1
|
Zeidan MA, Alkabbani MA, Giovannuzzi S, Khaleel EF, El-Hamaky AA, Khattab NA, Badi R, Abubakr A, Hamdy AM, Fares M, Tawfik HO, Supuran CT, Eldehna WM, Shaldam MA. Shooting an Arrow against Convulsion: Novel Triazole-Grafted Benzenesulfonamide Derivatives as Carbonic Anhydrase II and VII Inhibitors. J Med Chem 2025; 68:8873-8893. [PMID: 40237575 DOI: 10.1021/acs.jmedchem.5c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study investigates new anticonvulsant substances that target the epilepsy-associated carbonic anhydrase isoforms II and VII. The 1,2,3-triazole with a benzenesulfonamide motif is present in the produced molecules. Of these, 5b and 5c exhibited remarkable selectivity and inhibitory efficacy toward hCA VII and hCA II over hCA I. The KI values of 5b and 5c were 6.3 and 10.1 nM, respectively, and 21.6 and 18.9 nM, respectively. In a pilocarpine-induced paradigm, in vivo assessments showed decreased seizure severity and susceptibility with delayed seizure onset and diminished intensity. The quick absorption and in vivo stability of 5b were demonstrated by pharmacokinetic investigations. Evaluations of toxicity showed no neurotoxic effects and a high safety margin (LD50 > 2000 mg/kg). Mechanistic research has shown effectiveness in maintaining neuronal integrity, reducing mTOR activation, and raising hippocampus KCC2 levels. Compound 5b's binding interactions with hCA II and hCA VII were clarified by docking and dynamics experiments.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nourhan A Khattab
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Abdelhameed Abubakr
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City PO box 11829, Cairo, Egypt
| | - Abdallah M Hamdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City PO box 11829, Cairo, Egypt
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ERU, Badr City, Cairo 11829, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| |
Collapse
|
2
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
3
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
4
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Da Vitoria Lobo ME, Weir N, Hardowar L, Al Ojaimi Y, Madden R, Gibson A, Bestall SM, Hirashima M, Schaffer CB, Donaldson LF, Bates DO, Hulse RP. Hypoxia-induced carbonic anhydrase mediated dorsal horn neuron activation and induction of neuropathic pain. Pain 2022; 163:2264-2279. [PMID: 35353768 PMCID: PMC9578530 DOI: 10.1097/j.pain.0000000000002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1α, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Collapse
Affiliation(s)
- Marlene E. Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nick Weir
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yara Al Ojaimi
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ryan Madden
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alex Gibson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samuel M. Bestall
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, United States
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Richard Philip Hulse
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
6
|
Otsu Y, Aubrey KR. Kappa opioids inhibit the GABA/glycine terminals of rostral ventromedial medulla projections in the superficial dorsal horn of the spinal cord. J Physiol 2022; 600:4187-4205. [PMID: 35979937 PMCID: PMC9540474 DOI: 10.1113/jp283021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Descending projections from neurons in the rostral ventromedial medulla (RVM) make synapses within the superficial dorsal horn (SDH) of the spinal cord that are involved in the modulation of nociception, the development of chronic pain and itch, and an important analgesic target for opioids. This projection is primarily inhibitory, but the relative contribution of GABAergic and glycinergic transmission is unknown and there is limited knowledge about the SDH neurons targeted. Additionally, the details of how spinal opioids mediate analgesia remain unclear, and no study has investigated the opioid modulation of this synapse. We address this using ex vivo optogenetic stimulation of RVM fibres in conjunction with whole-cell patch-clamp recordings from the SDH in spinal cord slices. We demonstrate that both GABAergic and glycinergic neurotransmission is employed and show that SDH target neurons have diverse morphological and electrical properties, consistent with both inhibitory and excitatory interneurons. Then, we describe a subtype of SDH neurons that have a glycine-dominant input, indicating that the quality of descending inhibition across cells is not uniform. Finally, we discovered that the kappa-opioid receptor agonist U69593 presynaptically suppressed most RVM-SDH synapses. By contrast, the mu-opioid receptor agonist DAMGO acted both pre- and post-synaptically at a subset of synapses, and the delta-opioid receptor agonist deltorphin II had little effect. These data provide important mechanistic information about a descending control pathway that regulates spinal circuits. This information is necessary to understand how sensory inputs are shaped and develop more reliable and effective alternatives to current opioid analgesics. Abstract figure legend We combined ex vivo optogenetic stimulation of RVM fibres with whole cell electrophysiology of SDH neurons to investigate the final synapse in a key descending pain modulatory pathway. We demonstrate that both glycine and GABA mediate signalling at the RVM-SDH synapse, that the SDH targets of RVM projections have diverse electrical and morphological characteristics, and that presynaptic inhibition is directly and consistently achieved by kappa opioid agonists. Opioid receptors shown are sized relative to the proportion of neurons that responded to its specific agonists (81 and 84percent of DF and non-DF neurons responded to kappa opioid receptor agonists, respectively. Responses that occurred in <255 percentage of neurons are not indicated here). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yo Otsu
