1
|
Pergolizzi JV, LeQuang JA, Coluzzi F, El-Tallawy SN, Magnusson P, Ahmed RS, Varrassi G, Porpora MG. Managing the neuroinflammatory pain of endometriosis in light of chronic pelvic pain. Expert Opin Pharmacother 2024; 25:2267-2282. [PMID: 39540855 DOI: 10.1080/14656566.2024.2425727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Endometriosis affects 5% to 10% of reproductive age women and may be associated with severely painful and debilitating symptoms as well as infertility. Endometriosis involves hormonal fluctuations, angiogenesis, neurogenesis, vascular changes and neuroinflammatory processes. The neuroinflammatory component of endometriosis makes it a systemic disorder, similar to other chronic epithelial inflammatory conditions. AREAS COVERED Inflammatory mediators, mast cells, macrophages, and glial cells play a role in endometriosis which can result in peripheral sensitization and central sensitization. There is overlap between chronic pelvic pain and endometriosis, but the two conditions are distinct. Effective treatment is based on a personalized approach using a variety of pharmacologic and other treatment options. EXPERT OPINION Hormonal therapies are a first-line approach, but endometriosis is a challenging condition to manage. 'Add-back' hormonal therapy has been effective. Painful symptoms are likely caused by the interplay of multiple factors and there may be a neuropathic component. Analgesics and anticonvulsants may be appropriate. A holistic approach and multimodal treatments are likely to be most effective. In addition to pharmacologic treatment, there are surgical and alternative medicine options. Endometriosis may also have a psychological component.
Collapse
Affiliation(s)
| | | | - Flaminia Coluzzi
- Department Medical-Surgical and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Anesthesia Care and Pain Medicine, University Hospital Sant'Andrea, Rome, Italy
| | - Salah N El-Tallawy
- Anesthesia and pain management department, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh. Saudi Arabia and Minia University, NCI, Cairo University, Cairo, Egypt
| | - Peter Magnusson
- School of Medical Sciences, Orebro University, Orebro, Sweden and Center for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Maria Grazia Porpora
- Department of Maternal and Infantile Health and Urology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Micheli L, Lucarini E, Nobili S, Bartolucci G, Pallecchi M, Toti A, Ferrara V, Ciampi C, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-palmitoylethanolamine Contributes to Morphine Efficacy Against Neuropathic Pain: Implication of Mast Cells and Glia. Curr Neuropharmacol 2024; 22:88-106. [PMID: 36443965 PMCID: PMC10716887 DOI: 10.2174/1570159x21666221128091453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In the current management of neuropathic pain, in addition to antidepressants and anticonvulsants, the use of opioids is wide, despite their related and well-known issues. OBJECTIVE N-palmitoylethanolamine (PEA), a natural fatty-acid ethanolamide whose anti-inflammatory, neuroprotective, immune-modulating and anti-hyperalgesic activities are known, represents a promising candidate to modulate and/or potentiate the action of opioids. METHODS This study was designed to evaluate if the preemptive and morphine concomitant administration of ultramicronized PEA, according to fixed or increasing doses of both compounds, delays the onset of morphine tolerance and improves its analgesic efficacy in the chronic constriction injury (CCI) model of neuropathic pain in rats. RESULTS Behavioral experiments showed that the preemptive and co-administration of ultramicronized PEA significantly decreased the effective dose of morphine and delayed the onset of morphine tolerance. The activation of spinal microglia and astrocytes, commonly occurring both on opioid treatment and neuropathic pain, was investigated through GFAP and Iba-1 immunofluorescence. Both biomarkers were found to be increased in CCI untreated or morphine treated animals in a PEA-sensitive manner. The increased density of endoneural mast cells within the sciatic nerve of morphine-treated and untreated CCI rats was significantly reduced by ultramicronized PEA. The decrease of mast cell degranulation, evaluated in terms of reduced plasma levels of histamine and N-methyl-histamine metabolite, was mainly observed at intermediate-high doses of ultramicronized PEA, with or without morphine. CONCLUSION Overall, these results show that the administration of ultramicronized PEA in CCI rats according to the study design fully fulfilled the hypotheses of this study.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Florence, 50019, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Florence, 50019, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Atiakshin D, Patsap O, Kostin A, Mikhalyova L, Buchwalow I, Tiemann M. Mast Cell Tryptase and Carboxypeptidase A3 in the Formation of Ovarian Endometrioid Cysts. Int J Mol Sci 2023; 24:ijms24076498. [PMID: 37047472 PMCID: PMC10095096 DOI: 10.3390/ijms24076498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Olga Patsap
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | | | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | |
Collapse
|
4
|
Neto AC, Santos-Pereira M, Abreu-Mendes P, Neves D, Almeida H, Cruz F, Charrua A. The Unmet Needs for Studying Chronic Pelvic/Visceral Pain Using Animal Models. Biomedicines 2023; 11:biomedicines11030696. [PMID: 36979674 PMCID: PMC10045296 DOI: 10.3390/biomedicines11030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
The different definitions of chronic pelvic/visceral pain used by international societies have changed over the years. These differences have a great impact on the way researchers study chronic pelvic/visceral pain. Recently, the role of systemic changes, including the role of the central nervous system, in the perpetuation and chronification of pelvic/visceral pain has gained weight. Consequently, researchers are using animal models that resemble those systemic changes rather than using models that are organ- or tissue-specific. In this review, we discuss the advantages and disadvantages of using bladder-centric and systemic models, enumerating some of the central nervous system changes and pain-related behaviors occurring in each model. We also present some drawbacks when using animal models and pain-related behavior tests and raise questions about possible, yet to be demonstrated, investigator-related bias. We also suggest new approaches to study chronic pelvic/visceral pain by refining existing animal models or using new ones.
