Results Differential expression analysis demonstrated that 2882 genes were differentially expressed according to PEX status. Genes associated with viral gene expression pathways were among the most upregulated, alongside genes encoding ribosomal and mitochondrial respiratory transport chain proteins. Cell adhesion protein transcripts including type 4 collagen subunits were downregulated. Conclusions This comparative transcriptomic dataset highlights novel and previously recognized pathogenic pathways in PEX and provides the first comprehensive transcriptomic resource, adding an additional layer to build further understanding of PEX pathophysiology.
Collapse
Affiliation(s)
- Sean Mullany
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Henry Marshall
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Tiger Zhou
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Daniel Thomson
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Joshua M Schmidt
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Ayub Qassim
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Lachlan S W Knight
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Georgina Hollitt
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Ella C Berry
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Thi Nguyen
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Minh-Son To
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - David Dimasi
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Abraham Kuot
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Joshua Dubowsky
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Rhys Fogarty
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Michelle Sun
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Luke Chehade
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Shilpa Kuruvilla
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Devaraj Supramaniam
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - James Breen
- SAHMRI Bioinformatics Core, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Shiwani Sharma
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - John Landers
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Stewart Lake
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Richard A Mills
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Mark M Hassall
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Weng O Chan
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Sonja Klebe
- Flinders Department of Pathology, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Emmanuelle Souzeau
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| | - Owen M Siggs
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia.,Garvan Institute of Medical Research Institute, Darlinghurst, Sydney, Australia
| | - Jamie E Craig
- Flinders Centre for Ophthalmology, Eye and Vision Research, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, Australia
| |
Collapse
|
12
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Greene KM, Stamer WD, Liu Y. The role of microRNAs in glaucoma. Exp Eye Res 2022; 215:108909. [PMID: 34968473 PMCID: PMC8923961 DOI: 10.1016/j.exer.2021.108909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
In this review, we aim to provide a comprehensive summary of the various microRNAs (miRNAs) shown to be involved in glaucoma and intraocular pressure regulation. miRNAs are short, single-stranded, and noncoding RNAs that regulate gene expression in a number of physiological conditions and human diseases, including glaucoma. Numerous miRNAs display differential expression in glaucoma-affected tissues, such as aqueous humor, tears, trabecular meshwork, and retina analyzed from patients and animal models, suggesting their potential involvement in glaucoma pathogenesis. Several studies summarized here have also investigated the challenge of delivering intact miRNAs to target tissues in order to develop miRNA-based glaucoma therapies. We extend these reports by conducting an additional layer of analysis that integrates the interaction between glaucoma-related miRNAs and glaucoma-associated genes. We conclude with a comprehensive discussion of the therapeutic potential of miRNAs, the cellular pathways that link these miRNAs together, and the most promising miRNAs for future glaucoma research.
Collapse
Affiliation(s)
- Karah M. Greene
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA 30912, United States
| | - W. Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, 2351 Erwin Rd, Durham, NC 27710, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA 30912, United States.,Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, United States,James and Jean Culver Vision Discovery Institute, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA 30912, United States
| |
Collapse
|
14
|
Hicks PM, Siedlecki A, Haaland B, Owen LA, Au E, Feehan M, Murtaugh MA, Sieminski S, Reynolds A, Lillvis J, DeAngelis MM. A global genetic epidemiological review of pseudoexfoliation syndrome. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pseudoexfoliation (PXF) syndrome is an important public health concern requiring individual population level analysis. Disease prevalence differs by geographic location and ethnicity, and has environmental, demographic, genetic, and molecular risk factors have been demonstrated. Epidemiological factors that have been associated with PXF include age, sex, environmental factors, and diet. Genetic and molecular components have also been identified that are associated with PXF. Underserved populations are often understudied within scientific research, including research about eye disease such as PXF, contributing to the persistence of health disparities within these populations. In each population, PXF needs may be different, and by having research that identifies individual population needs about PXF, the resources in that population can be more efficiently utilized. Otherwise, PXF intervention and care management based only on the broadest level of understanding may continue to exacerbate health disparities in populations disproportionally burdened by PXF.