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute at the Royal North Shore Hospital NSLHD, St Leonard, NSW, 2065, Australia.,Faculty of Medicine and Health, Sydney Pain Consortium, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
7
|
Medlock L, Sekiguchi K, Hong S, Dura-Bernal S, Lytton WW, Prescott SA. Multiscale Computer Model of the Spinal Dorsal Horn Reveals Changes in Network Processing Associated with Chronic Pain. J Neurosci 2022; 42:3133-3149. [PMID: 35232767 PMCID: PMC8996343 DOI: 10.1523/jneurosci.1199-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Pain-related sensory input is processed in the spinal dorsal horn (SDH) before being relayed to the brain. That processing profoundly influences whether stimuli are correctly or incorrectly perceived as painful. Significant advances have been made in identifying the types of excitatory and inhibitory neurons that comprise the SDH, and there is some information about how neuron types are connected, but it remains unclear how the overall circuit processes sensory input or how that processing is disrupted under chronic pain conditions. To explore SDH function, we developed a computational model of the circuit that is tightly constrained by experimental data. Our model comprises conductance-based neuron models that reproduce the characteristic firing patterns of spinal neurons. Excitatory and inhibitory neuron populations, defined by their expression of genetic markers, spiking pattern, or morphology, were synaptically connected according to available qualitative data. Using a genetic algorithm, synaptic weights were tuned to reproduce projection neuron firing rates (model output) based on primary afferent firing rates (model input) across a range of mechanical stimulus intensities. Disparate synaptic weight combinations could produce equivalent circuit function, revealing degeneracy that may underlie heterogeneous responses of different circuits to perturbations or pathologic insults. To validate our model, we verified that it responded to the reduction of inhibition (i.e., disinhibition) and ablation of specific neuron types in a manner consistent with experiments. Thus validated, our model offers a valuable resource for interpreting experimental results and testing hypotheses in silico to plan experiments for examining normal and pathologic SDH circuit function.SIGNIFICANCE STATEMENT We developed a multiscale computer model of the posterior part of spinal cord gray matter (spinal dorsal horn), which is involved in perceiving touch and pain. The model reproduces several experimental observations and makes predictions about how specific types of spinal neurons and synapses influence projection neurons that send information to the brain. Misfiring of these projection neurons can produce anomalous sensations associated with chronic pain. Our computer model will not only assist in planning future experiments, but will also be useful for developing new pharmacotherapy for chronic pain disorders, connecting the effect of drugs acting at the molecular scale with emergent properties of neurons and circuits that shape the pain experience.
Collapse
Affiliation(s)
- Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Kazutaka Sekiguchi
- Drug Developmental Research Laboratory, Shionogi Pharmaceutical Research Center, Toyonaka, Osaka 561-0825, Japan
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Salvador Dura-Bernal
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - William W Lytton
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
- Kings County Hospital, Brooklyn, New York 11207
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Lucarini E, Nocentini A, Bonardi A, Chiaramonte N, Parisio C, Micheli L, Toti A, Ferrara V, Carrino D, Pacini A, Romanelli MN, Supuran CT, Ghelardini C, Di Cesare Mannelli L. Carbonic Anhydrase IV Selective Inhibitors Counteract the Development of Colitis-Associated Visceral Pain in Rats. Cells 2021; 10:2540. [PMID: 34685520 PMCID: PMC8533707 DOI: 10.3390/cells10102540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
Persistent pain affecting patients with inflammatory bowel diseases (IBDs) is still very difficult to treat. Carbonic anhydrase (CA) represents an intriguing pharmacological target considering the anti-hyperalgesic efficacy displayed by CA inhibitors in both inflammatory and neuropathic pain models. The aim of this work was to evaluate the effect of inhibiting CA IV, particularly when expressed in the gut, on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) in rats. Visceral sensitivity was assessed by measuring animals' abdominal responses to colorectal distension. Repeated treatment with the selective CA IV inhibitors AB-118 and NIK-67 effectively counteracted the development of visceral pain induced by DNBS. In addition to pain relief, AB-118 showed a protective effect against colon damage. By contrast, the anti-hyperalgesic activity of NIK-67 was independent of colon healing, suggesting a direct protective effect of NIK-67 on visceral sensitivity. The enzymatic activity and the expression of CA IV resulted significantly increased after DNBS injection. NIK-67 normalised CA IV activity in DNBS animals, while AB-118 was partially effective. None of these compounds influenced CA IV expression through the colon. Although further investigations are needed to study the underlying mechanisms, CA IV inhibitors are promising candidates in the search for therapies to relieve visceral pain in IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Niccolò Chiaramonte
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (D.C.); (A.P.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (D.C.); (A.P.)