Collapse
Affiliation(s)
- Ana Catarina Neto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Mariana Santos-Pereira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Abreu-Mendes
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Delminda Neves
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Henrique Almeida
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Ginecologia-Obstetrícia, Hospital-CUF Porto, 4100-180 Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Physiology and Surgery Department, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
5
|
Rodent Animal Models of Endometriosis-Associated Pain: Unmet Needs and Resources Available for Improving Translational Research in Endometriosis. Int J Mol Sci 2023; 24:ijms24032422. [PMID: 36768741 PMCID: PMC9917069 DOI: 10.3390/ijms24032422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic pain induced by endometriosis is a maladaptive pain experienced by half of women with this disease. The lack of pharmacological treatments suitable for the long-term relief of endometriosis-associated pain, without an impact on fertility, remains an urgent unmet need. Progress has been slowed by the absence of a reproducible rodent endometriosis model that fully replicates human physiopathological characteristics, including pain symptoms. Although pain assessment in rodents is a complicated task requiring qualified researchers, the choice of the behavioral test is no less important, since selecting inappropriate tests can cause erroneous data. Pain is usually measured with reflex tests in which hypersensitivity is evaluated by applying a noxious stimulus, yet this ignores the associated emotional component that could be evaluated via non-reflex tests. We conducted a systematic review of endometriosis models used in rodents and the number of them that studied pain. The type of behavioral test used was also analyzed and classified according to reflex and non-reflex tests. Finally, we determined the most used reflex tests for the study of endometriosis-induced pain and the main non-reflex behavioral tests utilized in visceral pain that can be extrapolated to the study of endometriosis and complement traditional reflex tests.
Collapse
|
6
|
Huang Z, Wang G, Yang B, Li P, Yang T, Wu Y, Yang X, Liu J, Li J. Mechanism of ketotifen fumarate inhibiting renal calcium oxalate stone formation in SD rats. Biomed Pharmacother 2022; 151:113147. [PMID: 35643070 DOI: 10.1016/j.biopha.2022.113147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To investigate the inhibitory effect of ketotifen fumarate (KFA), a mast cell membrane stabilizer, on renal calcium oxalate stone (CaOx) formation and its possible molecular mechanism. METHODS We used the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database for functional and pathway enrichment analyses of osteopontin (OPN), CD44 and fibronectin (FN). Blood biochemistry, reactive oxygen species ratio (ROS), mast cells, proteins (CD44, OPN and FN) and OPN receptor integrin family genes were detected by ELISA, flow cytometry, immunohistochemistry and RT-QPCR, respectively. RESULTS The crystal area of CaOx in the KFA and Control group was significantly smaller than that in the Model group. The number of activated mast cells, the expression levels of OPN and CD44 in the Control and KFA groups were significantly lower than those in the Model group, and the percentage of ROS in the KFA group was also significantly lower than that in the Model group. The mRNA expression levels of ITGB1, ITGA9, ITGAV and ITGA4 genes in the prominent OPN receptor integrin family increased significantly in the Model group. CONCLUSIONS Ketotifen can effectively inhibit the crystal formation of CaOx and reduce the inflammatory response of tissue in SD rats. The mechanism may be to reduce the infiltration and activation of mast cells in renal tissue and down-regulate the expression of OPN, CD44 and FN in renal tubules and renal interstitium. And affect the synthesis of integrins (ITGA9, ITGA4, ITGAV, ITGB1, ITGB3 and ITGB5) and ROS.
Collapse
Affiliation(s)
- Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Xing Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China.
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China.
| |
Collapse
|
7
|
Nunez-Badinez P, De Leo B, Laux-Biehlmann A, Hoffmann A, Zollner TM, Saunders PT, Simitsidellis I, Charrua A, Cruz F, Gomez R, Tejada MA, McMahon SB, Lo Re L, Barthas F, Vincent K, Birch J, Meijlink J, Hummelshoj L, Sweeney PJ, Armstrong JD, Treede RD, Nagel J. Preclinical models of endometriosis and interstitial cystitis/bladder pain syndrome: an Innovative Medicines Initiative-PainCare initiative to improve their value for translational research in pelvic pain. Pain 2021; 162:2349-2365. [PMID: 34448751 PMCID: PMC8374713 DOI: 10.1097/j.pain.0000000000002248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.
Collapse
Affiliation(s)
| | - Bianca De Leo
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Anja Hoffmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Philippa T.K. Saunders
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ana Charrua
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Raul Gomez
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | | | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Laure Lo Re
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Judy Birch
- Pelvic Pain Support Network, Poole, United Kingdom
| | - Jane Meijlink
- International Painful Bladder Foundation, Naarden, the Netherlands
| | | | | | - J. Douglas Armstrong
- Actual Analytics, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Nagel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
8
|
Cacciottola L, Donnez J, Dolmans MM. Can Endometriosis-Related Oxidative Stress Pave the Way for New Treatment Targets? Int J Mol Sci 2021; 22:ijms22137138. [PMID: 34281188 PMCID: PMC8267660 DOI: 10.3390/ijms22137138] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Endometriosis is a disease of reproductive age characterized by chronic pelvic pain and infertility. Its pathogenesis is complex and still partially unexplained. However, there is increasing evidence of the role of chronic inflammation, immune system dysregulation, and oxidative stress in its development and progression. The latter appears to be involved in multiple aspects of the disease. Indeed, disease progression sustained by a hyperproliferative phenotype can be related to reactive oxygen species (ROS) imbalance, as numerous experiments using drugs to counteract hyperproliferation have shown in recent years. Chronic pelvic pain is also associated with cell function dysregulation favoring chronic inflammation and oxidative stress, specifically involving macrophages and mast cell activation. Moreover, there is increasing evidence of a role for ROS and impaired mitochondrial function not only as deleterious effectors of the ovarian reserve in patients with endometriomas but also in terms of oocyte quality and, hence, embryo development impairment. Targeting oxidative stress looks to be a promising strategy to both curb endometriotic lesion progression and alleviate endometriosis-associated symptoms of chronic pain and infertility. More investigations are nevertheless needed to develop effective therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Jacques Donnez
- Society for Research into Infertility, 1150 Brussels, Belgium;
- Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Department of Gynecology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-(0)2-764-5287
| |
Collapse
|
9
|
Ahmed I, Rehman SU, Shahmohamadnejad S, Zia MA, Ahmad M, Saeed MM, Akram Z, Iqbal HMN, Liu Q. Therapeutic Attributes of Endocannabinoid System against Neuro-Inflammatory Autoimmune Disorders. Molecules 2021; 26:3389. [PMID: 34205169 PMCID: PMC8199938 DOI: 10.3390/molecules26113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer-both in vivo and in vitro clinical trials-has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, School of medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran;
