1
|
Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon 2024; 10:e24662. [PMID: 38317888 PMCID: PMC10839794 DOI: 10.1016/j.heliyon.2024.e24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.
Collapse
Affiliation(s)
- Zhuanqing Huang
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Hui Gong
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Jinjin Yang
- The Fifth medical center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaochuan Yan
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Kim JH, Drame M, Puthanakit T, Chiu NC, Supparatpinyo K, Huang LM, Chiu CH, Chen PY, Hwang KP, Danier J, Friel D, Salaun B, Woo W, Vaughn DW, Innis B, Schuind A. Immunogenicity and Safety of AS03-adjuvanted H5N1 Influenza Vaccine in Children 6-35 Months of Age: Results From a Phase 2, Randomized, Observer-blind, Multicenter, Dose-ranging Study. Pediatr Infect Dis J 2021; 40:e333-e339. [PMID: 34285165 PMCID: PMC8357047 DOI: 10.1097/inf.0000000000003247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND This phase 2 observer-blind, randomized, multicenter, dose-ranging study evaluated immunogenicity and safety of different formulations of an AS03-adjuvanted H5N1 influenza vaccine in children 6-35 months of age. METHODS One hundred eighty-five children randomized into 5 groups [1.9 µg hemagglutinin (HA)/AS03B, 0.9 µg HA/AS03C, 1.9 µg HA/AS03C, 3.75 µg HA/AS03C or 3.75 µg HA/AS03D] were to receive 2 doses administered 21 days apart (primary vaccination). AS03 was classified by amount of DL-α-tocopherol, with AS03B the highest amount. One year later, all subjects were to receive unadjuvanted 3.75 µg HA as antigen challenge. Immunogenicity was assessed 21 days after primary vaccination (day 42) and 7 days after antigen challenge (day 392). Immunogenicity-fever index, based on hemagglutination inhibition and microneutralization antibody titers at day 42 and fever 7 days after each vaccination, was used to guide the selection of an acceptable formulation. RESULTS After primary vaccination, formulations elicited strong homologous immune responses with all subjects' hemagglutination inhibition titers ≥1:40 post-vaccination. Immunogenicity-fever index based on hemagglutination inhibition and microneutralization assays showed that 1.9 µg HA/AS03B ranked the highest. Antibody levels persisted >4 times above baseline 12 months after primary vaccination with all formulations (day 385). Antibodies increased >4-fold after antigen challenge (day 392/day 385) with 1.9 µg HA/AS03B, 0.9 µg HA/AS03C and 1.9 µg HA/AS03C formulations. Overall per subject, the incidence of fever ranged from 28.6% (3.75 µg HA/AS03D) to 60.5% (1.9 µg HA/AS03B). CONCLUSIONS All formulations were highly immunogenic and demonstrated acceptable safety profiles, with the 1.9 µg HA/AS03B providing the most favorable balance of immunogenicity versus reactogenicity for use in children 6-35 months of age.