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| |
Collapse
|
9
|
Differential Modulation of Dorsal Horn Neurons by Various Spinal Cord Stimulation Strategies. Biomedicines 2021; 9:biomedicines9050568. [PMID: 34070113 PMCID: PMC8158340 DOI: 10.3390/biomedicines9050568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
New strategies for spinal cord stimulation (SCS) for chronic pain have emerged in recent years, which may work better via different analgesic mechanisms than traditional low-frequency (e.g., 50 Hz) paresthesia-based SCS. To determine if 10 kHz and burst SCS waveforms might have a similar mechanistic basis, we examined whether these SCS strategies at intensities ostensibly below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using an in vivo electrophysiological approach in rodents, we found that low-intensity 10 kHz SCS, but not burst SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain-sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief, whereas burst SCS likely operates via other mechanisms.
Collapse
|
10
|
Lee-Kubli CA, Zhou X, Jolivalt CG, Calcutt NA. Pharmacological Modulation of Rate-Dependent Depression of the Spinal H-Reflex Predicts Therapeutic Efficacy against Painful Diabetic Neuropathy. Diagnostics (Basel) 2021; 11:diagnostics11020283. [PMID: 33670344 PMCID: PMC7917809 DOI: 10.3390/diagnostics11020283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Impaired rate-dependent depression (RDD) of the spinal H-reflex occurs in diabetic rodents and a sub-set of patients with painful diabetic neuropathy. RDD is unaffected in animal models of painful neuropathy associated with peripheral pain mechanisms and diabetic patients with painless neuropathy, suggesting RDD could serve as a biomarker for individuals in whom spinal disinhibition contributes to painful neuropathy and help identify therapies that target impaired spinal inhibitory function. The spinal pharmacology of RDD was investigated in normal rats and rats after 4 and 8 weeks of streptozotocin-induced diabetes. In normal rats, dependence of RDD on spinal GABAergic inhibitory function encompassed both GABAA and GABAB receptor sub-types. The time-dependent emergence of impaired RDD in diabetic rats was preceded by depletion of potassium-chloride co-transporter 2 (KCC2) protein in the dorsal, but not ventral, spinal cord and by dysfunction of GABAA receptor-mediated inhibition. GABAB receptor-mediated spinal inhibition remained functional and initially compensated for loss of GABAA receptor-mediated inhibition. Administration of the GABAB receptor agonist baclofen restored RDD and alleviated indices of neuropathic pain in diabetic rats, as did spinal delivery of the carbonic anhydrase inhibitor acetazolamide. Pharmacological manipulation of RDD can be used to identify potential therapies that act against neuropathic pain arising from spinal disinhibition.
Collapse
|
11
|
Tam TH, Salter MW. Purinergic signalling in spinal pain processing. Purinergic Signal 2020; 17:49-54. [PMID: 33169292 DOI: 10.1007/s11302-020-09748-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Purinergic signalling plays important roles in somatosensory and nociceptive transmission in the dorsal horn of the spinal cord under physiological and pathophysiological conditions. Physiologically, ATP mediates excitatory postsynaptic responses in nociceptive transmission in the superficial dorsal horn, and in transmission of innocuous primary afferent inputs in the deep dorsal horn. Additionally, extracellular conversion of ATP to adenosine mediates inhibitory postsynaptic responses from Pacinian corpuscle afferents, and is implicated in analgesia caused by transcutaneous electrical nerve stimulation in humans. In terms of pathological pain, P2X4 receptors de novo expressed on dorsal horn microglia are implicated in pain hypersensitivity following peripheral nerve injury. There is evidence that involvement of such P2X4 receptors is sexually dimorphic, occurring in males but not in females. Thus, the roles of purinergic signalling in physiological and pathological pain processing are complex and remain an ever-expanding field of research.