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan;
| | - Muhammad Muzammal Saeed
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Zain Akram
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| |
Collapse
|
10
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
11
|
della Rocca G, Gamba D. Chronic Pain in Dogs and Cats: Is There Place for Dietary Intervention with Micro-Palmitoylethanolamide? Animals (Basel) 2021; 11:952. [PMID: 33805489 PMCID: PMC8065429 DOI: 10.3390/ani11040952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The management of chronic pain is an integral challenge of small animal veterinary practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and others. In order to limit adverse effects and tolerance development, they are often combined with non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in several food sources and considered a body's own analgesic. The receptor-dependent control of non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Davide Gamba
- Operational Unit of Anesthesia, Centro Veterinario Gregorio VII, 00165 Roma, Italy;
- Freelance, DG Vet Pain Therapy, 24124 Bergamo, Italy
| |
Collapse
|
12
|
Petrosino S, Schiano Moriello A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries-A Systematic Review. Int J Mol Sci 2020; 21:E9526. [PMID: 33333772 PMCID: PMC7765232 DOI: 10.3390/ijms21249526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a physiological response aimed at maintaining the homodynamic balance and providing the body with the fundamental resource of adaptation to endogenous and exogenous stimuli. Although the response is initiated with protective purposes, the effect may be detrimental when not regulated. The physiological control of neuroinflammation is mainly achieved via regulatory mechanisms performed by particular cells of the immune system intimately associated with or within the nervous system and named "non-neuronal cells." In particular, mast cells (within the central nervous system and in the periphery) and microglia (at spinal and supraspinal level) are involved in this control, through a close functional relationship between them and neurons (either centrally, spinal, or peripherally located). Accordingly, neuroinflammation becomes a worsening factor in many disorders whenever the non-neuronal cell supervision is inadequate. It has been shown that the regulation of non-neuronal cells-and therefore the control of neuroinflammation-depends on the local "on demand" synthesis of the endogenous lipid amide Palmitoylethanolamide and related endocannabinoids. When the balance between synthesis and degradation of this bioactive lipid mediator is disrupted in favor of reduced synthesis and/or increased degradation, the behavior of non-neuronal cells may not be appropriately regulated and neuroinflammation exceeds the physiological boundaries. In these conditions, it has been demonstrated that the increase of endogenous Palmitoylethanolamide-either by decreasing its degradation or exogenous administration-is able to keep neuroinflammation within its physiological limits. In this review the large number of studies on the benefits derived from oral administration of micronized and highly bioavailable forms of Palmitoylethanolamide is discussed, with special reference to neuroinflammatory disorders.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| |
Collapse
|
13
|
Lorzadeh N, Kazemirad N. The Role of Natural Killer Cells and Mast Cells in Female Infertility and Associated Treatment Outcomes. CURRENT WOMEN S HEALTH REVIEWS 2020. [DOI: 10.2174/1573404816666200206111550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
One of the identified causes of infertility has been related to the inability
to regulate immunological tolerance of the maternal immune system against the developing fetus,
thereby inhibiting the process of implantation. Various immune cells have been identified to contribute
to the concept of un-regulated immunological tolerance, such as mast cells (MCs) and natural
killer cells (NK). There are available evidences that MC play a role in the pathogenesis of infertility
diseases like endometriosis and NK in specific infertility disease.
Objective:
Presently, there are studies to formulate and develop immunosuppressive drugs in order
to suppress or inhibit the process of immune rejection caused by maternal immune cells. In addition,
there have been reports regarding the use of steroids for the treatment of miscarriage that can
inhibit the activity of most immune cells.
Conclusion:
This review is to give a comprehensive mini-review on the role of immune cells, especially
mast cells and NK cells in developing novel infertility treatment.
Collapse
Affiliation(s)
- Nahid Lorzadeh
- Department Obstetrics and Gynecology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nastaran Kazemirad
- Student Research Committee, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Costantini R, Affaitati G, Fiordaliso M, Giamberardino MA. Viscero-visceral hyperalgesia in dysmenorrhoea plus previous urinary calculosis: Role of myofascial trigger points and their injection treatment in the referred area. Eur J Pain 2020; 24:933-944. [PMID: 32034979 DOI: 10.1002/ejp.1542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Women with dysmenorrhoea plus symptomatic urinary calculosis experience enhanced pain and referred muscle hyperalgesia from both conditions than women with one condition only (viscero-visceral hyperalgesia). The study aimed at verifying if enhanced dysmenorrhoea persists after urinary stone elimination in comorbid women and if local anaesthetic inactivation of myofascial trigger points (TrPs) in the lumbar area (of urinary pain referral) also relieves dysmenorrhoea. METHODS Thirty-one women with dysmenorrhoea plus previous urinary calculosis (Dys+PrCal) and lumbar TrPs, and 33 women with dysmenorrhoea without calculosis (Dys) underwent a 1-year assessment of menstrual pain and muscle hyperalgesia in the uterus-referred area (electrical pain threshold measurement in rectus abdominis, compared with thresholds of 33 healthy controls). At the end of the year, 16 comorbid patients underwent inactivation of TrPs through anaesthetic injections, whereas the remaining 12 received no TrP treatment. Both groups were monitored for another year at the end of which thresholds were re-measured. RESULTS In year1, Dys+PrCal presented significantly more painful menstrual cycles and lower abdominal thresholds than Dys, thresholds of both groups being significantly lower than normal (p < .001). Anaesthetic treatment versus no treatment of the lumbar TrP significantly reduced the number of painful cycles during year2 and significantly increased the abdominal thresholds (p < .0001). CONCLUSION Viscero-visceral hyperalgesia between uterus and urinary tract may persist after stone elimination due to nociceptive inputs from TrPs in the referred urinary area, since TrPs treatment effectively reverses the enhanced menstrual symptoms. The procedure could represent an integral part of the management protocol in these conditions. SIGNIFICANCE A past pain process from an internal organ can continue enhancing pain expression from a painful disease in another neuromerically connected organ (viscero-visceral hyperalgesia) if secondary myofascial trigger points (TrPs) developed in the referred area at the time of the previous visceral disease. Inactivation of these TrPs reverts the enhancement. Assessment and treatment of TrPs in referred areas from past visceral pain conditions should be systematically carried out to better control pain from current diseases in other viscera.