Collapse
Affiliation(s)
- Joon Hyung Kim
- From the Vaccines Clinical Research and Development, GSK, Rockville, Maryland
| | - Mamadou Drame
- Vaccine Biostatistics Department, GSK, Rockville, Maryland
| | - Thanyawee Puthanakit
- Department of Pediatrics, Center of Excellence in Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nan-Chang Chiu
- Department of Pediatrics, Mackay Children’s Hospital, Taipei, Taiwan
| | | | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University Col-lege of Medicine, Taoyuan, Taiwan
| | - Po-Yen Chen
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kao-Pin Hwang
- Division of Pediatric Infectious Diseases, China Medical University College of Medicine, Children’s Hospital, Taichung, Taiwan
| | - Jasur Danier
- Clinical and Epi Research and Development, GSK, Rockville, Maryland
| | | | - Bruno Salaun
- Clinical Laboratory Sciences, GSK, Rixensart, Belgium
| | - Wayne Woo
- Biostatistics and Statistical Programming Department, GSK, Rockville, Maryland
| | | | - Bruce Innis
- Center for Vaccine Innovation and Access, PATH, Washington, District of Columbia
| | - Anne Schuind
- Vaccine Discovery and Development, GSK, Rockville, Maryland, USA
| |
Collapse
|
3
|
Van Hoeven N, Fox CB, Granger B, Evers T, Joshi SW, Nana GI, Evans SC, Lin S, Liang H, Liang L, Nakajima R, Felgner PL, Bowen RA, Marlenee N, Hartwig A, Baldwin SL, Coler RN, Tomai M, Elvecrog J, Reed SG, Carter D. A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci Rep 2017; 7:46426. [PMID: 28429728 PMCID: PMC5399443 DOI: 10.1038/srep46426] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/20/2017] [Indexed: 11/30/2022] Open
Abstract
Since 1997, highly pathogenic avian influenza viruses of the H5N1 subtype have been transmitted from avian hosts to humans. The severity of H5N1 infection in humans, as well as the sporadic nature of H5N1 outbreaks, both geographically and temporally, make generation of an effective vaccine a global public health priority. An effective H5N1 vaccine must ultimately provide protection against viruses from diverse clades. Toll-like receptor (TLR) agonist adjuvant formulations have a demonstrated ability to broaden H5N1 vaccine responses in pre-clinical models. However, many of these agonist molecules have proven difficult to develop clinically. Here, we describe comprehensive adjuvant formulation development of the imidazoquinoline TLR-7/8 agonist 3M-052, in combination with H5N1 hemagglutinin (HA) based antigens. We find that 3M-052 in multiple formulations protects both mice and ferrets from lethal H5N1 homologous virus challenge. Furthermore, we conclusively demonstrate the ability of 3M-052 adjuvant formulations to broaden responses to H5N1 HA based antigens, and show that this broadening is functional using a heterologous lethal virus challenge in ferrets. Given the extensive clinical use of imidazoquinoline TLR agonists for other indications, these studies identify multiple adjuvant formulations which may be rapidly advanced into clinical trials in an H5N1 vaccine.
Collapse
Affiliation(s)
- Neal Van Hoeven
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Brian Granger
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Tara Evers
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Sharvari W Joshi
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Ghislain I Nana
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Sarah C Evans
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Susan Lin
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Hong Liang
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Li Liang
- University of California Irvine, Department of Medicine, Irvine CA 92697, USA
| | - Rie Nakajima
- University of California Irvine, Department of Medicine, Irvine CA 92697, USA
| | - Philip L Felgner
- University of California Irvine, Department of Medicine, Irvine CA 92697, USA
| | - Richard A Bowen
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, USA
| | - Nicole Marlenee
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, USA
| | - Airn Hartwig
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, USA
| | - Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Rhea N Coler
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Mark Tomai
- 3M, Inc., St. Paul, Minnesota 55121, USA
| | | | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle WA 98103, USA
| |
Collapse
|
4
|
Trombetta CM, Montomoli E. Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert Rev Vaccines 2016; 15:967-76. [PMID: 26954563 DOI: 10.1586/14760584.2016.1164046] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccination is the most effective method of controlling seasonal influenza infections and preventing possible pandemic events. Although influenza vaccines have been licensed and used for decades, the potential correlates of protection induced by these vaccines are still a matter of discussion. Currently, inactivated vaccines are the most common and the haemagglutination inhibition antibody titer is regarded as an immunological correlate of protection and the best available parameter for predicting protection from influenza infection. However, the assay shows some limitations, such as its low sensitivity to B and avian strains and inter-laboratory variability. Additional assays and next-generation vaccines have been evaluated to overcome the limitations of the traditional serological techniques and to elicit broad immune responses, underlining the need to revise the current correlates of protection. The aim of this review is to provide an overview of the current scenario regarding the immunological evaluation and correlates of protection of influenza vaccines.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- a Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy.,b VisMederi srl , Enterprise of services in Life Sciences , Siena , Italy
| |
Collapse
|