Collapse
Affiliation(s)
- Patrice M. Hicks
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Adam Siedlecki
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Benjamin Haaland
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Leah A. Owen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Elizabeth Au
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Michael Feehan
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA;Cerner Enviza, Kansas City, MO 64117, USA
| | - Maureen A. Murtaugh
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sandra Sieminski
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - Andrew Reynolds
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA
| | - John Lillvis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA;VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Margaret M. DeAngelis
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, SUNY-University at Buffalo, Buffalo, NY 14209, USA;VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
15
|
Eliseeva NV, Ponomarenko IV, Churnosov MI. [Study of the functional significance of polymorphic loci of the LOXL1 gene associated with glaucoma according to genome-wide studies (in silico analysis)]. Vestn Oftalmol 2021; 137:22-30. [PMID: 34726854 DOI: 10.17116/oftalma202113705122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glaucoma is one of the most common eye diseases leading to blindness, and whole-genome studies have shown that genetic factors are important in its formation. Purpose - to perform an in silico analysis of the functional significance of polymorphic loci of the LOXL1 gene associated with glaucoma, using data from wholegenome studies. MATERIAL AND METHODS Using the catalog of genome-wide studies (GWAS) of the National Human Genome Research Institute (https://www.genome.gov/gwastudies/), three polymorphic loci of the LOXL1 gene (rs2165241, rs4886776, rs893818) associated with glaucoma (pseudoexfoliation glaucoma/syndrome) were chosen for the study. Using modern databases on functional genomics (SIFT, PolyPhen-2, HaploReg, GTExportal), the functional significance of these polymorphic loci was assessed (nonsynonymous substitutions, epigenetic effects, association with gene expression, associations with alternative splicing of gene transcripts). RESULTS The work establishes the important functional significance of the rs2165241, rs4886776 and rs893818 polymorphic loci of the LOXL1 gene. They demonstrate significant epigenetic effects (affect the affinity to five transcription factors, are located in the region of promoters and enhancers, in the region of hypersensitivity to DNase-1), are associated with the expression and alternative splicing of three genes (LOXL1, LOXL1-AS1, RP11-24D15.1) in cell cultures, organs and tissues pathogenetically significant for development of glaucoma, are strongly linked to the rs1048661 polymorphism, which causes the replacement of the Arg141Leu amino acid in the LOXL1 polypeptide. CONCLUSION Polymorphic loci of the LOXL1 gene (rs2165241, rs4886776, and rs893818) are of great functional importance (epigenetic, eQTL, and sQTL), which may be the biomedical basis of their associations with glaucoma.
Collapse
Affiliation(s)
- N V Eliseeva
- Belgorod State National Research University, Belgorod, Russia
| | - I V Ponomarenko
- Belgorod State National Research University, Belgorod, Russia
| | - M I Churnosov
- Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|
16
|
Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. The haplotype of the CDKN2B-AS1 gene is associated with primary open-angle glaucoma and pseudoexfoliation glaucoma in the Caucasian population of Central Russia. Ophthalmic Genet 2021; 42:698-705. [PMID: 34387529 DOI: 10.1080/13816810.2021.1955275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To replicate the finding of the association of five CDKN2B-AS1 gene polymorphisms (rs7865618, rs1063192, rs944800, rs2157719, and rs4977756) with primary open-angle glaucoma (POAG) and to analyze them for possible association with pseudoexfoliation glaucoma (PXFG) in a Caucasian population of Central Russia. METHODS A total of 932 participants of Russian ethnicity (self-reported), including 328 patients with PXFG, 208 patients with POAG (high-tension glaucoma), and 396 controls, were enrolled in the study. The SNPs were analyzed for possible associations using logistic regression. RESULTS Several haplotypes based on the studied SNPs were associated with POAG (three haplotypes) and PXFG (six haplotypes). Haplotype AAAGG of loci rs1063192-rs7865618-rs2157719-rs944800-rs4977756 conferred the highest risk for both POAG (OR = 3.99, рperm = 0.001) and PXFG (OR = 2.84, рperm = 0.001). CONCLUSIONS The CDKN2B-AS1 gene was associated with an increased risk of both POAG and PXFG in Caucasians of Central Russia. The gene may be related to the development of various types of glaucoma.