Collapse
Affiliation(s)
- Raffaele Costantini
- Institute of Surgical Pathology, Department of Medical, Oral and Biotechnological Sciences, "G D'Annunzio" University of Chieti, Chieti, Italy
| | - Giannapia Affaitati
- Geriatrics Clinic, Department of Medicine and Science of Aging, "G D'Annunzio" University of Chieti, Chieti, Italy
| | - Michele Fiordaliso
- Kliniske Abteilung für Allgemeine Viszeral und Thoraxchirurgie, Klinikum Darmstadt, Darmstadt, Germany
| | - Maria Adele Giamberardino
- Geriatrics Clinic, Department of Medicine and Science of Aging, "G D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
15
|
Petrosino S, Schiano Moriello A, Verde R, Allarà M, Imperatore R, Ligresti A, Mahmoud AM, Peritore AF, Iannotti FA, Di Marzo V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation 2019; 16:274. [PMID: 31878942 PMCID: PMC6933707 DOI: 10.1186/s12974-019-1671-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) is a pleiotropic endogenous lipid mediator currently used as a "dietary food for special medical purposes" against neuropathic pain and neuro-inflammatory conditions. Several mechanisms underlie PEA actions, among which the "entourage" effect, consisting of PEA potentiation of endocannabinoid signaling at either cannabinoid receptors or transient receptor potential vanilloid type-1 (TRPV1) channels. Here, we report novel molecular mechanisms through which PEA controls mast cell degranulation and substance P (SP)-induced histamine release in rat basophilic leukemia (RBL-2H3) cells, a mast cell model. METHODS RBL-2H3 cells stimulated with SP were treated with PEA in the presence and absence of a cannabinoid type-2 (CB2) receptor antagonist (AM630), or a diacylglycerol lipase (DAGL) enzyme inhibitor (OMDM188) to inhibit the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The release of histamine was measured by ELISA and β-hexosaminidase release and toluidine blue staining were used as indices of degranulation. 2-AG levels were measured by LC-MS. The mRNA expression of proposed PEA targets (Cnr1, Cnr2, Trpv1, Ppara and Gpr55), and of PEA and endocannabinoid biosynthetic (Napepld, Dagla and Daglb) and catabolic (Faah, Naaa and Mgl) enzymes were also measured. The effects of PEA on the activity of DAGL-α or -β enzymes were assessed in COS-7 cells overexpressing the human recombinant enzyme or in RBL-2H3 cells, respectively. RESULTS SP increased the number of degranulated RBL-2H3 cells and triggered the release of histamine. PEA counteracted these effects in a manner antagonized by AM630. PEA concomitantly increased the levels of 2-AG in SP-stimulated RBL-2H3 cells, and this effect was reversed by OMDM188. PEA significantly stimulated DAGL-α and -β activity and, consequently, 2-AG biosynthesis in cell-free systems. Co-treatment with PEA and 2-AG at per se ineffective concentrations downmodulated SP-induced release of histamine and degranulation, and this effect was reversed by OMDM188. CONCLUSIONS Activation of CB2 underlies the inhibitory effects on SP-induced RBL-2H3 cell degranulation by PEA alone. We demonstrate for the first time that the effects in RBL-2H3 cells of PEA are due to the stimulation of 2-AG biosynthesis by DAGLs.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy.
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy
| | - Roberta Imperatore
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Ali Mokhtar Mahmoud
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessio Filippo Peritore
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, Canada.
| |
Collapse
|
16
|
Zheng P, Mei J, Leng J, Jia S, Gu Z, Chen S, Zhang W, Cheng A, Guo D, Lang J. Evaluation of the brain functional activities in rats various location-endometriosis pain model. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:767. [PMID: 32042783 DOI: 10.21037/atm.2019.11.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Endometriosis (EM) is a common gynecological disease in women of reproductive age. These patients in approximately 80% suffer the various degree pain. This study will investigate synergistically the mechanism of the higher-position central sensitization and offer a pre-clinical experiment evidence for treatment of various location-EM patients with pain. Methods Twenty Sprague-Dawley rats were induced three types EM including abdominal EM (n=5), gastrocnemius EM (n=5) and ovary EM group (n=5) and one sham control group (n=5). All groups were measured the pain sensitization by hotplate test, then scanned by the functional magnetic resonance imaging (fMRI). The resting-state fMRI (rs-fMRI) date was analyzed using regional homogeneity (ReHo) approach to find out the abnormal functional activity brain regions. Nissl staining method observed the state of neurons in aberrant ReHo signal brain regions. Results Rats with EM pain sensitization were increased in abdominal EM and gastrocnemius EM than ovary EM group and sham control. The ReHo value is decreased in gastrocnemius EM in right thalamus and left olfactory tubercle compared with other three groups. The number of neurons was decreased; cavitation around nucleus, and pyknotic homogenous nuclei. Nissl bodies were stained deeply, and the shape was irregular in gastrocnemius EM by Nissl staining in right thalamus. In left olfactory tubercle, there was no significant difference in 4 groups. Conclusions The thalamus may be the potential key brain region for the central sensitization mechanism of various location-EM pain. The oxidative activation may be weakened in thalamus in gastrocnemius EM group with more severe pain. This finding could lend support for future research on the imageology and pathology of various location-EM pain.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian Mei
- Physical Education College, Soochow University, Suzhou 215000, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shuangzheng Jia
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhiyue Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sikai Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wen Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aoshuang Cheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dalong Guo
- Air Force Characteristic Medical Center, PLA Air Force Medical University, Beijing 100142, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
17
|
Co-occurrence of pain syndromes. J Neural Transm (Vienna) 2019; 127:625-646. [DOI: 10.1007/s00702-019-02107-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022]
|
18
|
Costantini R. Hartmann’s Procedure for Complicated Diverticulitis: A Critical Reappraisal. THE OPEN ANESTHESIA JOURNAL 2019; 13:121-131. [DOI: 10.2174/2589645801913010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 10/13/2019] [Indexed: 01/03/2025]
Abstract
Background:Complicated diverticulitis in advanced stages (Hinchey III, IV) is an important surgical emergency for which Hartmann’s Procedure (HP) has traditionally represented the gold standard treatment. HP, however, has high mortality and morbidity and a low percentage of reanastomosis rate. Increasing efforts have therefore been made in recent years to propose alternatives.Objective:To critically review studies on the outcome of HPvs.alternative procedures for complicated diverticulitis Resection-Anastomosis without [RA] or with [RAS] protective stomia, Laparoscopic Lavage [LL].Methods:Literature search in PubMed for original and review papers in the past 20 years (up to July 2019) with keywords: Hartmann’s procedure, complicated diverticulitis.Results:Comparative studies on HPvs. RA/RAS overall reveal better outcomes of RA/RAS,i.e., reduced mortality, morbidity and healthcare costs. However, most studies have limitations due to lack of randomization, limited number of patients and significant impact of surgeons’ specialization and hospital setting/organization in the decision of the type of surgery to perform. These factors might induce preferential allocation of the most critical patients (advanced age, hemodynamic instability, numerous comorbidities) to HP rather than RA/RAS. LL shows promising results but has been tested in a too small number of trialsvs. HP to draw definite conclusions.Conclusion:Though valid alternatives to HP are being increasingly employed, consensus on the best approach to complicated diverticulitis has not yet been reached. HP is still far from representing an obsolete intervention, rather it appears to be the preferred choice in the most critical patients.
