1
|
Li J, Zong Y, Sun T, Liu Y, Wang R, Zhou J, Sun Q, Zhang Y. Inflammatory damage caused by Echovirus 30 in the suckling mouse brain and HMC3 cells. Virol J 2024; 21:165. [PMID: 39075520 PMCID: PMC11285461 DOI: 10.1186/s12985-024-02437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Echovirus 30 (E30), a member of the species B Enterovirus family, is a primary pathogen responsible for aseptic meningitis and encephalitis. E30 is associated with severe nervous system diseases and is a primary cause of child illness, disability, and even mortality. However, the mechanisms underlying E30-induced brain injury remain poorly understood. In this study, we used a neonatal mouse model of E30 to investigate the possible mechanisms of brain injury. E30 infection triggered the activation of microglia in the mouse brain and efficiently replicated within HMC3 cells. Subsequent transcriptomic analysis revealed inflammatory activation of microglia in response to E30 infection. We also detected a significant upregulation of polo-like kinase 1 (PLK1) and found that its inhibition could limit E30 infection in a sucking mouse model. Collectively, E30 infection led to brain injury in a neonatal mouse model, which may be related to excessive inflammatory responses. Our findings highlight the intricate interplay between E30 infection and neurological damage, providing crucial insights that could guide the development of interventions and strategies to address the severe clinical manifestations associated with this pathogen.
Collapse
Affiliation(s)
- Jichen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Yanjun Zong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Tiantian Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Rui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| |
Collapse
|
2
|
Enterovirus Infections in Solid Organ Transplant Recipients: a Clinical Comparison from a Regional University Hospital in the Netherlands. Microbiol Spectr 2022; 10:e0221521. [PMID: 35138120 PMCID: PMC8826731 DOI: 10.1128/spectrum.02215-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus infections are known to cause a diverse range of illnesses, even in healthy individuals. However, information detailing enterovirus infections and their severity in immunocompromised patients, such as transplant recipients, is limited. We compared enterovirus infections in terms of genotypes, clinical presentation, and severity between transplant and nontransplant patients. A total of 264 patients (38 transplant recipients) with 283 enterovirus infection episodes were identified in our hospital between 2014 and 2018. We explored the following factors associated with enterovirus infections: clinical presentation and diagnosis on discharge, length of hospital stay, symptom persistence, and infection episodes in both children and adults. We observed some differences in genotypes between patients, with enterovirus group C occurring mainly in transplant recipients (P < 0.05). EV-associated gastrointestinal infections were more common in patients with a transplant (children [71%] and adults [46%]), compared to nontransplant patients (P < 0.05). Additionally, nontransplant patients had a higher number of hospital stays (P < 0.05), potentially reflecting more severe disease. However, transplant patients were more likely to have symptom persistence after discharge (P < 0.05). Finally, children and adults with a transplant were more likely to have additional enterovirus infection episodes (P < 0.05). In our cohort, enterovirus infections did not seem to be more severe after transplantation; however, patients tended to present with different clinical symptoms and had genotypes rarely found in nontransplant recipients. IMPORTANCE Despite the high prevalence of enteroviruses in the community and the increasing demand for transplants from an aging population, knowledge on enteroviruses in solid organ transplant recipients is currently limited. Transplant recipients represent a significant patient population and require additional considerations in patient management, particularly as they have an increased risk of disease severity. Enteroviruses are known to cause significant morbidity, with a diverse range of clinical presentation from over 100 different genotypes. In this study, we aimed to provide a more comprehensive overview of enteroviral infections in transplant recipients, compared to nontransplant patients, and to bridge some gaps in our current knowledge. Identifying potential clinical manifestation patterns can help improve patient management following enterovirus infections.
Collapse
|
3
|
Molecular Epidemiology of Enterovirus in Children with Central Nervous System Infections. Viruses 2021; 13:v13010100. [PMID: 33450832 PMCID: PMC7828273 DOI: 10.3390/v13010100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Limited recent molecular epidemiology data are available for pediatric Central Nervous System (CNS) infections in Europe. The aim of this study was to investigate the molecular epidemiology of enterovirus (EV) involved in CNS infections in children. Cerebrospinal fluid (CSF) from children (0–16 years) with suspected meningitis–encephalitis (ME) who were hospitalized in the largest pediatric hospital of Greece from October 2017 to September 2020 was initially tested for 14 common pathogens using the multiplex PCR FilmArray® ME Panel (FA-ME). CSF samples positive for EV, as well as pharyngeal swabs and stools of the same children, were further genotyped employing Sanger sequencing. Of the 330 children tested with FA-ME, 75 (22.7%) were positive for EV and 50 different CSF samples were available for genotyping. The median age of children with EV CNS infection was 2 months (IQR: 1–60) and 44/75 (58.7%) of them were male. There was a seasonal distribution of EV CNS infections, with most cases detected between June and September (38/75, 50.7%). EV genotyping was successfully processed in 84/104 samples: CSF (n = 45/50), pharyngeal swabs (n = 15/29) and stools (n = 24/25). Predominant EV genotypes were CV-B5 (16/45, 35.6%), E30 (10/45, 22.2%), E16 (6/45, 13.3%) and E11 (5/45, 11.1%). However, significant phylogenetic differences from previous described isolates were detected. No unusual neurologic manifestations were observed, and all children recovered without obvious acute sequelae. Specific EV circulating genotypes are causing a significant number of pediatric CNS infections. Phylogenetic analysis of these predominant genotypes found genetic differences from already described EV isolates.