Collapse
Affiliation(s)
- Theresa H Tam
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,The University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.,The Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael W Salter
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada. .,The University of Toronto Centre for the Study of Pain, Toronto, ON, Canada. .,The Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Dedek A, Xu J, Kandegedara CM, Lorenzo LÉ, Godin AG, De Koninck Y, Lombroso PJ, Tsai EC, Hildebrand ME. Loss of STEP61 couples disinhibition to N-methyl-d-aspartate receptor potentiation in rodent and human spinal pain processing. Brain 2020; 142:1535-1546. [PMID: 31135041 PMCID: PMC6536915 DOI: 10.1093/brain/awz105] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated excitability within the spinal dorsal horn is a critical mediator of chronic pain. In the rodent nerve injury model of neuropathic pain, BDNF-mediated loss of inhibition (disinhibition) gates the potentiation of excitatory GluN2B N-methyl-d-aspartate receptor (NMDAR) responses at lamina I dorsal horn synapses. However, the centrality of this mechanism across pain states and species, as well as the molecular linker involved, remain unknown. Here, we show that KCC2-dependent disinhibition is coupled to increased GluN2B-mediated synaptic NMDAR responses in a rodent model of inflammatory pain, with an associated downregulation of the tyrosine phosphatase STEP61. The decreased activity of STEP61 is both necessary and sufficient to prime subsequent phosphorylation and potentiation of GluN2B NMDAR by BDNF at lamina I synapses. Blocking disinhibition reversed the downregulation of STEP61 as well as inflammation-mediated behavioural hypersensitivity. For the first time, we characterize GluN2B-mediated NMDAR responses at human lamina I synapses and show that a human ex vivo BDNF model of pathological pain processing downregulates KCC2 and STEP61 and upregulates phosphorylated GluN2B at dorsal horn synapses. Our results demonstrate that STEP61 is the molecular brake that is lost following KCC2-dependent disinhibition and that the decrease in STEP61 activity drives the potentiation of excitatory GluN2B NMDAR responses in rodent and human models of pathological pain. The ex vivo human BDNF model may thus form a translational bridge between rodents and humans for identification and validation of novel molecular pain targets.
Collapse
Affiliation(s)
- Annemarie Dedek
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Chaya M Kandegedara
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada.,Graduate Program in Neurobiology, Université Laval, Quebec, QC, Canada
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michael E Hildebrand
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Lee KY, Ratté S, Prescott SA. Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn. eLife 2019; 8:e49753. [PMID: 31742556 PMCID: PMC6887484 DOI: 10.7554/elife.49753] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023] Open
Abstract
Neuropathic pain is a debilitating condition caused by the abnormal processing of somatosensory input. Synaptic inhibition in the spinal dorsal horn plays a key role in that processing. Mechanical allodynia - the misperception of light touch as painful - occurs when inhibition is compromised. Disinhibition is due primarily to chloride dysregulation caused by hypofunction of the potassium-chloride co-transporter KCC2. Here we show, in rats, that excitatory neurons are disproportionately affected. This is not because chloride is differentially dysregulated in excitatory and inhibitory neurons, but, rather, because excitatory neurons rely more heavily on inhibition to counterbalance strong excitation. Receptive fields in both cell types have a center-surround organization but disinhibition unmasks more excitatory input to excitatory neurons. Differences in intrinsic excitability also affect how chloride dysregulation affects spiking. These results deepen understanding of how excitation and inhibition are normally balanced in the spinal dorsal horn, and how their imbalance disrupts somatosensory processing.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| |
Collapse
|
14
|