Collapse
|
19
|
Stochino Loi E, Pontis A, Cofelice V, Pirarba S, Fais MF, Daniilidis A, Melis I, Paoletti AM, Angioni S. Effect of ultramicronized-palmitoylethanolamide and co-micronized palmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: An open-label pilot study. Int J Womens Health 2019; 11:443-449. [PMID: 31496832 PMCID: PMC6697671 DOI: 10.2147/ijwh.s204275] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of the present study was to evaluate the effectiveness of the ultramicronized-palmitoylethanolamide (um-PEA) and co-micronised palmitoylethanolamide/polydatin m(PEA/PLD) in the management of chronic pelvic pain related to endometriosis in patients desiring pregnancy. Patients and methods Thirty symptomatic women with laparoscopic diagnosis of endometriosis and pregnancy desire were enrolled. Patients were treated with um-PEA twice daily for 10 days followed by m(PEA/PLD) twice daily for 80 days. Intensity of chronic pelvic pain, dyspareunia, dysmenorrhea, dyschezia, and dysuria were evaluated at baseline, after 10, 30, 60, 90 days and after 30 days from the end of treatment, by VAS. Quality of life and women's psychological well-being were evaluated at baseline and at the end of the treatment after 90 days with 36-Item Short Form Health Survey questionnaire and Symptom Check list-90 questionnaire, respectively. All collected data were analyzed with the non-parametric Wilcoxon test. Results At the end of the treatment, all patients showed a significant improvement in chronic pelvic pain, deep dyspareunia, dysmenorrhea, dyschezia, as well as in quality of life and psychological well-being. Conclusion In spite of the study's limited sample size and the open-label design, this research suggests the efficacy of um-PEA and m(PEA/PLD) in reducing painful symptomatology and improving quality of life as well as psychological well-being in patients suffering from endometriosis. Additionally, this treatment did not show any serious side effect, proving particularly suitable for women with pregnancy desire and without other infertility factors.
Collapse
Affiliation(s)
- Emanuela Stochino Loi
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandro Pontis
- Division of Gynecology and Obstetric, Hospital San Francesco, Nuoro, Italy
| | - Vito Cofelice
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Silvia Pirarba
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Francesca Fais
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Angelos Daniilidis
- 2nd University Department of Obstetrics and Gynecology, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Irene Melis
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Maria Paoletti
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Angioni
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
20
|
van Aken MA, Groothuis PG, Panagiotou M, Duin MV, Nap AW, van Rijn TC, Kozicz T, Braat DD, Peeters AB. An objective and automated method for evaluating abdominal hyperalgesia in a rat model for endometriosis. Lab Anim 2019; 54:365-372. [PMID: 31366270 DOI: 10.1177/0023677219856915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic pain and subfertility are the main symptoms of concern in women with endometriosis. In order to find new therapeutic options to suppress the pain, translational animal models are indispensable. We have developed a new automated, experimental setup, with full consideration for animal wellbeing, to determine whether operant behaviour can reveal abdominal hyperalgesia in rats with surgically-induced endometriosis, in order to assess whether abdominal hyperalgesia affect behavioural parameters. Endometriosis was induced by transplantation of uterine fragments in the abdominal cavity. Control groups consisted of sham-operated rats and non-operated rats. We have developed an operant chamber (Skinnerbox) which includes a barrier. The rat can climb the barrier in order to reach the food pellet, increasing in this way the pressure to the abdomen. We show that endometriosis rats collect significantly less sugar pellets when compared with the control rats after the introduction of the barrier. In the Skinnerbox experiment, we showed that in a positive operant setting, the introduction of a barrier results in a contrast of operant behaviour of endometriosis rats and control groups, perchance as a result of abdominal discomfort/hyperalgesia due to surgically-induced endometriosis. This is a promising start for the further development of a refined animal model to monitor abdominal discomfort/hyperalgesia in rats with surgically-induced endometriosis.
Collapse
Affiliation(s)
- Mieke Aw van Aken
- Department of Anatomy, Radboud University Medical Centre Nijmegen, The Netherlands.,Department of Gynaecology and Obstetrics, Rijnstate, The Netherlands.,Department of Obstetrics and Gynaecology, Radboud University Medical Centre Nijmegen, The Netherlands
| | | | | | | | - Annemiek W Nap
- Department of Gynaecology and Obstetrics, Rijnstate, The Netherlands
| | - Tineke Cm van Rijn
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Centre Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, USA
| | - Didi Dm Braat
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre Nijmegen, The Netherlands
| | - Ard Bwmm Peeters
- Department of Anatomy, Radboud University Medical Centre Nijmegen, The Netherlands
| |
Collapse
|
21
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front Pharmacol 2018; 9:249. [PMID: 29615912 PMCID: PMC5870042 DOI: 10.3389/fphar.2018.00249] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability compared to naïve PEA, and its ability to reach peripheral and central tissues under healthy and local inflammatory conditions (carrageenan paw edema); (2) to better characterize the molecular pathways involved in PEA-um action, particularly at the spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall plasma levels were higher in both healthy and carrageenan-injected rats administered [13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um down-regulated distinct spinal inflammatory and oxidative pathways. These last findings instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in inflammatory pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | | | | | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Alessio F. Peritore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| |
Collapse
|
23
|
Zhu TH, Ding SJ, Li TT, Zhu LB, Huang XF, Zhang XM. Estrogen is an important mediator of mast cell activation in ovarian endometriomas. Reproduction 2018; 155:73-83. [DOI: 10.1530/rep-17-0457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 01/21/2023]
Abstract
Endometriosis is an estrogen-dependent disease. Previous research has shown that abnormal enzymes associated with estrogen (E2) metabolism and an increased number of mast cells (MCs) in endometriomas are implicated in the pathogenesis of endometriosis. However, it remains unclear how MCs mediate the role of E2 in endometriosis. Accordingly, we investigated whether E2 was associated with the number of MCs, and the rate of degranulation, in local ovarian endometriomas, as well as the role of E2 on MCs during the pathogenesis of endometriosis. Using enzyme-linked immunosorbent assay and immunohistochemistry, we found that concentrations of E2, and the number and activity of MCs, were significantly higher in ovarian endometriomas than in controls, and that these parameters were correlated with the severity of endometriosis-associated dysmenorrhea. By measuring the release of hexosaminidase, we found that the rate of RBL2H3 cell degranulation increased after E2 treatment. Furthermore, activation of RBL2H3 cells by E2 was found to trigger the release of biologically active nerve growth factor, which promotes neurite outgrowth in PC12 cells and also sensitizes dorsal root ganglion cells via upregulation ofNav1.8and transient receptor potential cation channel (subfamily V member 1) expression levels. When treated with E2, endometriotic cells could promote RBL2H3 cell recruitment by upregulating expression levels of stem cell factor, transforming growth factor-β and monocyte chemoattractant protein-1; these observations were not evident with control endometrial cells. Thus, elevated E2 concentrations may be a key factor for degranulation and recruitment of MCs in ovarian endometriomas, which play a key role in endometriosis-associated dysmenorrhea.