Collapse
Affiliation(s)
- Natalya Eliseeva
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| |
Collapse
|
17
|
Myer C, Abdelrahman L, Banerjee S, Khattri RB, Merritt ME, Junk AK, Lee RK, Bhattacharya SK. Aqueous humor metabolite profile of pseudoexfoliation glaucoma is distinctive. Mol Omics 2021; 16:425-435. [PMID: 32149291 DOI: 10.1039/c9mo00192a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pseudoexfoliation (PEX) is a known cause of secondary open angle glaucoma. PEX glaucoma is associated with structural and metabolic changes in the eye. Despite similarities, PEX and primary open angle glaucoma (POAG) may have differences in the composition of metabolites. We analyzed the metabolites of the aqueous humor (AH) of PEX subjects sequentially first using nuclear magnetic resonance (1H NMR: HSQC and TOCSY), and subsequently with liquid chromatography tandem mass spectrometry (LC-MS/MS) implementing isotopic ratio outlier analysis (IROA) quantification. The findings were compared with previous results for POAG and control subjects analyzed using identical sequential steps. We found significant differences in metabolites between the three conditions. Principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) indicated clear grouping based on the metabolomes of the three conditions. We used machine learning algorithms and a percentage set of the data to train, and utilized a different or larger dataset to test whether a trained model can correctly classify the test dataset as PEX, POAG or control. Three different algorithms: linear support vector machines (SVM), deep learning, and a neural network were used for prediction. They all accurately classified the test datasets based on the AH metabolome of the sample. We next compared the AH metabolome with known AH and TM proteomes and genomes in order to understand metabolic pathways that may contribute to alterations in the AH metabolome in PEX. We found potential protein/gene pathways associated with observed significant metabolite changes in PEX.
Collapse
Affiliation(s)
- Ciara Myer
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| | - Leila Abdelrahman
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| | - Santanu Banerjee
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA and Department of Surgery, University of Miami, Miami, Florida, USA
| | | | | | - Anna K Junk
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA and Miami Veterans Affairs Healthcare System, Miami, Florida, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. and Miami Integrative Metabolomics Research Center, University of Miami, Miami, Florida, USA
| |
Collapse
|
18
|
Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. LOXL1 gene polymorphism candidates for exfoliation glaucoma are also associated with a risk for primary open-angle glaucoma in a Caucasian population from central Russia. Mol Vis 2021; 27:262-269. [PMID: 34012228 PMCID: PMC8116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 05/06/2021] [Indexed: 10/29/2022] Open
Abstract
Purpose This study was aimed to replicate the previously reported associations of the three LOXL1 gene polymorphisms with exfoliation glaucoma (XFG) and to analyze these genetic variants for their possible contribution to primary open-angle glaucoma (POAG) in Caucasians from central Russia. Methods In total, 932 participants were recruited for the study, including 328 patients with XFG, 208 patients with POAG, and 396 controls. The participants were of Russian ethnicity (self-reported) and born in Central Russia. They were genotyped at three single nucleotide polymorphisms (SNPs) of the LOXL1 gene (rs2165241, rs4886776, and rs893818). The association was analyzed using logistic regression. Results Allele C of rs2165241 was associated with a decreased risk of XFG (odds ratio [OR] =0.27-0.45, pperm ≤5*10-6) and POAG (OR=0.35-0.47, рperm≤0.001), and allele A of rs4886776 and rs893818 were associated with a lower risk of XFG (OR=0.53-0.57, рperm≤0.001). Haplotype TGG of loci rs2165241-rs4886776-rs893818 was associated with an elevated risk of XFG (OR=2.23, рperm=0.001) and POAG (OR=2.01, рperm=0.001), haplotype CGG was also associated with a decreased risk of XFG (OR=0.45, рperm=0.001) and POAG (OR=0.35, рperm=0.001). Haplotype CAA was associated with a decreased risk of XFG only (OR=0.50, рperm=0.001). Conclusions Polymorphisms rs2165241, rs4886776, and rs893818 of the LOXL1 gene showed association with XFG and POAG in a Caucasian sample from central Russia.