Collapse
|
4
|
Echovirus-30 Infection Alters Host Proteins in Lipid Rafts at the Cerebrospinal Fluid Barrier In Vitro. Microorganisms 2020; 8:microorganisms8121958. [PMID: 33321840 PMCID: PMC7764136 DOI: 10.3390/microorganisms8121958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Echovirus-30 (E-30) is a non-polio enterovirus responsible for meningitis outbreaks in children worldwide. To gain access to the central nervous system (CNS), E-30 first has to cross the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BCSFB). E-30 may use lipid rafts of the host cells to interact with and to invade the BCSFB. To study enteroviral infection of the BCSFB, an established in vitro model based on human immortalized brain choroid plexus papilloma (HIBCPP) cells has been used. Here, we investigated the impact of E-30 infection on the protein content of the lipid rafts at the BCSFB in vitro. Mass spectrometry analysis following E-30 infection versus uninfected conditions revealed differential abundancy in proteins implicated in cellular adhesion, cytoskeleton remodeling, and endocytosis/vesicle budding. Further, we evaluated the blocking of endocytosis via clathrin/dynamin blocking and its consequences for E-30 induced barrier disruption. Interestingly, blocking of endocytosis had no impact on the capacity of E-30 to induce loss of barrier properties in HIBCPP cells. Altogether, these data highlight the impact of E-30 on HIBCPP cells microdomain as an important factor for host cell alteration.
Collapse
|
5
|
Li J, Wang X, Cai J, Ge Y, Wang C, Qiu Y, Xia A, Zeng M. Non-polio enterovirus infections in children with central nervous system disorders in Shanghai, 2016-2018: Serotypes and clinical characteristics. J Clin Virol 2020; 129:104516. [PMID: 32585621 DOI: 10.1016/j.jcv.2020.104516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-polio enrerovirus causes a wide spectrum of neurologic syndromes. The epidemiological and clinical profiles of non-polio enrerovirus-associated central nervous system infections vary by regions and over year. OBJECTIVES This study aimed to understand the prevalence, serotypes and clinical characteristics of enterovirus-associated aseptic meningitis, encephalitis and meningo-encephalitis in children in Shanghai during 2016-2018. METHODS We collected the clinical data and the cerebrospinal fluid specimens from the pediatric patients with aseptic meningitis, encephalitis and meningo-encephalitis during 2016-2018. The nested RT-PCR and sequencing were performed to identify enterovirus and serotypes. RESULTS A total of 424 patients were included in this study and their non-duplicated cerebrospinal fluid specimens were collected during the acute stage of illness. Based on PCR assay, enterovirus was detected in 272 (64.15 %) patients, of whom, the ratio of male to female subjects was 1.99, and the mean age was 5.71 ± 3.55 years (range: 0.03-16 years). There were 17 serotypes identified. Echovirus 30 (24.63 %), Coxsackievirus A10 (20.96 %), Coxsackievirus A6 (18.01 %) accounted for 63.6 %, followed by Coxsackievirus B5 (7.72 %), Echovirus 6 (5.88 %), and other serotypes (22.8 %). Of the 10 (3.68 %) critically severe patients, all had refractory seizure, 8 required mechanical ventilation, 7 survivors had recurrent attacks of epilepsy and 3 abandoned treatment; Coxsackievirus A10, Echovirus 9, Coxsackievirus A2, Coxsackievirus A6 and Echovirus 6 were identified. CONCLUSIONS Non-polio enterovirus is the major pathogen causing aseptic meningitis, encephalitis and meningo-encephalitis in Chinese children and can cause life-threatening encephalitis and severe sequelae.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Xiangshi Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Jiehao Cai
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Yanling Ge
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Chuning Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Yue Qiu
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Aimei Xia
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
6
|
Molecular characterization of enteroviruses among hospitalized patients in Greece, 2013-2015. J Clin Virol 2020; 127:104349. [PMID: 32339946 DOI: 10.1016/j.jcv.2020.104349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND There are only sporadic data for the circulation of Enteroviruses (EVs) in Greece with previous studies reporting mainly the presence of Echoviruses (E) and Coxsackie viruses (CV) B. OBJECTIVES We carried out a surveillance study for the molecular characterization of EVs detected in hospitalized patients throughout Greece as well as a phylogenetic analysis of the most frequently encountered serotypes. STUDY DESIGN Stools, cerebrospinal fluids, throat swabs and blood samples were collected from hospitalized patients with suspicion of EV infection. All samples were tested for EVs by rRT-PCR targeting the 5' untranslated region of EV genome. For positive samples, PCR amplification and sequencing targeting a part of VP1 region was performed. RESULTS We examined 831 samples and 209 were positive for EVs with Enterovirus B species being the most frequently amplified. E30, CVB5 and E9 were the most frequent serotypes of Enterovirus B species, whereas CVA6 and EV-A71 the most frequent serotypes of Enterovirus A species. Evs were significantly detected more frequently in stool samples compared to other types of specimens. Phylogenetic analysis revealed that most EV-A71 strains clustered in the subgenogroups C2 whereas all the CVA6 strains belonged to sub-genotype D3. Additionally, two different lineages of E30 and three different clusters of E9 viruses circulated simultaneously in Greece. Our data indicated that most EV strains from Greece were similar to strains circulating throughout Europe during the same period. CONCLUSIONS We provide a comprehensive picture of EVs circulating in Greece which can be helpful to interpret trends in EV diseases by associating them with circulating serotypes.