Gutiérrez R, Contreras F, Blanch A, Bravo D, Egaña JI, Rappoport D, Cabané P, Rodríguez F, Penna A. Remifentanil-Induced Secondary Hyperalgesia Is Not Prevented By Preoperative Acetazolamide Administration In Patients Undergoing Total Thyroidectomy: A Randomized Controlled Trial. J Pain Res 2019; 12:2991-2997. [PMID: 31807056 PMCID: PMC6842739 DOI: 10.2147/jpr.s221131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Acute administration of remifentanil may lead to opioid-induced hyperalgesia (OIH). Studies in mice suggest that OIH is mediated by impaired anionic homeostasis in spinal lamina I neurons due to a down-regulation of the K+-Cl− co-transporter KCC2, which was reverted using acetazolamide (ACTZ), a carbonic anhydrase inhibitor. We propose that ACTZ prevents remifentanil-mediated OIH in humans. Patients and methods We conducted a randomized, double-blind, placebo-controlled clinical trial between December 2016 and September 2018. Patients were randomly allocated to receive ACTZ (250 mg of ACTZ 2 h before surgery) or placebo. To detect hyperalgesia, mechanical pain threshold (MPT) were measured before and after surgery using hand-held von Frey filaments in the forearm. Anesthesia was maintained with remifentanil at a target effect site of 4.5 ± 0.5 ng/mL, and sevoflurane at an end-tidal concentration of 0.8 MAC corrected for age. Results In total, 47 patients completed the study. Both groups were comparable in the baseline characteristics and intraoperative variables. Baseline MPT were similar in both groups. However, MPT in the forearm significantly diminished in the time in both groups. Finally, postoperative pain and morphine consumption were similar between groups. Conclusion Both groups developed remifentanil-mediated OIH at 12–18 h after surgery. However, ACTZ did not prevent the MPT reduction in patients undergoing total thyroidectomy.
Collapse
Affiliation(s)
- Rodrigo Gutiérrez
- Department of Anesthesiology and Perioperative Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Felipe Contreras
- Department of Anesthesiology and Perioperative Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Alonso Blanch
- Department of Anesthesiology and Perioperative Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Daniela Bravo
- Department of Anesthesiology and Perioperative Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - José I Egaña
- Department of Anesthesiology and Perioperative Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Daniel Rappoport
- Head and Neck Surgery, Department of Surgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Patricio Cabané
- Head and Neck Surgery, Department of Surgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Francisco Rodríguez
- Head and Neck Surgery, Department of Surgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Antonello Penna
- Department of Anesthesiology and Perioperative Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Mapplebeck JCS, Lorenzo LE, Lee KY, Gauthier C, Muley MM, De Koninck Y, Prescott SA, Salter MW. Chloride Dysregulation through Downregulation of KCC2 Mediates Neuropathic Pain in Both Sexes. Cell Rep 2019; 28:590-596.e4. [PMID: 31315039 DOI: 10.1016/j.celrep.2019.06.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
The behavioral features of neuropathic pain are not sexually dimorphic despite sex differences in the underlying neuroimmune signaling. This raises questions about whether neural processing is comparably altered. Here, we test whether the K+-Cl- co-transporter KCC2, which regulates synaptic inhibition, plays an equally important role in development of neuropathic pain in male and female rodents. Past studies on KCC2 tested only males. We find that inhibiting KCC2 in uninjured animals reproduces behavioral and electrophysiological features of neuropathic pain in both sexes and, consistent with equivalent injury-induced downregulation of KCC2, that counteracting chloride dysregulation reverses injury-induced behavioral and electrophysiological changes in both sexes. These findings demonstrate that KCC2 downregulation contributes equally to pain hypersensitivity in males and females. Whereas diverse (and sexually dimorphic) mechanisms regulate KCC2, regulation of intracellular chloride relies almost exclusively on KCC2. Directly targeting KCC2 thus remains a promising strategy for treatment of neuropathic pain in both sexes.
Collapse
Affiliation(s)
- Josiane C S Mapplebeck
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | | | - Kwan Yeop Lee
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cédric Gauthier
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec, QC, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Quebec, QC, Canada; Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Steven A Prescott
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto Centre for the Study of Pain, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto Centre for the Study of Pain, Toronto, ON, Canada.