Collapse
|
24
|
Giamberardino MA, Affaitati G, Costantini R, Cipollone F, Martelletti P. Calcitonin gene-related peptide receptor as a novel target for the management of people with episodic migraine: current evidence and safety profile of erenumab. J Pain Res 2017; 10:2751-2760. [PMID: 29263689 PMCID: PMC5727105 DOI: 10.2147/jpr.s128143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Migraine is a highly disabling neurological condition, and preventative treatment still remains problematic, due to aspecificity of the majority of the currently available prophylactic drugs. Calcitonin-gene-related peptide (CGRP) plays a crucial role in migraine pathophysiology; agents aimed at blocking its activity have, therefore, been developed in recent years, among which are monoclonal antibodies (mAbs) against CGRP, to prevent migraine. Erenumab is the only mAb that targets the CGRP receptor instead of the ligand, with high specificity and affinity of binding. This review will report on the most recent data on erenumab characteristics and on the results of clinical trials on its employment in the prevention of episodic migraine (4–14 monthly migraine days): one Phase II and two Phase III trials (completed) and one Phase III trial (ongoing). Monthly subcutaneous administration (70 mg or 140 mg) of erenumab vs placebo for 3–6 months showed significantly higher efficacy in reducing the mean monthly number of migraine days and the use of migraine-specific medication, and in decreasing physical impairment and impact of migraine on everyday activities (P<0.001). A favorable safety profile was demonstrated by the lack of significant differences in the occurrence of adverse events in erenumab-treated vs placebo-treated patients. Global results so far obtained point to erenumab as a new promising candidate for the preventative treatment of episodic migraine. Licence applications for erenumab were recently submitted to the Food and Drug Administration in the USA and European Medicines Agency in Europe (May/June 2017).
Collapse
Affiliation(s)
- Maria Adele Giamberardino
- Department of Medicine and Science of Aging, Headache Center, Geriatrics Clinic and Ce.S.I.-Met, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giannapia Affaitati
- Department of Medicine and Science of Aging, Headache Center, Geriatrics Clinic and Ce.S.I.-Met, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Raffaele Costantini
- Department of Medical, Oral and Biotechnological Sciences, Institute of Surgical Pathology, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Science of Aging, Medical Clinic and Ce.S.I.-Met, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Regional Referral Headache Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Abramo F, Lazzarini G, Pirone A, Lenzi C, Albertini S, Della Valle MF, Schievano C, Vannozzi I, Miragliotta V. Ultramicronized palmitoylethanolamide counteracts the effects of compound 48/80 in a canine skin organ culture model. Vet Dermatol 2017; 28:456-e104. [PMID: 28585337 DOI: 10.1111/vde.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ultramicronized palmitoylethanolamide (PEA-um) has been reported to reduce pruritus and skin lesions in dogs with moderate atopic dermatitis and pruritus. HYPOTHESIS/OBJECTIVES A canine ex vivo skin model was used to investigate the ability of PEA-um to counteract changes induced by compound 48/80, a well-known secretagogue that causes mast cell degranulation. ANIMALS Normal skin was obtained from three donor dogs subjected to surgery for reasons unrelated to the study. METHODS Cultured skin biopsy samples in triplicate were treated with 10 and 100 μg/mL compound 48/80, without or with 30 μM PEA-um. Mast cell (MC) degranulation, histamine release into the culture medium, local microvascular dilatation, epidermal thickness, keratinocyte proliferation and epidermal differentiation markers were evaluated. RESULTS Exposure of the skin organ culture to PEA-um 24 h before and 72 h concomitantly to compound 48/80 resulted in a significant decrease of degranulating MCs. PEA-um also reduced the histamine content in the culture medium by half, although the effect did not reach statistical significance. PEA-um significantly counteracted vasodilation induced by 100 μg/mL compound 48/80. Finally, PEA-um alone did not induce changes in epidermal thickness, differentiation markers, keratinocyte proliferation, MC density and/or degranulation. CONCLUSIONS AND CLINICAL IMPORTANCE Collectively, these results support the protective action PEA-um on the skin of dogs undergoing allergic changes.
Collapse
Affiliation(s)
- Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Carla Lenzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Sonia Albertini
- Endocrinology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, Pisa, I-56100, Italy
| | - M Frederica Della Valle
- Science Information and Documentation Centre (CeDIS), Innovet Italia SRL, Via Egadi 7, Milano, I-20144, Italy
| | - Carlo Schievano
- Innovative Statistical Research SRL, Via Prato Della Valle 24, Padova, I-35123, Italy
| | - Iacopo Vannozzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| |
Collapse
|
26
|
Cremon C, Stanghellini V, Barbaro MR, Cogliandro RF, Bellacosa L, Santos J, Vicario M, Pigrau M, Alonso Cotoner C, Lobo B, Azpiroz F, Bruley des Varannes S, Neunlist M, DeFilippis D, Iuvone T, Petrosino S, Di Marzo V, Barbara G. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment Pharmacol Ther 2017; 45:909-922. [PMID: 28164346 DOI: 10.1111/apt.13958] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/02/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intestinal immune activation is involved in irritable bowel syndrome (IBS) pathophysiology. While most dietary approaches in IBS involve food avoidance, there are fewer indications on food supplementation. Palmithoylethanolamide, structurally related to the endocannabinoid anandamide, and polydatin are dietary compounds which act synergistically to reduce mast cell activation. AIM To assess the effect on mast cell count and the efficacy of palmithoylethanolamide/polydatin in patients with IBS. METHODS We conducted a pilot, 12-week, randomised, double-blind, placebo-controlled, multicentre study assessing the effect of palmithoylethanolamide/polydatin 200 mg/20 mg or placebo b.d. on low-grade immune activation, endocannabinoid system and symptoms in IBS patients. Biopsy samples, obtained at screening visit and at the end of the study, were analysed by immunohistochemistry, enzyme-linked immunoassay, liquid chromatography and Western blot. RESULTS A total of 54 patients with IBS and 12 healthy controls were enrolled from five European centres. Compared with controls, IBS patients showed higher mucosal mast cell counts (3.2 ± 1.3 vs. 5.3 ± 2.7%, P = 0.013), reduced fatty acid amide oleoylethanolamide (12.7 ± 9.8 vs. 45.8 ± 55.6 pmol/mg, P = 0.002) and increased expression of cannabinoid receptor 2 (0.7 ± 0.1 vs. 1.0 ± 0.8, P = 0.012). The treatment did not significantly modify IBS biological profile, including mast cell count. Compared with placebo, palmithoylethanolamide/polydatin markedly improved abdominal pain severity (P < 0.05). CONCLUSIONS The marked effect of the dietary supplement palmithoylethanolamide/polydatin on abdominal pain in patients with IBS suggests that this is a promising natural approach for pain management in this condition. Further studies are now required to elucidate the mechanism of action of palmithoylethanolamide/polydatin in IBS. ClinicalTrials.gov number, NCT01370720.