Collapse
|
7
|
Wiatr M, Stump-Guthier C, Latorre D, Uhlig S, Weiss C, Ilonen J, Engelhardt B, Ishikawa H, Schwerk C, Schroten H, Tenenbaum T, Rudolph H. Distinct migratory pattern of naive and effector T cells through the blood-CSF barrier following Echovirus 30 infection. J Neuroinflammation 2019; 16:232. [PMID: 31752904 PMCID: PMC6868812 DOI: 10.1186/s12974-019-1626-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood–cerebrospinal fluid barrier (BCSFB) or the endothelial blood–brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. Methods In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. Results Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. Conclusion Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefanie Uhlig
- Flowcore Mannheim, Ludolf-Krehl-Strasse 13 - 17, 68167, Mannheim, Germany
| | - Christel Weiss
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, and Clinical Microbiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, Nippon Dental University, Tokyo, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
8
|
Broberg EK, Simone B, Jansa J, The Eu/Eea Member State Contributors. Upsurge in echovirus 30 detections in five EU/EEA countries, April to September, 2018. ACTA ACUST UNITED AC 2019; 23. [PMID: 30401013 PMCID: PMC6337069 DOI: 10.2807/1560-7917.es.2018.23.44.1800537] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An upsurge in Echovirus 30 (E30) infections, associated with meningitis/meningoencephalitis, has been observed in Denmark, Germany, the Netherlands, Norway and Sweden in the period April to September 2018, compared with 2015–2017. In total, 658 E30 infections among 4,537 enterovirus infections were detected in 15 countries between January and September 2018 and affected mainly newborns and 26–45 year-olds. National public health institutes are reminded to remain vigilant and inform clinicians of the ongoing epidemic.
Collapse
Affiliation(s)
- Eeva K Broberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Benedetto Simone
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Josep Jansa
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | |
Collapse
|
9
|
Richter J, Tryfonos C, Christodoulou C. Molecular epidemiology of enteroviruses in Cyprus 2008-2017. PLoS One 2019; 14:e0220938. [PMID: 31393960 PMCID: PMC6687182 DOI: 10.1371/journal.pone.0220938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/26/2019] [Indexed: 12/28/2022] Open
Abstract
Enteroviruses (EVs) are associated with a broad spectrum of disease manifestations, including aseptic meningitis, encephalitis, hand, foot and mouth disease, acute flaccid paralysis and acute flaccid myelitis with outbreaks being reported frequently world-wide. The aim of this study was the molecular characterization of all enteroviruses detected in Cyprus in the ten-year period from January 2008 and December 2017 as well as a description of the circulation patterns associated with the most frequently encountered genotypes. For this purpose, serum, cerebrospinal fluid, nasal swab, skin swab and/or stool samples from 2666 patients with a suspected EV infection were analysed between January 2008 and December 2017. Enteroviruses were detected in 295 (11.1%) patients, which were then investigated further for epidemiological analysis by VP1 genotyping. Overall, 24 different enterovirus types belonging to three different species were identified. The predominant species was EV-B (209/295, 71%), followed by species EV-A (77/295, 26.1%). Only one virus belonged to species EV-D, whereas EV-C enteroviruses were not identified at all. The most frequent genotypes identified were echovirus 30 (26.1%), echovirus 6 (14.2%) and coxsackievirus A6 (10.9%). While Echovirus 30 and echovirus 6 frequency was significantly higher in patients older than 3 years of age, the opposite was observed for CV-A16 and EV-A71, which dominated in young children less than 3 years. Importantly, for the current study period a significant increase of previously only sporadically observed EV-A types, such as EV-A71 and CV-A16 was noted. A phylogenetic analysis of EV-A71 showed that the majority of the EV-A71 strains from Cyprus belonged to sub-genogroup C1 and C2, with the exception of one C4 strain that was observed in 2011. The data presented provide a comprehensive picture of enteroviruses circulating in Cyprus over the last decade and will be helpful to clinicians and researchers involved in the treatment, prevention and control of enteroviral infections by helping interpret trends in enteroviral diseases by associating them with circulating serotypes, for studying the association of enteroviruses with clinical manifestations and develop strategies for designing future EV vaccines.