Collapse
Affiliation(s)
- Natalya Eliseeva
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
| |
Collapse
|
19
|
Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33724294 PMCID: PMC7980050 DOI: 10.1167/iovs.62.3.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Cheryl L. Wang
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | - Benjamin T. Aldrich
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The genetic basis of pseudoexfoliation (PEX) syndrome, the most common identifiable cause of open-angle glaucoma, is steadily being elucidated. This review summarizes the recent advances on genetic risk factors for PEX syndrome/glaucoma and their potential functional implications in PEX pathophysiology. RECENT FINDINGS As of today, seven loci associated with the risk of PEX surpassing genome-wide significance have been identified by well-powered genome-wide association studies and sequencing efforts. LOXL1 (lysyl oxidase-like 1) represents the major genetic effect locus, although the biological role of common risk variants and their reversed effect in different ethnicities remain an unresolved problem. Rare protein-coding variants at LOXL1 and a single noncoding variant downstream of LOXL1 showed no allele effect reversal and suggested potential roles for elastin homeostasis and vitamin A metabolism in PEX pathogenesis. Other PEX-associated genetic variants provided biological insights into additional disease processes and pathways, including ubiquitin-proteasome function, calcium signaling, and lipid biosynthesis. Gene-environment interactions, epigenetic alterations, and integration of multiomics data have further contributed to our knowledge of the complex etiology underlying PEX syndrome and glaucoma. SUMMARY PEX-associated genes are beginning to reveal relevant biological pathways and processes involved in disease development. To understand the functional consequences and molecular mechanisms of these loci and to translate them into novel therapeutic approaches are the major challenges for the future.
Collapse
|
21
|
Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes (Basel) 2020; 12:genes12010055. [PMID: 33396423 PMCID: PMC7823611 DOI: 10.3390/genes12010055] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Glaucoma, the world’s leading cause of irreversible blindness, is a complex disease, with differential presentation as well as ethnic and geographic disparities. The multifactorial nature of glaucoma complicates the study of genetics and genetic involvement in the disease process. This review synthesizes the current literature on glaucoma and genetics, as stratified by glaucoma subtype and ethnicity. Primary open-angle glaucoma (POAG) is the most common cause of glaucoma worldwide, with the only treatable risk factor (RF) being the reduction of intraocular pressure (IOP). Genes associated with elevated IOP or POAG risk include: ABCA1, AFAP1, ARHGEF12, ATXN2, CAV1, CDKN2B-AS1, FOXC1, GAS7, GMDS, SIX1/SIX6, TMCO1, and TXNRD2. However, there are variations in RF and genetic factors based on ethnic and geographic differences; it is clear that unified molecular pathways accounting for POAG pathogenesis remain uncertain, although inflammation and senescence likely play an important role. There are similar ethnic and geographic complexities in primary angle closure glaucoma (PACG), but several genes have been associated with this disorder, including MMP9, HGF, HSP70, MFRP, and eNOS. In exfoliation glaucoma (XFG), genes implicated include LOXL1, CACNA1A, POMP, TMEM136, AGPAT1, RBMS3, and SEMA6A. Despite tremendous progress, major gaps remain in resolving the genetic architecture for the various glaucoma subtypes across ancestries. Large scale carefully designed studies are required to advance understanding of genetic loci as RF in glaucoma pathophysiology and to improve diagnosis and treatment options.