| |
Collapse
|
16
|
Boakye PA, Rancic V, Whitlock KH, Simmons D, Longo FM, Ballanyi K, Smith PA. Receptor dependence of BDNF actions in superficial dorsal horn: relation to central sensitization and actions of macrophage colony stimulating factor 1. J Neurophysiol 2019; 121:2308-2322. [PMID: 30995156 DOI: 10.1152/jn.00839.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injury elicits an enduring increase in the excitability of the spinal dorsal horn. This change, which contributes to the development of neuropathic pain, is a consequence of release and prolonged exposure of dorsal horn neurons to various neurotrophins and cytokines. We have shown in rats that nerve injury increases excitatory synaptic drive to excitatory neurons but decreases drive to inhibitory neurons. Both effects, which contribute to an increase in dorsal horn excitability, appear to be mediated by microglia-derived BDNF. We have used multiphoton Ca2+ imaging and whole cell recording of spontaneous excitatory postsynaptic currents in defined-medium organotypic cultures of GAD67-GFP+ mice spinal cord to determine the receptor dependence of these opposing actions of BDNF. In mice, as in rats, BDNF enhances excitatory transmission onto excitatory neurons. This is mediated via presynaptic TrkB and p75 neurotrophin receptors and exclusively by postsynaptic TrkB. By contrast with findings from rats, in mice BDNF does not decrease excitation of inhibitory neurons. The cytokine macrophage colony-stimulating factor 1 (CSF-1) has also been implicated in the onset of neuropathic pain. Nerve injury provokes its de novo synthesis in primary afferents, its release in spinal cord, and activation of microglia. We now show that CSF-1 increases excitatory drive to excitatory neurons via a BDNF-dependent mechanism and decreases excitatory drive to inhibitory neurons via BDNF-independent processes. Our findings complete missing steps in the cascade of events whereby peripheral nerve injury instigates increased dorsal horn excitability in the context of central sensitization and the onset of neuropathic pain. NEW & NOTEWORTHY Nerve injury provokes synthesis of macrophage colony-stimulating factor 1 (CSF-1) in primary afferents and its release in the dorsal horn. We show that CSF-1 increases excitatory drive to excitatory dorsal horn neurons via BDNF activation of postsynaptic TrkB and presynaptic TrkB and p75 neurotrophin receptors. CSF-1 decreases excitatory drive to inhibitory neurons via a BDNF-independent processes. This completes missing steps in understanding how peripheral injury instigates central sensitization and the onset of neuropathic pain.
Collapse
Affiliation(s)
- Paul A Boakye
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| | - Vladimir Rancic
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Physiology, University of Alberta , Edmonton , Canada
| | - Kerri H Whitlock
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| | - Danielle Simmons
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Klaus Ballanyi
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Physiology, University of Alberta , Edmonton , Canada
| | - Peter A Smith
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Pharmacology, University of Alberta , Edmonton , Canada
| |
Collapse
|
17
|
Mousseau M, Burma NE, Lee KY, Leduc-Pessah H, Kwok CHT, Reid AR, O’Brien M, Sagalajev B, Stratton JA, Patrick N, Stemkowski PL, Biernaskie J, Zamponi GW, Salo P, McDougall JJ, Prescott SA, Matyas JR, Trang T. Microglial pannexin-1 channel activation is a spinal determinant of joint pain. SCIENCE ADVANCES 2018; 4:eaas9846. [PMID: 30101191 PMCID: PMC6082646 DOI: 10.1126/sciadv.aas9846] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/26/2018] [Indexed: 05/15/2023]
Abstract
Chronic joint pain such as mechanical allodynia is the most debilitating symptom of arthritis, yet effective therapies are lacking. We identify the pannexin-1 (Panx1) channel as a therapeutic target for alleviating mechanical allodynia, a cardinal sign of arthritis. In rats, joint pain caused by intra-articular injection of monosodium iodoacetate (MIA) was associated with spinal adenosine 5'-triphosphate (ATP) release and a microglia-specific up-regulation of P2X7 receptors (P2X7Rs). Blockade of P2X7R or ablation of spinal microglia prevented and reversed mechanical allodynia. P2X7Rs drive Panx1 channel activation, and in rats with mechanical allodynia, Panx1 function was increased in spinal microglia. Specifically, microglial Panx1-mediated release of the proinflammatory cytokine interleukin-1β (IL-1β) induced mechanical allodynia in the MIA-injected hindlimb. Intrathecal administration of the Panx1-blocking peptide 10panx suppressed the aberrant discharge of spinal laminae I-II neurons evoked by innocuous mechanical hindpaw stimulation in arthritic rats. Furthermore, mice with a microglia-specific genetic deletion of Panx1 were protected from developing mechanical allodynia. Treatment with probenecid, a clinically used broad-spectrum Panx1 blocker, resulted in a striking attenuation of MIA-induced mechanical allodynia and normalized responses in the dynamic weight-bearing test, without affecting acute nociception. Probenecid reversal of mechanical allodynia was also observed in rats 13 weeks after anterior cruciate ligament transection, a model of posttraumatic osteoarthritis. Thus, Panx1-targeted therapy is a new mechanistic approach for alleviating joint pain.