Collapse
Affiliation(s)
- Jan Richter
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
10
|
Maruo Y, Nakanishi M, Suzuki Y, Kaneshi Y, Terashita Y, Narugami M, Takahashi M, Kato S, Suzuki R, Goto A, Miyoshi M, Nagano H, Sugisawa T, Okano M. Outbreak of aseptic meningitis caused by echovirus 30 in Kushiro, Japan in 2017. J Clin Virol 2019; 116:34-38. [PMID: 31082730 DOI: 10.1016/j.jcv.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Echovirus 30 (E30) is one of the most common causative agents for aseptic meningitis. OBJECTIVES In the autumn of 2017, there was an outbreak caused by E30 in Kushiro, Hokkaido, Japan. The aim of this study was to characterize this outbreak. STUDY DESIGN Fifty-nine patients were admitted to the Department of Pediatrics, Kushiro Red Cross Hospital (KRCH) with clinical diagnosis of aseptic meningitis. Among those, 36 patients were finally diagnosed as E30-associated aseptic meningitis by the detection of viral RNA using reverse transcription-polymerase chain reaction (RT-PCR) and/or the evidence of more than four-fold rise in neutralizing antibody (NA) titers in the convalescent phase relative to those in the acute phase. We investigated these 36 confirmed cases. RESULTS The median age was 6 years (range: 6 months-14 years). The positive signs and symptoms were as follows: fever (100%), headache (94%), vomiting (92%), jolt accentuation (77%), neck stiffness (74%), Kernig sign (29%), and abdominal pain (28%). The median cerebrospinal fluid (CSF) white cell count, neutrophil count, and lymphocyte count were 222/μL (range: 3-1434/μL), 144/μL (range: 1-1269/μL), and 85/μL (range: 2-354/μL), respectively. Although the detected viral genes demonstrated same cluster, they were different from E30 strains observed in Japan between 2010 and 2014. CONCLUSION We mainly showed clinical and virological features of the E30-associated aseptic meningitis outbreak that occurred in Kushiro. To prevent further spread of E30 infection, continuous surveillance of enterovirus (EV) circulation and standard precautions are considered essential.
Collapse
Affiliation(s)
- Yuji Maruo
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan.
| | - Masanori Nakanishi
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Yasuto Suzuki
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Yosuke Kaneshi
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Yukayo Terashita
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Masashi Narugami
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Michi Takahashi
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Sho Kato
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Ryota Suzuki
- Department of Pediatrics, Kushiro Red Cross Hospital, 21-14, Shinei-cho, Kushiro 085-8512, Japan
| | - Akiko Goto
- Hokkaido Institute of Public Health, North 19 West 12, Kita-ku, Sapporo 060-0819, Japan
| | - Masahiro Miyoshi
- Hokkaido Institute of Public Health, North 19 West 12, Kita-ku, Sapporo 060-0819, Japan
| | - Hideki Nagano
- Hokkaido Institute of Public Health, North 19 West 12, Kita-ku, Sapporo 060-0819, Japan
| | - Takahisa Sugisawa
- Kushiro Center of Public Health, 4-22, Shiroyama 2, Kushiro 085-0826, Japan
| | - Motohiko Okano
- Hokkaido Institute of Public Health, North 19 West 12, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
11
|
Papa A, Papadopoulou E. Acute viral infections of the central nervous system, 2014-2016, Greece. J Med Virol 2017; 90:644-647. [PMID: 29168889 DOI: 10.1002/jmv.24997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/16/2017] [Indexed: 11/11/2022]
Abstract
In order to investigate the viral etiology of acute infections of central nervous system (CNS), multiplex and single PCRs combined with serology for arboviruses were applied on samples from 132 hospitalized patients in Greece during May 2014-December 2016. A viral pathogen was detected in 52 of 132 (39.4%) cases with acute CNS infection. Enteroviruses predominated (15/52, 28.8%), followed by West Nile virus (9/52, 17.3%). Phleboviruses, varicella-zoster virus, and Epstein-Barr virus accounted for 15.4%, 13.5%, and 11.5% of the cases, respectively. The study gives an insight into the etiology of viral CNS infections in a Mediterranean country, where arboviruses should be included in the differential diagnosis of acute CNS infections.