Collapse
|
22
|
Ghaffari Sharaf M, Damji KF, Unsworth LD. Recent advances in risk factors associated with ocular exfoliation syndrome. Acta Ophthalmol 2020; 98:113-120. [PMID: 31736276 DOI: 10.1111/aos.14298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Exfoliation syndrome is generally considered a progressive age-related systemic disorder of the extracellular matrix, which is clinically characterized through the observation of flaky white aggregates on ocular tissues. Exfoliation syndrome is directly linked to exfoliative glaucoma in elderly patients, where it is known as the most common identifiable cause of open-angle glaucoma. Despite the identification of various risk factors associated with exfoliation syndrome, the exact pathogenesis of this syndrome has not been fully elucidated. There is a growing number of genome-wide association studies in different populations around the world to identify genetic factors underlying exfoliation syndrome. Besides variants in LOXL1 and CACNA1A genes, new loci have been recently identified which are believed to be associated with exfoliation syndrome. Among different genetic factors, functional variants might help to better understand mechanisms underlying this systemic disorder. Besides genetic factors, epigenetic regulation of different gene expression patterns has been thought to play a role in its pathogenesis. Other factors have been also considered to be involved in the development of exfoliation syndrome at cellular organelles level where mitochondrial impairment and autophagy dysfunction have been suggested in relation to exfoliation syndrome. This review addresses the most recent findings on genetic factors as well as cellular and molecular mechanisms involved in both the development and progression of exfoliation syndrome.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Karim F. Damji
- Department of Ophthalmology and Visual Sciences University of Alberta Edmonton Alberta Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
23
|
Besch BM, Curtin K, Ritch R, Allingham RR, Wirostko BM. Association of Exfoliation Syndrome With Risk of Indirect Inguinal Hernia: The Utah Project on Exfoliation Syndrome. JAMA Ophthalmol 2019; 136:1368-1374. [PMID: 30242396 DOI: 10.1001/jamaophthalmol.2018.4157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Importance Exfoliation syndrome (XFS) is a systemic connective tissue disease, and abnormal connective tissue metabolism is implicated in inguinal hernias (IH). Associating XFS with comorbid conditions may illuminate their underlying pathophysiology and affect clinical screening and treatment. Exfoliation syndrome involves altered systemic extracellular matrix (ECM) homeostasis involving elastin metabolism. Hernias occur owing to abnormal ECM synthesis, metabolism, or repair. Inguinal hernias involve weakening or rupture of the abdominal/groin wall. Objective To determine an association between patients with XFS and patients with IH in Utah, possibly differing between direct or indirect hernia. Design, Setting, and Participants Cross-sectional study in a large health care system of Utah hospitals and clinics. Conditional logistic regression odds ratios were used to estimate risk of XFS in patients with IH overall and by subtype (direct or indirect) compared with control individuals. Codes specific to direct and indirect IH with additional medical records review of 186 procedures were used to classify IH subtypes that were not prespecified. Bootstrap resampling with jackknife estimation used to calculate 95% confidence intervals. The model accounted for matching on sex and age and adjusted for body mass index and tobacco use. Population-based sample using medical records from 1996 to 2015 that identified 2594 patients 40 years or older on January 1, 1996, with surgical IH repair and 12 966 random control patients with no IH history matched 5:1 on sex and birth year. Data were analyzed between September 10, 2017, and October 23, 2017. Main Outcomes and Measures Exfoliation syndrome outcome defined by diagnosis codes for XFS or exfoliation glaucoma from 1996 to 2015. Results Participants were primarily white (2532 of 2594 patients, [96.1%]; 12 454 of 12 966 control individuals [97.6%]) and non-Hispanic (2396 of 2594 patients [92.4%]); 250 participants were women (9.6%). Of study participants, 22 patients with IH and 43 control individuals were diagnosed as having XFS, respectively. Patients with IH had a 2.3-fold risk for an XFS diagnosis compared with control individuals (95% CI, 1.4-3.5; P = .03), and XFS risk with indirect IH appeared especially pronounced. Conclusions and Relevance Inguinal hernia was associated with an increased risk of XFS in this Utah population. Further work is needed to understand the pathophysiology, genetics, and environmental factors contributing to both diseases.