Collapse
Affiliation(s)
- C Cremon
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - V Stanghellini
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - M R Barbaro
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - R F Cogliandro
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - L Bellacosa
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - J Santos
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - M Vicario
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - M Pigrau
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - C Alonso Cotoner
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - B Lobo
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - F Azpiroz
- Digestive System Research Unit, Departments of Gastroenterology, Institut de Recerca Vall d'Hebron Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona (Departamento de Medicina) Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | | | - M Neunlist
- Institut des Maladies de l'Appareil Digestif, Hotel Dieu, Nantes, France
| | - D DeFilippis
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - T Iuvone
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - S Petrosino
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Epitech Group SpA, Saccolongo, Italy
| | - V Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - G Barbara
- Department of Medical and Surgical Sciences, Centre for Applied Biomedical Research, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Binda MM, Donnez J, Dolmans MM. Targeting mast cells: a new way to treat endometriosis. Expert Opin Ther Targets 2016; 21:67-75. [DOI: 10.1080/14728222.2017.1260548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maria Mercedes Binda
- Institut de Recherche Expérimentale et Clinique (IREC) Pôle de Gynécologie, Université Catholique de Louvain (UCL), Bruxelles, Belgium
| | - Jacques Donnez
- Society for Research into Infertility (SRI, Société de Recherche pour l’Infertilité), Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Institut de Recherche Expérimentale et Clinique (IREC) Pôle de Gynécologie, Université Catholique de Louvain (UCL), Bruxelles, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
28
|
Di Paola R, Fusco R, Gugliandolo E, Crupi R, Evangelista M, Granese R, Cuzzocrea S. Co-micronized Palmitoylethanolamide/Polydatin Treatment Causes Endometriotic Lesion Regression in a Rodent Model of Surgically Induced Endometriosis. Front Pharmacol 2016; 7:382. [PMID: 27790149 PMCID: PMC5063853 DOI: 10.3389/fphar.2016.00382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
Endometriosis is a chronic, painful disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. Palmitoylethanolamide (PEA), an endogenous fatty acid amide, has anti-inflammatory and neuroprotective effects. PEA lacks free radical scavenging activity, unlike polydatin (PLD), a natural precursor of resveratrol. The aim of this study was to investigate the effect of orally administered co-micronized PEA/polydatin [m(PEA/PLD)] in an autologous rat model of surgically induced endometriosis. Endometriosis was induced in female Wistar albino rats by auto-transplantation of uterine squares (implants) into the intestinal mesentery and peritoneal cavity. Rats were distributed into one control group and one treatment group (10 animals each): m(PEA/PLD) 10 mg/kg/day. At 28 days after surgery the relative volume of the endometrioma was determined. Endometrial-like tissue was confirmed by histology: Masson trichrome and toluidine blue were used to detect fibrosis and mast cells, respectively. The treated group displayed a smaller cyst diameter, with improved fibrosis score and mast cell number decrease. m(PEA/PLD) administration decreased angiogenesis (vascular endothelial growth factor), nerve growth factor, intercellular adhesion molecule, matrix metalloproteinase 9 expression, and lymphocyte accumulation. m(PEA/PLD) treatment also reduced peroxynitrite formation, (poly-ADP)ribose polymerase activation, IkBα phosphorylation and nuclear facor-kB traslocation in the nucleus. Our results suggested that m(PEA/PLD) may be of use to inhibit development of endometriotic lesions in rats.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred HeartRome, Italy
| | - Roberta Granese
- Department of Human Pathology, University of MessinaMessina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint LouisMO, USA
| |
Collapse
|
29
|
Kirkpatrick DR, McEntire DM, Smith TA, Dueck NP, Kerfeld MJ, Hambsch ZJ, Nelson TJ, Reisbig MD, Agrawal DK. Transmission pathways and mediators as the basis for clinical pharmacology of pain. Expert Rev Clin Pharmacol 2016; 9:1363-1387. [PMID: 27322358 PMCID: PMC5215101 DOI: 10.1080/17512433.2016.1204231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mediators in pain transmission are the targets of a multitude of different analgesic pharmaceuticals. This review explores the most significant mediators of pain transmission as well as the pharmaceuticals that act on them. Areas covered: The review explores many of the key mediators of pain transmission. In doing so, this review uncovers important areas for further research. It also highlights agents with potential for producing novel analgesics, probes important interactions between pain transmission pathways that could contribute to synergistic analgesia, and emphasizes transmission factors that participate in transforming acute injury into chronic pain. Expert commentary: This review examines current pain research, particularly in the context of identifying novel analgesics, highlighting interactions between analgesic transmission pathways, and discussing factors that may contribute to the development of chronic pain after an acute injury.