Collapse
Affiliation(s)
- Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elpida Papadopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Lee JY, Seo Y, Choi UY, Kim JH, Kang JH. Seroepidemiology of echovirus 30 in Korean children. World J Pediatr 2017; 13:611-614. [PMID: 28766163 DOI: 10.1007/s12519-017-0058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/30/2016] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although aseptic meningitis associated with echovirus type 30 has emerged as a global public health concern, no data have been reported on Children's immune status against echovirus type 30. The current study aimed to investigate the seropositivity among Korean children for antibodies against echovirus 30. METHODS Two hundred and fifty residual serum samples were collected at St. Paul's Hospital. Individuals were categorized by age into four groups: group 1 (3 months-2 years), group 2 (3-6 years), group 3 (7-10 years) and group 4 (11-15 years). Neutralizing antibodies against echovirus 30 were measured. RESULTS Seroprotective neutralizing antibodies against echovirus 30 were detected in 129 (49%) individuals. Seropositivity rates were 23%, 48%, 55% and 73% in groups 1-4, respectively. For antibody titers, 1:256-1:512 was the highest neutralizing antibody titer range in group 2, while 1:1024-1:2048 in group 3 and 4. Among the seropositive individuals in group 3 and 4, 6% and 12% had neutralizing antibody titers of 1:2048, respectively. CONCLUSIONS The seropositivity rate increased significantly with age. The distribution of neutralizing antibody titers varied by age group, and higher ranges of neutralizing antibody titers were observed in higher age groups. These findings suggest high susceptibility to echovirus 30 infection in children younger than 2 years old. Echovirus 30 infection in childhood may have contributed to increased neutralizing antibody titers with age.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yumi Seo
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ui Yoon Choi
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Pediatrics, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180, Wangsan-ro, Dongdaemun-gu, Seoul, 02559, Republic of Korea.
| | - Jong-Hyun Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Han Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Rudolph H, Prieto Dernbach R, Walka M, Rey-Hinterkopf P, Melichar V, Muschiol E, Schweitzer-Krantz S, Richter JW, Weiss C, Böttcher S, Diedrich S, Schroten H, Tenenbaum T. Comparison of clinical and laboratory characteristics during two major paediatric meningitis outbreaks of echovirus 30 and other non-polio enteroviruses in Germany in 2008 and 2013. Eur J Clin Microbiol Infect Dis 2017; 36:1651-1660. [PMID: 28409290 DOI: 10.1007/s10096-017-2979-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 01/06/2023]
Abstract
Viral meningitis is mainly caused by non-polio enteroviruses (NPEV). Large-scale data on the clinical characteristics between different outbreaks within the same region are lacking. This study aimed to analyse a possible influence of the circulating NPEV genotype on the disease outcome of affected children. A retrospective cohort study analysing two major outbreaks of NPEV meningitis in Germany in 2008 and 2013 was conducted in cooperation with the National Reference Centre for Poliomyelitis and Enteroviruses (NRC PE) and five German children's hospitals. A total of 196 patients with laboratory-confirmed NPEV meningitis were enrolled. In 2008, children with NPEV meningitis had significantly higher fever and showed more behavioural changes and less back pain. To better define typical findings in echovirus 30 (E-30) meningitis, patients were split into the following three groups: E-30 positive patients, patients with "Non E-30" infection and patients with "Untyped" NPEV infection. E-30 positive patients were significantly older and their disease course was more acute, with early admission to but also early discharge from hospital. E-30 positive patients showed a significantly higher rate of headache and meningism, and a lower rate of diarrhoea and clinically defined septicaemia when compared to the others. Regarding laboratory testing, E-30 positive patients presented with significantly elevated peripheral blood neutrophil counts when compared to patients with "Non E-30" or "Untyped" NPEV infection. In conclusion, E-30 meningitis in children shows a characteristic pattern of clinical features. To further characterise NPEV strains worldwide, continuous surveillance and typing of NPEV strains causing central nervous system disease is warranted.