Collapse
Affiliation(s)
- Brian M Besch
- John Moran Eye Center, Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City
| | - Karen Curtin
- John Moran Eye Center, Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - R Rand Allingham
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Barbara M Wirostko
- John Moran Eye Center, Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City
| |
Collapse
|
24
|
Schlötzer-Schrehardt U, Zenkel M. The role of lysyl oxidase-like 1 (LOXL1) in exfoliation syndrome and glaucoma. Exp Eye Res 2019; 189:107818. [PMID: 31563608 DOI: 10.1016/j.exer.2019.107818] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022]
Abstract
Exfoliation syndrome (XFS) is an age-related systemic disease that affects the extracellular matrix. It increases the risk of glaucoma (exfoliation glaucoma, XFG) and susceptibility to diseases of elastin-rich connective tissues. LOXL1 (lysyl oxidase-like 1) is still recognized as the major genetic effect locus in XFS and XFG in all populations worldwide, although its genetic architecture is incompletely understood. LOXL1 is a key cross-linking enzyme in elastic fiber formation and remodeling, which is compatible with the pathogenetic concept of XFS as a specific type of elastosis. This review provides an overview on the current knowledge about the role of LOXL1 in the etiology and pathophysiology of XFS and XFG. It covers the known genetic associations at the LOXL1 locus, potential mechanisms of gene regulation, implications of LOXL1 in XFS-associated fibrosis and connective tissue homeostasis, its role in the development of glaucoma and associated systemic diseases, and the currently available LOXL1-based in vivo and in vitro models. Finally, it also identifies gaps in knowledge and suggests potential areas for future research.
Collapse
Affiliation(s)
| | - Matthias Zenkel
- Department of Ophthalmology, University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
25
|
Nazarali S, Damji F, Damji KF. What have we learned about exfoliation syndrome since its discovery by John Lindberg 100 years ago? Br J Ophthalmol 2018; 102:1342-1350. [PMID: 29567789 DOI: 10.1136/bjophthalmol-2017-311321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/06/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Exfoliation syndrome (XFS) is a systemic disease with significant ocular manifestations, including glaucoma and cataract. The disease impacts close to 70 million people globally and is now recognised as the most common identifiable cause of open-angle glaucoma. Since the discovery of XFS 100 years ago by Dr John G. Lindberg, there has been considerable advancement in understanding its pathogenesis and resulting clinical implications. The purpose of this paper is to summarise information regarding the epidemiology, pathophysiology, ocular manifestations and systemic associations of XFS with the objective of sharing clinical pearls to assist in early detection and enhanced management of patients.
Collapse
Affiliation(s)
- Samir Nazarali
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Faraz Damji
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karim F Damji
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
|
27
|
Zagajewska K, Piątkowska M, Goryca K, Bałabas A, Kluska A, Paziewska A, Pośpiech E, Grabska-Liberek I, Hennig EE. GWAS links variants in neuronal development and actin remodeling related loci with pseudoexfoliation syndrome without glaucoma. Exp Eye Res 2018; 168:138-148. [DOI: 10.1016/j.exer.2017.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023]
|
28
|
Aboobakar IF, Johnson WM, Stamer WD, Hauser MA, Allingham RR. Major review: Exfoliation syndrome; advances in disease genetics, molecular biology, and epidemiology. Exp Eye Res 2016; 154:88-103. [PMID: 27845061 DOI: 10.1016/j.exer.2016.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/06/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Exfoliation syndrome (XFS) is a common age-related disorder that leads to deposition of extracellular fibrillar material throughout the body. The most recognized disease manifestation is exfoliation glaucoma (XFG), which is a common cause of blindness worldwide. Recent developments in XFS genetics, cell biology and epidemiology have greatly improved our understanding of the etiology of this complex inherited disease. This review summarizes current knowledge of XFS pathogenesis, identifies gaps in knowledge, and discusses areas for future research.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
29
|