Collapse
Affiliation(s)
- Daniel R. Kirkpatrick
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Dan M. McEntire
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Tyler A. Smith
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Nicholas P. Dueck
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mitchell J. Kerfeld
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Zakary J. Hambsch
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Taylor J. Nelson
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mark D. Reisbig
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Devendra K. Agrawal
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| |
Collapse
|
30
|
Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol 2016; 174:1349-1365. [PMID: 27539936 DOI: 10.1111/bph.13580] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Palmitoylethanolamide (PEA) has emerged as a potential nutraceutical, because this compound is naturally produced in many plant and animal food sources, as well as in cells and tissues of mammals, and endowed with important neuroprotective, anti-inflammatory and analgesic actions. Several efforts have been made to identify the molecular mechanism of action of PEA and explain its multiple effects both in the central and the peripheral nervous system. Here, we provide an overview of the pharmacology, efficacy and safety of PEA in neurodegenerative disorders, pain perception and inflammatory diseases. The current knowledge of new formulations of PEA with smaller particle size (i.e. micronized and ultra-micronized) when given alone or in combination with antioxidant flavonoids (i.e. luteolin) and stilbenes (i.e. polydatin) is also reviewed. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy.,Epitech Group S.p.A., Saccolongo (PD), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| |
Collapse
|
31
|
|
32
|
|
33
|
Sanchez AM, Cioffi R, Viganò P, Candiani M, Verde R, Piscitelli F, Di Marzo V, Garavaglia E, Panina-Bordignon P. Elevated Systemic Levels of Endocannabinoids and Related Mediators Across the Menstrual Cycle in Women With Endometriosis. Reprod Sci 2016; 23:1071-9. [PMID: 26887427 DOI: 10.1177/1933719116630414] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cannabinoids and modulators of the endocannabinoid system affect specific mechanisms that are critical to the establishment and development of endometriosis. The aim of this study was to measure the systemic levels of endocannabinoids and related mediators in women with and without endometriosis and to investigate whether such levels correlated with endometriosis-associated pain. Plasma and endometrial biopsies were obtained from women with a laparoscopic diagnosis of endometriosis (n = 27) and no endometrial pathology (n = 29). Plasma levels of endocannabinoids (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) and related mediators (N-oleoylethanolamine [OEA] and N-palmitoylethanolamine [PEA]), messenger RNA expression of some of their receptors (cannabinoid receptor type 1 [CB1], CB2, transient receptor potential vanilloid type [TRPV1]), and the enzymes involved in the synthesis (N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [NAPE-PLD]) and degradation (fatty acid amide hydrolase 1 [FAAH]) of AEA, OEA, and PEA were evaluated in endometrial stromal cells. The systemic levels of AEA, 2-AG, and OEA were elevated in endometriosis in the secretory phase compared to controls. The expression of CB1 was higher in secretory phase endometrial stromal cells of controls versus endometriosis. Similar expression levels of CB2, TRPV1, NAPE-PLD, and FAAH were detected in controls and endometriosis. Patients with moderate-to-severe dysmenorrhea and dyspareunia showed higher AEA and PEA levels than those with low-to-moderate pain symptoms, respectively. The association of increased circulating AEA and 2-AG with decreased local CB1 expression in endometriosis suggests a negative feedback loop regulation, which may impair the capability of these mediators to control pain. These preliminary data suggest that the pharmacological manipulation of the action or levels of these mediators may offer an alternative option for the management of endometriosis-associated pain.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Cioffi
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Candiani
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, CNR, Pozzuoli, Italy
| | | | | | | | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
34
|
Hagemann CT, Kirste UM. Assessment of persistent pelvic pain after hysterectomy: Neuropathic or nociceptive? Scand J Pain 2016; 11:127-129. [PMID: 28850452 DOI: 10.1016/j.sjpain.2016.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Cecilie Therese Hagemann
- Department for Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Obstetrics and Gynaecology/Multidisciplinary Pain Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Unni Merete Kirste
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Sandner P, Tinel H, Affaitati G, Costantini R, Giamberardino MA. Effects of PDE5 Inhibitors and sGC Stimulators in a Rat Model of Artificial Ureteral Calculosis. PLoS One 2015; 10:e0141477. [PMID: 26509272 PMCID: PMC4624930 DOI: 10.1371/journal.pone.0141477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/07/2015] [Indexed: 01/13/2023] Open
Abstract
Urinary colics from calculosis are frequent and intense forms of pain whose current pharmacological treatment remains unsatisfactory. New and more effective drugs are needed to control symptoms and improve stone expulsion. Recent evidence suggested that the Nitric Oxide (NO) / cyclic guanosine monophosphate (cGMP) / phosphodiesterase type 5 (PDE5) system may contribute to ureteral motility influencing stone expulsion. We investigated if PDE5 inhibitors and sGC stimulators influence ureteral contractility, pain behaviour and stone expulsion in a rat model of ureteral calculosis. We investigated: a)the sex-specific PDE5 distribution in the rat ureter; b)the functional in vitro effects of vardenafil and sildenafil (PDE5 inhibitors) and BAY41-2272 (sGC stimulator) on induced ureteral contractility in rats and c)the in vivo effectiveness of vardenafil and BAY41-2272, alone and combined with ketoprofen, vs hyoscine-N-butylbromide alone or combined with ketoprofen, on behavioural pain indicators and stone expulsion in rats with artificial calculosis in one ureter. PDE5 was abundantly expressed in male and female rats’ ureter. In vitro, both vardenafil and BAY41-2272 significantly relaxed pre-contracted ureteral strips. In vivo, all compounds significantly reduced number and global duration of “ureteral crises” and post-stone lumbar muscle hyperalgesia in calculosis rats. The highest level of reduction of the pain behaviour was observed with BAY41-2272 among all spasmolytics administered alone, and with the combination of ketoprofen with BAY41-2272. The percentage of stone expulsion was maximal in the ketoprofen+BAY41-2272 group. The NO/cGMP/PDE5 pathway is involved in the regulation of ureteral contractility and pain behaviour in urinary calculosis. PDE5 inhibitors and sGC stimulators could become a potent new option for treatment of urinary colic pain.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer Health Care AG – Global Drug Discovery, Department of Cardiology – Pharma Research Center Wuppertal, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Hanna Tinel
- Bayer Health Care AG – Global Drug Discovery, Department of Cardiology – Pharma Research Center Wuppertal, Wuppertal, Germany
| | - Giannapia Affaitati
- Pathophysiology of Pain Laboratory, Ce.S.I., “G. D’Annunzio” University of Chieti, Chieti, Italy
- Department of Medicine and Science of Aging, “G. D’Annunzio” University of Chieti, Chieti, Italy
| | - Raffaele Costantini
- Institute of Surgical Pathology, “G. D’Annunzio” University of Chieti, Chieti, Italy
| | - Maria Adele Giamberardino
- Pathophysiology of Pain Laboratory, Ce.S.I., “G. D’Annunzio” University of Chieti, Chieti, Italy
- Department of Medicine and Science of Aging, “G. D’Annunzio” University of Chieti, Chieti, Italy
- * E-mail:
| |
Collapse
|