Collapse
Affiliation(s)
- H Rudolph
- Paediatric Infectious Diseases, University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - R Prieto Dernbach
- Paediatric Infectious Diseases, University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - M Walka
- Children's Hospital Ludwigsburg, Ludwigsburg, Germany
| | | | - V Melichar
- University Children's Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - E Muschiol
- University Children's Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - S Schweitzer-Krantz
- Children's Hospital, Evangelisches Krankenhaus Düsseldorf, Düsseldorf, Germany
| | - J W Richter
- Children's Hospital Auf der Bult, Hannover, Germany
| | - C Weiss
- Department of Statistics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - S Böttcher
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - S Diedrich
- National Reference Centre for Poliomyelitis and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - H Schroten
- Paediatric Infectious Diseases, University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - T Tenenbaum
- Paediatric Infectious Diseases, University Children's Hospital, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
14
|
Laboratory Surveillance of Polio and Other Enteroviruses in High-Risk Populations and Environmental Samples. Appl Environ Microbiol 2017; 83:AEM.02872-16. [PMID: 28039136 DOI: 10.1128/aem.02872-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022] Open
Abstract
In the context of poliomyelitis eradication, a reinforced supplementary laboratory surveillance of enteroviruses was implemented in Greece. Between 2008 and 2014, the Hellenic Polioviruses/Enteroviruses Reference Laboratory performed detailed supplementary surveillance of circulating enteroviruses among healthy individuals in high-risk population groups, among immigrants from countries in which poliovirus is endemic, and in environmental samples. In total, 722 stool samples and 179 sewage water samples were included in the study. No wild-type polioviruses were isolated during these 7 years of surveillance, although two imported vaccine polioviruses were detected. Enterovirus presence was recorded in 25.3 and 25.1% of stool and sewage water samples, respectively. Nonpolio enteroviruses isolated from stool samples belonged to species A, B, or C; coxsackievirus A24 was the most frequently identified serotype. Only enteroviruses of species B were identified in sewage water samples, including four serotypes of echoviruses and four serotypes of coxsackie B viruses. Phylogenetic analysis revealed close genetic relationships among virus isolates from sewage water samples and stool samples, which in most cases fell into the same cluster. To the best of our knowledge, this is the first study to compare enterovirus serotypes circulating in fecal specimens of healthy individuals and environmental samples, emphasizing the burden of enterovirus circulation in asymptomatic individuals at high risk. Given that Greece continues to receive a large number of short-term arrivals, students, migrants, and refugees from countries in which poliovirus is endemic, it is important to guarantee high-quality surveillance in order to maintain its polio-free status until global eradication is achieved.IMPORTANCE This article summarizes the results of supplementary poliovirus surveillance in Greece and the subsequent characterization of enteroviral circulation in human feces and the environment. The examination of stool samples from healthy refugees and other individuals in "high-risk" groups for poliovirus enables the identification of enterovirus cases and forms the basis for further investigation of the community-level risk of viral transmission. In addition, the examination of composite human fecal samples through environmental surveillance links poliovirus and nonpoliovirus isolates from unknown individuals to populations served by the sewage or wastewater system. Supplementary surveillance is necessary to comply with the prerequisites imposed by the World Health Organization for monitoring the emergence of vaccine-derived polioviruses, reemergence of wild polioviruses, or disappearance of all vaccine-related strains in order for countries such as Greece to maintain their polio-free status and contribute to global poliovirus eradication.
Collapse
|
15
|
Cordey S, Schibler M, L'Huillier AG, Wagner N, Gonçalves AR, Ambrosioni J, Asner S, Turin L, Posfay-Barbe KM, Kaiser L. Comparative analysis of viral shedding in pediatric and adult subjects with central nervous system-associated enterovirus infections from 2013 to 2015 in Switzerland. J Clin Virol 2017; 89:22-29. [PMID: 28214758 DOI: 10.1016/j.jcv.2017.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Several enterovirus (EV) genotypes can result in aseptic meningitis, but their routes of access to the central nervous system remain to be elucidated and may differ between the pediatric and adult populations. OBJECTIVE To assess the pattern of viral shedding in pediatric and adult subjects with acute EV meningitis and to generate EV surveillance data for Switzerland. STUDY DESIGN All pediatric and adult subjects admitted to the University Hospitals of Geneva with a diagnosis of EV meningitis between 2013 and 2015 were enrolled. A quantitative EV real-time reverse transcriptase (rRT)-PCR was performed on the cerebrospinal fluid (CSF), blood, stool, urine and respiratory specimens to assess viral shedding and provide a comparative analysis of pediatric and adult populations. EV genotyping was systematically performed. RESULTS EV positivity rates differed significantly between pediatric and adult subjects; 62.5% of pediatric cases (no adult case) were EV-positive in stool and blood for subjects for whom these samples were all collected. Similarly, the EV viral load in blood was significantly higher in pediatric subjects. Blood C-reactive protein levels were lower and the number of leucocytes/mm3 in the CSF were higher in non-viremic than in viremic pediatric subjects, respectively. A greater diversity of EV genotypes was observed in pediatric cases, with a predominance of echovirus 30 in children ≥3 years old and adults. CONCLUSION In contrast to adults, EV-disseminated infections are predominant in pediatric subjects and show different patterns of EV viral shedding. This observation may be useful for clinicians and contribute to modify current practices of patient care.