Hauser MA, Aboobakar IF, Liu Y, Miura S, Whigham BT, Challa P, Wheeler J, Williams A, Santiago-Turla C, Qin X, Rautenbach RM, Ziskind A, Ramsay M, Uebe S, Song L, Safi A, Vithana EN, Mizoguchi T, Nakano S, Kubota T, Hayashi K, Manabe SI, Kazama S, Mori Y, Miyata K, Yoshimura N, Reis A, Crawford GE, Pasutto F, Carmichael TR, Williams SEI, Ozaki M, Aung T, Khor CC, Stamer WD, Ashley-Koch AE, Allingham RR. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet 2015; 24:6552-63. [PMID: 26307087 PMCID: PMC4614704 DOI: 10.1093/hmg/ddv347] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 12/31/2022] Open
Abstract
Exfoliation syndrome (XFS) is a common, age-related, systemic fibrillinopathy. It greatly increases risk of exfoliation glaucoma (XFG), a major worldwide cause of irreversible blindness. Coding variants in the lysyl oxidase-like 1 (LOXL1) gene are strongly associated with XFS in all studied populations, but a functional role for these variants has not been established. To identify additional candidate functional variants, we sequenced the entire LOXL1 genomic locus (∼40 kb) in 50 indigenous, black South African XFS cases and 50 matched controls. The variants with the strongest evidence of association were located in a well-defined 7-kb region bounded by the 3'-end of exon 1 and the adjacent region of intron 1 of LOXL1. We replicated this finding in US Caucasian (91 cases/1031 controls), German (771 cases/1365 controls) and Japanese (1484 cases/1188 controls) populations. The region of peak association lies upstream of LOXL1-AS1, a long non-coding RNA (lncRNA) encoded on the opposite strand of LOXL1. We show that this region contains a promoter and, importantly, that the strongly associated XFS risk alleles in the South African population are functional variants that significantly modulate the activity of this promoter. LOXL1-AS1 expression is also significantly altered in response to oxidative stress in human lens epithelial cells and in response to cyclic mechanical stress in human Schlemm's canal endothelial cells. Taken together, these findings support a functional role for the LOXL1-AS1 lncRNA in cellular stress response and suggest that dysregulation of its expression by genetic risk variants plays a key role in XFS pathogenesis.
Collapse
Affiliation(s)
- Michael A Hauser
- Department of Medicine, Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore, Duke, National University of Singapore, Singapore, Singapore,
| | - Inas F Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | | | | | - Pratap Challa
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew Williams
- Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | | | | | - Robyn M Rautenbach
- Division of Ophthalmology, Department of Surgical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ari Ziskind
- Division of Ophthalmology, Department of Surgical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, NHLS and School of Pathology and Sydney Brenner Institute for Molecular Bioscience, University of Witwatersrand, Johannesburg, South Africa
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lingyun Song
- Center for Genomic and Computational Biology and Department of Pediatrics, Duke University, Durham, NC, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology and Department of Pediatrics, Duke University, Durham, NC, USA
| | - Eranga N Vithana
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Takanori Mizoguchi
- Mizoguchi Eye Hospital, 6-13 Tawara-machi, Sasebo, Nagasaki 857-0016, Japan
| | - Satoko Nakano
- Department of Ophthalmology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshiaki Kubota
- Department of Ophthalmology, Oita University Faculty of Medicine, Oita, Japan
| | - Ken Hayashi
- Hayashi Eye Hospital, 23-35, Hakataekimae-4, Hakata-ku, Fukuoka, Japan
| | - Shin-ichi Manabe
- Hayashi Eye Hospital, 23-35, Hakataekimae-4, Hakata-ku, Fukuoka, Japan
| | - Shigeyasu Kazama
- Shinjo Eye Clinic, 889-1, Mego, Simokitakatamachi, Miyazaki-shi, Miyazaki 880-0035, Japan
| | - Yosai Mori
- Miyata Eye Hospital, 6-3, Kurahara, Miyakonojo, Miyazaki 885-0051, Japan
| | - Kazunori Miyata
- Miyata Eye Hospital, 6-3, Kurahara, Miyakonojo, Miyazaki 885-0051, Japan, University of Miyazaki, Miyazaki, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gregory E Crawford
- Center for Genomic and Computational Biology and Department of Pediatrics, Duke University, Durham, NC, USA
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Trevor R Carmichael
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa and
| | - Susan E I Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa and
| | - Mineo Ozaki
- Ozaki Eye Hospital, 1-15, Kamezaki, Hyuga, Miyazaki 883-0066, Japan
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore, Duke, National University of Singapore, Singapore, Singapore
| |
Collapse
|