1
|
Aubert N, Purcarea M, Novarino J, Schopp J, Audibert A, Li W, Fornier M, Cagnet L, Naturel M, Casrouge A, Dieu-Nosjean MC, Blanchard N, Dietrich G, Peirs C, Marodon G. Enkephalin-mediated modulation of basal somatic sensitivity by regulatory T cells in mice. eLife 2024; 13:RP91359. [PMID: 39110619 PMCID: PMC11305673 DOI: 10.7554/elife.91359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.
Collapse
Affiliation(s)
- Nicolas Aubert
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Madeleine Purcarea
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Novarino
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Schopp
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Wangtianrui Li
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Fornier
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Léonie Cagnet
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Naturel
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Armanda Casrouge
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie-Caroline Dieu-Nosjean
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Gilles Dietrich
- Institut de Recherche sur la Santé Digestive (IRSD), Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Gilles Marodon
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| |
Collapse
|
2
|
Rodriguez-Lopez A, Torres-Paniagua AM, Acero G, Díaz G, Gevorkian G. Increased TSPO expression, pyroglutamate-modified amyloid beta (AβN3(pE)) accumulation and transient clustering of microglia in the thalamus of Tg-SwDI mice. J Neuroimmunol 2023; 382:578150. [PMID: 37467699 DOI: 10.1016/j.jneuroim.2023.578150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Epidemiological studies showed that Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) frequently co-occur; however, the precise mechanism is not well understood. A unique animal model (Tg-SwDI mice) was developed to investigate the early-onset and robust accumulation of both parenchymal and vascular Aβ in the brain. Tg-SwDI mice have been extensively used to study the mechanisms of cerebrovascular dysfunction, neuroinflammation, neurodegeneration, and cognitive decline observed in AD/CAA patients and to design biomarkers and therapeutic strategies. In the present study, we documented interesting new features in the thalamus of Tg-SwDI mice: 1) a sharp increase in the expression of ionized calcium-binding adapter molecule 1 (Iba-1) in microglia in 6-month-old animals; 2) microglia clustering at six months that disappeared in old animals; 3) N-truncated/modified AβN3(pE) peptide in 9-month-old female and 12-month-old male mice; 4) an age-dependent increase in translocator protein (TSPO) expression. These findings reinforce the versatility of this model for studying multiple pathological issues involved in AD and CAA.
Collapse
Affiliation(s)
- Adrian Rodriguez-Lopez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Alicia M Torres-Paniagua
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|
3
|
Sideris-Lampretsas G, Oggero S, Zeboudj L, Silva R, Bajpai A, Dharmalingam G, Collier DA, Malcangio M. Galectin-3 activates spinal microglia to induce inflammatory nociception in wild type but not in mice modelling Alzheimer's disease. Nat Commun 2023; 14:3579. [PMID: 37349313 PMCID: PMC10287730 DOI: 10.1038/s41467-023-39077-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Musculoskeletal chronic pain is prevalent in individuals with Alzheimer's disease (AD); however, it remains largely untreated in these patients, raising the possibility that pain mechanisms are perturbed. Here, we utilise the TASTPM transgenic mouse model of AD with the K/BxN serum transfer model of inflammatory arthritis. We show that in male and female WT mice, inflammatory allodynia is associated with a distinct spinal cord microglial response characterised by TLR4-driven transcriptional profile and upregulation of P2Y12. Dorsal horn nociceptive afferent terminals release the TLR4 ligand galectin-3 (Gal-3), and intrathecal injection of a Gal-3 inhibitor attenuates allodynia. In contrast, TASTPM mice show reduced inflammatory allodynia, which is not affected by the Gal-3 inhibitor and correlates with the emergence of a P2Y12- TLR4- microglia subset in the dorsal horn. We suggest that sensory neuron-derived Gal-3 promotes allodynia through the TLR4-regulated release of pro-nociceptive mediators by microglia, a process that is defective in TASTPM due to the absence of TLR4 in a microglia subset.