Collapse
Affiliation(s)
- S Cordey
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - M Schibler
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - A G L'Huillier
- University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Pediatric Infectious Diseases Unit, Division of General Pediatrics, Department of Pediatrics, University Hospitals of Geneva, 6 Rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - N Wagner
- University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Pediatric Infectious Diseases Unit, Division of General Pediatrics, Department of Pediatrics, University Hospitals of Geneva, 6 Rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - A R Gonçalves
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - J Ambrosioni
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, 149 Carrer del Rosselló, 08036 Barcelona, Spain
| | - S Asner
- Pediatric Infectious Diseases and Vaccinology Unit, Department of Pediatrics, University Hospital Center, 46 Rue du Bugnon, 1011 Lausanne, Switzerland; Service of Infectious Diseases, Department of Internal Medicine, University Hospital Center, 46 Rue du Bugnon, 1011 Lausanne, Switzerland
| | - L Turin
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - K M Posfay-Barbe
- University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Pediatric Infectious Diseases Unit, Division of General Pediatrics, Department of Pediatrics, University Hospitals of Geneva, 6 Rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - L Kaiser
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
16
|
Molet L, Saloum K, Marque-Juillet S, Garbarg-Chenon A, Henquell C, Schuffenecker I, Peigue-Lafeuille H, Rozenberg F, Mirand A. Enterovirus infections in hospitals of Ile de France region over 2013. J Clin Virol 2015; 74:37-42. [PMID: 26655266 DOI: 10.1016/j.jcv.2015.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The monitoring and genotyping of Enterovirus (EV) infections can help to associate particular or severe clinical manifestations with specific EV types and to identify the aetiology of infectious outbreaks. OBJECTIVES To describe the epidemiological features of EV infections diagnosed during the year 2013 in the Greater Paris area (Ile de France). STUDY DESIGN During 2013, 2497 samples taken from 470 patients in 33 hospitals of Ile-de France were tested for EV genome by RT-PCR. EV genotyping was performed by the National Reference Centre (NRC) laboratories. EV infections were retrospectively reviewed by retrieving clinical and genotyping data from the NRC database. RESULTS Of the 2497 samples, 490 (19.6%) was positive for EV genome detection. These EV infections represented 88.7% and 24.1%, respectively, of all reported regional and national infections. Twenty-seven different genotypes were identified. Echovirus 30 (E-30) accounted for 54.1% of all characterized strains and caused a large outbreak. Four severe neonatal infections were reported, of which two were caused by EV-A71. Respiratory infections involving EV-D68 were observed in two adults. One fatal case of Coxsackievirus A2-associated myocarditis was reported. CONCLUSION Monitoring EV infections in combination with EV genotyping via the French EV network characterized the epidemiology of EV infections in the Ile de France region in 2013 and documented severe EV infections associated with EV-A71 or CV-A2.
Collapse
Affiliation(s)
- Lucie Molet
- Université Paris Descartes et Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France.
| | - Kenda Saloum
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Virologie, Paris, France
| | | | - Antoine Garbarg-Chenon
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Virologie, Paris, France
| | - Cécile Henquell
- CHU Clermont-Ferrand, Laboratoire de Virologie, Centre National de Référence des Entérovirus-Parechovirus- Laboratoire associé, Clermont-Ferrand, France; Université d'Auvergne, EA4843 « Epidémiologie et Pathogénie des Infections à Entérovirus », Faculté de Médecine, Clermont-Ferrand, France
| | - Isabelle Schuffenecker
- Hospices Civils de Lyon, Laboratoire de Virologie, Centre National de Référence des Entérovirus-Parechovirus, Lyon, France
| | - Hélène Peigue-Lafeuille
- CHU Clermont-Ferrand, Laboratoire de Virologie, Centre National de Référence des Entérovirus-Parechovirus- Laboratoire associé, Clermont-Ferrand, France; Université d'Auvergne, EA4843 « Epidémiologie et Pathogénie des Infections à Entérovirus », Faculté de Médecine, Clermont-Ferrand, France
| | - Flore Rozenberg
- Université Paris Descartes et Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France
| | - Audrey Mirand
- CHU Clermont-Ferrand, Laboratoire de Virologie, Centre National de Référence des Entérovirus-Parechovirus- Laboratoire associé, Clermont-Ferrand, France; Université d'Auvergne, EA4843 « Epidémiologie et Pathogénie des Infections à Entérovirus », Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
17
|
|
18
|
|
19
|
Nougairede A, Bessaud M, Thiberville SD, Piorkowski G, Ninove L, Zandotti C, Charrel RN, Guilhem N, de Lamballerie X. Widespread circulation of a new echovirus 30 variant causing aseptic meningitis and non-specific viral illness, South-East France, 2013. J Clin Virol 2014; 61:118-24. [DOI: 10.1016/j.jcv.2014.05.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
|
20
|
Molecular characterisation of enteroviruses and clinical findings from a cluster of paediatric viral meningitis cases in Tshwane, South Africa 2010-2011. J Clin Virol 2014; 61:400-5. [PMID: 25176522 DOI: 10.1016/j.jcv.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/04/2014] [Accepted: 08/03/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Human enteroviruses (HEVs) are the most common viral pathogen associated with paediatric aseptic meningitis. From October 2010 to February 2011 a cluster of HEV-associated meningitis cases was identified in paediatric patients who had presented at two large tertiary hospitals in Pretoria in the Tshwane Metropolitan Area, Gauteng, South Africa (SA). OBJECTIVES The aim of this study was to review the clinical features and to characterise the HEV strains associated with this cluster of meningitis cases. STUDY DESIGN In this retrospective study HEVs, detected by real time reverse transcription-polymerase chain reaction in acute phase cerebrospinal fluid specimens from 30 patients with aseptic meningitis, were characterised and the clinical presentations of these patients were described. RESULTS Fever (83%), headache (70%) and vomiting (67%) were the most prominent symptoms with signs of meningeal irritation recorded in 67% of the patients. There was a neutrophil predominance in the cerebrospinal fluid of 57% of the patients with pleocytosis. Based on partial nucleotide sequence analysis of the HEV viral protein 1 gene, echovirus (E) serotype 4 (E-4) was identified in 80% (24/30) of specimens with E-9 (3/30) and coxsackie virus B5 (1/30) detected less frequently. CONCLUSION In this cluster of aseptic meningitis cases E-4 was the predominant strain with E-9, and to a lesser extent other HEVs, identified less frequently.