Collapse
Affiliation(s)
- Michael Mousseau
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole E. Burma
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kwan Yeop Lee
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Leduc-Pessah
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Charlie H. T. Kwok
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Allison R. Reid
- Departments of Pharmacology and Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melissa O’Brien
- Departments of Pharmacology and Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boriss Sagalajev
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jo Anne Stratton
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Natalya Patrick
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrick L. Stemkowski
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Gerald W. Zamponi
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Salo
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Jason J. McDougall
- Departments of Pharmacology and Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - John R. Matyas
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Corresponding author.
| |
Collapse
|
18
|
Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing. Cell Rep 2017; 17:2753-2765. [PMID: 27926876 DOI: 10.1016/j.celrep.2016.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropathic pain. We find that BDNF mediates NMDAR potentiation through activation of TrkB and phosphorylation of the GluN2B subunit by the Src-family kinase Fyn. Surprisingly, we find that Cl--dependent disinhibition is necessary and sufficient to prime potentiation of synaptic NMDARs by BDNF. Thus, we propose that spinal pain amplification is mediated by a feedforward mechanism whereby loss of inhibition gates the increase in synaptic excitation within individual lamina I neurons. Given that neither disinhibition alone nor BDNF-TrkB signaling is sufficient to potentiate NMDARs, we have discovered a form of molecular coincidence detection in lamina I neurons.
Collapse
|
19
|
The MNK-eIF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. J Neurosci 2017; 37:7481-7499. [PMID: 28674170 DOI: 10.1523/jneurosci.0220-17.2017] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/21/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.
Collapse
|
20
|
Neuroligin 2 regulates spinal GABAergic plasticity in hyperalgesic priming, a model of the transition from acute to chronic pain. Pain 2017; 157:1314-1324. [PMID: 26859820 DOI: 10.1097/j.pain.0000000000000513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasticity in inhibitory receptors, neurotransmission, and networks is an important mechanism for nociceptive signal amplification in the spinal dorsal horn. We studied potential changes in GABAergic pharmacology and its underlying mechanisms in hyperalgesic priming, a model of the transition from acute to chronic pain. We find that while GABAA agonists and positive allosteric modulators reduce mechanical hypersensitivity to an acute insult, they fail to do so during the maintenance phase of hyperalgesic priming. In contrast, GABAA antagonism promotes antinociception and a reduction in facial grimacing after the transition to a chronic pain state. During the maintenance phase of hyperalgesic priming, we observed increased neuroligin (nlgn) 2 expression in the spinal dorsal horn. This protein increase was associated with an increase in nlgn2A splice variant mRNA, which promotes inhibitory synaptogenesis. Disruption of nlgn2 function with the peptide inhibitor, neurolide 2, produced mechanical hypersensitivity in naive mice but reversed hyperalgesic priming in mice previously exposed to brain-derived neurotrophic factor. Neurolide 2 treatment also reverses the change in polarity in GABAergic pharmacology observed in the maintenance of hyperalgesic priming. We propose that increased nlgn2 expression is associated with hyperalgesic priming where it promotes dysregulation of inhibitory networks. Our observations reveal new mechanisms involved in the spinal maintenance of a pain plasticity and further suggest that disinhibitory mechanisms are central features of neuroplasticity in the spinal dorsal horn.