Collapse
Affiliation(s)
| | - Silvia Oggero
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Lynda Zeboudj
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Rita Silva
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Archana Bajpai
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - Gopuraja Dharmalingam
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - David A Collier
- Eli Lilly & Company, Surrey, 8 Arlington Square West, Bracknell, RG12 1PU, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom.
| |
Collapse
|
4
|
Buhidma Y, Hobbs C, Malcangio M, Duty S. Periaqueductal grey and spinal cord pathology contribute to pain in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:69. [PMID: 37100804 PMCID: PMC10133233 DOI: 10.1038/s41531-023-00510-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Pain is a key non-motor feature of Parkinson's disease (PD) that significantly impacts on life quality. The mechanisms underlying chronic pain in PD are poorly understood, hence the lack of effective treatments. Using the 6-hydroxydopamine (6-OHDA) lesioned rat model of PD, we identified reductions in dopaminergic neurons in the periaqueductal grey (PAG) and Met-enkephalin in the dorsal horn of the spinal cord that were validated in human PD tissue samples. Pharmacological activation of D1-like receptors in the PAG, identified as the DRD5+ phenotype located on glutamatergic neurons, alleviated the mechanical hypersensitivity seen in the Parkinsonian model. Downstream activity in serotonergic neurons in the Raphé magnus (RMg) was also reduced in 6-OHDA lesioned rats, as detected by diminished c-FOS positivity. Furthermore, we identified increased pre-aggregate α-synuclein, coupled with elevated activated microglia in the dorsal horn of the spinal cord in those people that experienced PD-related pain in life. Our findings have outlined pathological pathways involved in the manifestation of pain in PD that may present targets for improved analgesia in people with PD.
Collapse
Affiliation(s)
- Yazead Buhidma
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Carl Hobbs
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Marzia Malcangio
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK
| | - Susan Duty
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
5
|
Merlo S, Costa L, Chiechio S, Busceti CL, Ciranna L, Santangelo R, Sortino MA, Fornai F, Nicoletti F, Copani A. Increased Heat Pain Tolerance but Hyperalgesia to Tonic Inflammatory Pain in the CRND8 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 96:77-91. [PMID: 37742639 PMCID: PMC10657672 DOI: 10.3233/jad-230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND The effects of Alzheimer's disease (AD) pathology on the experience of pain are poorly understood. OBJECTIVE To understand the pathophysiological mechanisms underlying pain sensory transmission in the transgenic mouse model of AD, CRND8. METHODS We explored AD-related pathology in the spinal cord and dorsal root ganglia of 18-week-old female CRND8 mice. We assessed nociceptive responses to both acute heat stimuli and persistent inflammatory pain in CRND8 mice and non-transgenic (non-Tg) littermates. In addition, we searched for differences in biochemical correlates of inflammatory pain between CRND8 and non-Tg mice. Finally, we investigated the excitability of dorsal horn noc iceptive neurons in spinal cord slices from CRND8 and non-Tg mice. RESULTS We demonstrated the presence of intracellular AD-like pathology in the spinal cord and in the dorsal root ganglia nociceptive sensory neurons of CRND8 mice. We found that CRND8 mice had a reduced susceptibility to acute noxious heat stimuli and an increased sensitivity to tonic inflammatory pain. Tonic inflammatory pain correlated with a lack of induction of pro-opiomelanocortin in the spinal cord of CRND8 mice as compared to non-Tg mice. Electrophysiological recording in acute spinal cord slice preparations indicated an increased probability of glutamate release at the membrane of dorsal horn nociceptive neurons in CRND8 mice. CONCLUSION This study suggests that an increased thermal tolerance and a facilitation of nociception by peripheral inflammation can coexist in AD.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Santina Chiechio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Oasi Research Institute - IRCCS, Troina, Italy
| | | | - Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosa Santangelo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Fornai
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Agata Copani
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Institute of Crystallography, National Council of Research, Catania Unit, Catania, Italy
| |
Collapse
|
6
|
Silva R, Sideris-Lampretsas G, Fox S, Zeboudj L, Malcangio M. CD206 +/MHCII - macrophage accumulation at nerve injury site correlates with attenuation of allodynia in TASTPM mouse model of Alzheimer's disease. Brain Behav Immun Health 2022; 26:100548. [PMID: 36388139 PMCID: PMC9643400 DOI: 10.1016/j.bbih.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Chronic pain is undertreated in people with Alzheimer's disease (AD) and better understanding of the underlying mechanisms of chronic pain in this neurodegenerative disease is essential. Neuropathic pain and AD share a significant involvement of the peripheral immune system. Therefore, we examined the development of nerve injury-induced allodynia in TASTPM (APPsweXPS1.M146V) mice and assessed monocytes/macrophages at injury site. TASTPM developed partial allodynia compared to WT at days 7, 14 and 21 days after injury, and showed complete allodynia only after treatment with naloxone methiodide, a peripheralized opioid receptor antagonist. Since macrophages are one of the sources of endogenous opioids in the periphery, we examined macrophage infiltration at injury site and observed that CD206+/MHCII- cells were more numerous in TASTPM than WT. Accordingly, circulating TASTPM Ly6Chigh (classical) monocytes, which are pro-inflammatory and infiltrate at the site of injury, were less abundant than in WT. In in vitro experiments, TASTPM bone marrow-derived macrophages showed efficient phagocytosis of myelin extracts containing amyloid precursor protein, acquired CD206+/MHCII- phenotype, upregulated mRNA expression of proenkephalin (PENK) and accumulated enkephalins in culture media. These data suggest that in TASTPM nerve-injured mice, infiltrating macrophages which derive from circulating monocytes and may contain amyloid fragments, acquire M2-like phenotype after myelin engulfment, and release enkephalins which are likely to inhibit nociceptive neuron activity via activation of opioid receptors.
Collapse
Affiliation(s)
- Rita Silva
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | | | - Sarah Fox
- Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, UK
| | | | | |
Collapse
|
7
|
Cui Z, Guo Z, Wei L, Zou X, Zhu Z, Liu Y, Wang J, Chen L, Wang D, Ke Z. Altered pain sensitivity in 5×familial Alzheimer disease mice is associated with dendritic spine loss in anterior cingulate cortex pyramidal neurons. Pain 2022; 163:2138-2153. [PMID: 35384934 PMCID: PMC9578529 DOI: 10.1097/j.pain.0000000000002648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is highly prevalent. Individuals with cognitive disorders such as Alzheimer disease are a susceptible population in which pain is frequently difficult to diagnosis. It is still unclear whether the pathological changes in patients with Alzheimer disease will affect pain processing. Here, we leverage animal behavior, neural activity recording, optogenetics, chemogenetics, and Alzheimer disease modeling to examine the contribution of the anterior cingulate cortex (ACC) neurons to pain response. The 5× familial Alzheimer disease mice show alleviated mechanical allodynia which can be regained by the genetic activation of ACC excitatory neurons. Furthermore, the lower peak neuronal excitation, delayed response initiation, as well as the dendritic spine reduction of ACC pyramidal neurons in 5×familial Alzheimer disease mice can be mimicked by Rac1 or actin polymerization inhibitor in wild-type (WT) mice. These findings indicate that abnormal of pain sensitivity in Alzheimer disease modeling mice is closely related to the variation of neuronal activity and dendritic spine loss in ACC pyramidal neurons, suggesting the crucial role of dendritic spine density in pain processing.
