1
|
Wu H, Zhang XH, Wang LP, Tian HD, Liu GR, Yang DH, Liu SL. Successful Outcome of a Patient with Concomitant Pancreatic and Renal Carcinoma Receiving Secoisolariciresinol Diglucoside Therapy Alone: A Case Report. Int Med Case Rep J 2024; 17:167-175. [PMID: 38504721 PMCID: PMC10949998 DOI: 10.2147/imcrj.s446184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Pancreatic cancer (PC) is among the deadliest malignancies. Kidney cancer (KC) is a common malignancy globally. Chemo- or radio-therapies are not very effective to control PC or KC, and overdoses often cause severe site reactions to the patients. As a result, novel treatment strategies with high efficacy but without toxic side effects are urgently desired. Secoisolariciresinol diglucoside (SDG) belongs to plant lignans with potential anticancer activities, but clinical evidence is not available in PC or KC treatment. Patient Concerns We report a rare case of an 83-year-old female patient with pancreatic and kidney occupying lesions that lacked the conditions to receive surgery or chemo- or radiotherapy. Diagnosis Pancreatic and kidney cancers. Interventions We gave dietary SDG to the patient as the only therapeutics. Outcomes SDG effectively halted progression of both PC and KC. All clinical manifestations, including bad insomnia, loss of appetite, stomach symptoms, and skin itching over the whole body, all disappeared. The initial massive macroscopic hematuria became microscopic and infrequent, and other laboratory results also gradually returned to normal. Most of the cancer biomarkers, initially high such as CEA, CA199, CA724, CA125, came down rapidly, among which CA199 changed most radically. This patient has had progression-free survival of one year so far. Conclusion These results demonstrate the potent inhibitory effects of SDG on PC and KC of this patient and provide promising novel therapeutics for refractory malignant tumors.
Collapse
Affiliation(s)
- Hao Wu
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, People’s Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People’s Republic of China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People’s Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, People’s Republic of China
| | - Xing-Hua Zhang
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, People’s Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People’s Republic of China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People’s Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, People’s Republic of China
| | - Li-Ping Wang
- KangYuan Hospital, Harbin, People’s Republic of China
- Xun-Qi Medicine Clinic, Harbin, People’s Republic of China
| | - Hong-Da Tian
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, People’s Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People’s Republic of China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People’s Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, People’s Republic of China
| | - Gui-Rong Liu
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, People’s Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People’s Republic of China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People’s Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, People’s Republic of China
| | - Dong-Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, Harbin Medical University, Harbin, People’s Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People’s Republic of China
- Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, People’s Republic of China
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, People’s Republic of China
- KangYuan Hospital, Harbin, People’s Republic of China
- Xun-Qi Medicine Clinic, Harbin, People’s Republic of China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Mueed A, Deng Z, Korma SA, Shibli S, Jahangir M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: current challenges and future perspectives. Food Funct 2023; 14:2286-2303. [PMID: 36820797 DOI: 10.1039/d2fo02208g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.
Collapse
Affiliation(s)
- Abdul Mueed
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zeyuan Deng
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Yu H, Li XX, Han X, Chen BX, Zhang XH, Gao S, Xu DQ, Wang Y, Gao ZK, Yu L, Zhu SL, Yao LC, Liu GR, Liu SL, Mu XQ. Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol 2023; 14:1126808. [PMID: 37143538 PMCID: PMC10151806 DOI: 10.3389/fmicb.2023.1126808] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Many lines of evidence demonstrate the associations of colorectal cancer (CRC) with intestinal microbial dysbiosis. Recent reports have suggested that maintaining the homeostasis of microbiota and host might be beneficial to CRC patients, but the underlying mechanisms remain unclear. In this study, we established a CRC mouse model of microbial dysbiosis and evaluated the effects of fecal microbiota transplantation (FMT) on CRC progression. Azomethane and dextran sodium sulfate were used to induce CRC and microbial dysbiosis in mice. Intestinal microbes from healthy mice were transferred to CRC mice by enema. The vastly disordered gut microbiota of CRC mice was largely reversed by FMT. Intestinal microbiota from normal mice effectively suppressed cancer progression as assessed by measuring the diameter and number of cancerous foci and significantly prolonged survival of the CRC mice. In the intestine of mice that had received FMT, there were massive infiltration of immune cells, including CD8+ T and CD49b+ NK, which is able to directly kill cancer cells. Moreover, the accumulation of immunosuppressive cells, Foxp3+ Treg cells, seen in the CRC mice was much reduced after FMT. Additionally, FMT regulated the expressions of inflammatory cytokines in CRC mice, including down-regulation of IL1a, IL6, IL12a, IL12b, IL17a, and elevation of IL10. These cytokines were positively correlated with Azospirillum_sp._47_25, Clostridium_sensu_stricto_1, the E. coli complex, Akkermansia, Turicibacter, and negatively correlated with Muribaculum, Anaeroplasma, Candidatus_Arthromitus, and Candidatus Saccharimonas. Furthermore, the repressed expressions of TGFb, STAT3 and elevated expressions of TNFa, IFNg, CXCR4 together promoted the anti-cancer efficacy. Their expressions were positively correlated with Odoribacter, Lachnospiraceae-UCG-006, Desulfovibrio, and negatively correlated with Alloprevotella, Ruminococcaceae UCG-014, Ruminiclostridium, Prevotellaceae UCG-001 and Oscillibacter. Our studies indicate that FMT inhibits the development of CRC by reversing gut microbial disorder, ameliorating excessive intestinal inflammation and cooperating with anti-cancer immune responses.
Collapse
Affiliation(s)
- Hao Yu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Xing-Xiu Li
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
| | - Xing Han
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Bin-Xin Chen
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
| | - Xing-Hua Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Shan Gao
- Pathology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan-Qi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Yao Wang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Zhan-Kui Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Lei Yu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Song-Ling Zhu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Chen Yao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
| | - Gui-Rong Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
- *Correspondence: Xiao-Qin Mu, ; Shu-Lin Liu, ; Gui-Rong Liu,
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Xiao-Qin Mu, ; Shu-Lin Liu, ; Gui-Rong Liu,
| | - Xiao-Qin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical, University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, Heilongjiang, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
- *Correspondence: Xiao-Qin Mu, ; Shu-Lin Liu, ; Gui-Rong Liu,
| |
Collapse
|
4
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|