Collapse
|
21
|
Lin CR, Cheng JK, Wu CH, Chen KH, Liu CK. Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund's adjuvant (CFA). Eur J Pain 2017; 21:309-321. [PMID: 27506893 DOI: 10.1002/ejp.925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Multiple mechanisms contribute to the stimulus-evoked pain hypersensitivity that may be experienced after peripheral inflammation. Persistent pathological stimuli in many pain conditions affect the expression of certain genes through epigenetic alternations. The main purpose of our study was to investigate the role of epigenetic modification on potassium-chloride co-transporter 2 (KCC2) gene expression in the persistence of inflammatory pain. METHODS Persistent inflammatory pain was induced through the injection of complete Freund's adjuvant (CFA) in the left hind paw of rats. Acetyl-histone H3 and H4 level was determined by chromatin immunoprecipitation in the spinal dorsal horn. Pain behaviour and inhibitory synaptic function of spinal cord were determined before and after CFA injection. KCC2 expression was determined by real time RT-PCR and Western blot. Intrathecal KCC2 siRNA (2 μg per 10 μL per rat) or HDAC inhibitor (10 μg per 10 μL per rat) was injected once daily for 3 days before CFA injection. RESULTS Persistent inflammatory pain epigenetically suppressed KCC2 expression through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in decreased inhibitory signalling efficacy. KCC2 knock-down caused by intrathecal administration of KCC2 siRNA in naïve rats reduced KCC2 expression in the spinal cord, leading to sensitized pain behaviours and impaired inhibitory synaptic transmission in their spinal cords. Moreover, intrathecal HDAC inhibitor injection in CFA rats increased KCC2 expression, partially restoring the spinal inhibitory synaptic transmission and relieving the sensitized pain behaviour. CONCLUSION These findings suggest that the transcription of spinal KCC2 is regulated by histone acetylation epigenetically following CFA. SIGNIFICANCE Persistent pain suppresses KCC2 expression through HDAC-mediated histone hypoacetylation and consequently impairs the inhibitory function of inhibitory interneurons. Drugs such as HDAC inhibitors that suppress the influences of persistent pain on the expression of KCC2 may serve as a novel analgesic.
Collapse
Affiliation(s)
- C-R Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - J-K Cheng
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei, Taiwan
| | - C-H Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - K-H Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - C-K Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Doyon N, Vinay L, Prescott SA, De Koninck Y. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition. Neuron 2016; 89:1157-1172. [PMID: 26985723 DOI: 10.1016/j.neuron.2016.02.030] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 12/24/2015] [Accepted: 02/18/2016] [Indexed: 01/02/2023]
Abstract
Fast synaptic inhibition relies on tight regulation of intracellular Cl(-). Chloride dysregulation is implicated in several neurological and psychiatric disorders. Beyond mere disinhibition, the consequences of Cl(-) dysregulation are multifaceted and best understood in terms of a dynamical system involving complex interactions between multiple processes operating on many spatiotemporal scales. This dynamical perspective helps explain many unintuitive manifestations of Cl(-) dysregulation. Here we discuss how taking into account dynamical regulation of intracellular Cl(-) is important for understanding how synaptic inhibition fails, how to best detect that failure, why Cl(-) regulation is energetically so expensive, and the overall consequences for therapeutics.
Collapse
Affiliation(s)
- Nicolas Doyon
- Institut Universitaire en Santé Mentale de Québec, Québec, QC G1J 2G3, Canada; Department of Mathematics and Statistics, Université Laval, Québec, QC G1V 0A6, Canada
| | - Laurent Vinay
- Team P3M, Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix Marseille Université, F-13385 Marseille, France
| | - Steven A Prescott
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec, Québec, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
23
|
Alles SRA, Smith PA. The Anti-Allodynic Gabapentinoids: Myths, Paradoxes, and Acute Effects. Neuroscientist 2016; 23:40-55. [PMID: 27118808 DOI: 10.1177/1073858416628793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gabapentinoids (pregabalin and gabapentin) are first line treatments for neuropathic pain. They exert their actions by binding to the α2δ accessory subunits of voltage-gated Ca2+ channels. Because these subunits interact with critical aspects of the neurotransmitter release process, gabapentinoid binding prevents transmission in nociceptive pathways. Gabapentinoids also reduce plasma membrane expression of voltage-gated Ca2+ channels but this may have little direct bearing on their therapeutic actions. In animal models of neuropathic pain, gabapentinoids exert an anti-allodynic action within 30 minutes but most of their in vitro effects are 30-fold slower, taking at least 17 hours to develop. This difference may relate to increased levels of α2δ expression in the injured nervous system. Thus, in situations where α2δ is experimentally upregulated in vitro, gabapentinoids act within minutes to interrupt trafficking of α2δ subunits to the plasma membrane within nerve terminals. When α2δ is not up-regulated, gabapentinoids act slowly to interrupt trafficking of α2δ protein from cell bodies to nerve terminals. This improved understanding of the mechanism of gabapentinoid action is related to their slowly developing actions in neuropathic pain patients, to the concept that different processes underlie the onset and maintenance of neuropathic pain and to the use of gabapentinoids in management of postsurgical pain.
Collapse
Affiliation(s)
- Sascha R A Alles
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Smith
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain. Pain 2016; 157:1432-1442. [DOI: 10.1097/j.pain.0000000000000538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|