Collapse
|
21
|
Aseptic meningitis outbreak caused by echovirus 30 in two regions in Bulgaria, May-August 2012. Epidemiol Infect 2013; 142:2159-65. [PMID: 24480099 DOI: 10.1017/s0950268813003221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An aseptic meningitis outbreak emerged in two regions in Bulgaria in 2012 and echovirus 30 (E30) was established as the aetiological agent by cell culture isolation, serological test, and molecular-based techniques. A total of 157 patients with aseptic meningitis were investigated, of which 117 were confirmed as having E30-associated disease. Molecular analysis of 12 E30 isolates revealed 99-100% nucleotide and amino-acid identity between them and a close correlation with a Greek strain involved in an E30 outbreak in 2012. Children aged 5-14 years were mainly affected, which could reflect the absence of E30 epidemics in Bulgaria for a period of 11 years. The first case with E30 isolation (a 2-year-old patient from Plovdiv) was notified at the end of April 2012. This was most likely the index case, from which the spread of the virus started, causing sporadic cases first, which later led to an aseptic meningitis outbreak facilitated by person-to-person viral transmission.
Collapse
|
22
|
Takamatsu Y, Uchida L, Nga PT, Okamoto K, Nabeshima T, Thao DTT, Hai DT, Tuyet NT, Duc HM, Luat LX, Hasebe F, Morita K. An approach for differentiating echovirus 30 and Japanese encephalitis virus infections in acute meningitis/encephalitis: a retrospective study of 103 cases in Vietnam. Virol J 2013; 10:280. [PMID: 24025733 PMCID: PMC3847169 DOI: 10.1186/1743-422x-10-280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent decades, Echovirus 30 (E30) and Japanese encephalitis virus (JEV) have been reported to be the common causative agents of acute meningitis among patients in South East Asia. An E30 outbreak in Vietnam in 2001-2002 gained our interest because the initial clinical diagnosis of infected patients was due to JEV infection. There are few clinical insights regarding E30 cases, and there are no reports comparing E30 and JEV acute meningitis/encephalitis cases based on clinical symptoms and case histories. We therefore aimed to identify reliable clinical methods to differentiate E30 and JEV acute meningitis/encephalitis. METHODS A retrospective, cross-sectional study was conducted to compare E30 and JEV acute meningitis/encephalitis cases. We collected and analyzed the clinical records of 43 E30 confirmed cases (E30 group) and 60 JEV confirmed cases (JEV group). Clinical data were compared between the E30 and the JEV groups. Differences of clinical parameters were analyzed by certain statistical tests. RESULTS Fever, headache, and vomiting were the most common symptoms in both the E30 and the JEV groups. Combined symptoms of headache and vomiting and the triad of symptoms of fever, headache, and vomiting were observed in more patients in the E30 group (E30 vs. JEV: 19% vs. 0%, p < 0.001; 74% vs. 27%, p < 0.001, respectively). On the other hand, strong neurological symptoms such as seizure (5% vs. 73%, p < 0.001) and altered consciousness (12% vs. 97%, p < 0.001) were manifested primarily in the JEV group. CSF leukocytosis was observed predominantly in the E30 group (80 vs. 18 cells/μL, p = 0.003), whereas decreasing CSF sugar level was observed predominantly in the JEV group (58.7 vs. 46.9 mg/dL, p < 0.001). CONCLUSION Fever, headache, vomiting, absence of neurological symptoms (seizure, altered consciousness), and presence of CSF leukocytosis are important parameters to consider in differentiating E30 from JEV cases during early infection. Then, proper measures can be adopted immediately to prevent the spread of the disease in the affected areas.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, 852-8523 Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|