Collapse
Affiliation(s)
- Zhengyu Cui
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilu Zhu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Liu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deheng Wang
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Scuteri D, Rombolà L, Natoli S, Pisani A, Bonsi P, Hamamura K, Bagetta G, Tonin P, Corasaniti MT. Exploitation of Thermal Sensitivity and Hyperalgesia in a Mouse Model of Dystonia. Life (Basel) 2021; 11:life11090985. [PMID: 34575134 PMCID: PMC8468866 DOI: 10.3390/life11090985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Neuropathic pain is characterized by mechanical allodynia and thermal hyperalgesia to heat, and it affects some 20% of European population. Patients suffering from several neurologic diseases experience neuropathic pain, often finding no relief in therapy. Transgenic mice expressing the gene encoding the human mutant (hMT) or the human wild-type (hWT) torsin A represent a preclinical model of DYT1 dystonia which is the most common form of early-onset inherited dystonia. Baseline thermal sensitivity and hyperalgesia to heat have never been studied in models of dystonia. Therefore, the aim of this research has been to characterize thermal sensitivity in baseline conditions and hyperalgesia to heat after the induction of neuropathic pain through the spinal nerve ligation (SNL) model in mice overexpressing human wild-type and mutated torsin A in comparison to non-transgenic C57BL/6 mice. According to our results, the paw withdrawal latency time to heat in the Hargreaves’ test is significantly lower in the hMT mice (Kruskal–Wallis test = 6.933; p = 0.0312*; hMT vs. hWT p = 0.0317*). On the other hand, no significant differences in SNL-induced thermal hyperalgesia was found among the three strains (Friedman test = 4.933; p = 0.1019). Future studies are needed to better understand the role of torsin A in sensory processing of heat stimuli.
Collapse
Affiliation(s)
- Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy;
- Correspondence: (D.S.); (G.B.); Tel.: +39-0984/493462 (D.S. & G.B.)
| | - Laura Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (P.B.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Paola Bonsi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.P.); (P.B.)
| | - Kengo Hamamura
- Laboratory of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Correspondence: (D.S.); (G.B.); Tel.: +39-0984/493462 (D.S. & G.B.)
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy;
| | | |
Collapse
|
9
|
Uddin O, Arakawa K, Raver C, Garagusi B, Keller A. Patterns of cognitive decline and somatosensory processing in a mouse model of amyloid accumulation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100076. [PMID: 34820549 PMCID: PMC8599510 DOI: 10.1016/j.ynpai.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023]
Abstract
Despite copious amyloid plaques, 5XFAD mice show modest signs of cognitive decline. At ages 2 to 13 months old 5XFAD mice show no signs of sensory or pain dysfunctions. 5XFAD mice may not be a valid model for pain abnormalities in the context of AD.
Pain and cognitive decline increase with age. In particular, there is a troubling relationship between dementia and pain, with some studies showing higher prevalence and inadequate treatment of pain in this population. Alzheimer’s disease (AD) is one of the most common causes of dementia in older adults. Amyloid plaques are a hallmark of AD. The downstream processes these plaques promote are believed to affect neuronal and glial health and activity. There is a need to better understand how the neuropathological changes of AD shape neural activity and pain sensitivity. Here, we use the 5XFAD mouse model, in which dense amyloid accumulations occur at early ages, and in which previous studies reported signs of cognitive decline. We hypothesized that 5XFAD mice develop sensory and pain processing dysfunctions. Although amyloid burden was high throughout the brain, including in regions involved with sensory processing, we identified no functionally significant differences in reflexive or spontaneous signs of pain. Furthermore, expected signs of cognitive decline were modest; a finding consistent with variable results in the literature. These data suggest that models recapitulating other pathological features of Alzheimer’s disease might be better suited to studying differences in pain perception in this disease.
Collapse
Affiliation(s)
- Olivia Uddin
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Keiko Arakawa
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Charles Raver
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Brendon Garagusi
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| |
Collapse
|
10
|
Cañete T, Giménez-Llort L. Preserved Thermal Pain in 3xTg-AD Mice With Increased Sensory-Discriminative Pain Sensitivity in Females but Affective-Emotional Dimension in Males as Early Sex-Specific AD-Phenotype Biomarkers. Front Aging Neurosci 2021; 13:683412. [PMID: 34354580 PMCID: PMC8329418 DOI: 10.3389/fnagi.2021.683412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
The increase of the aging population, where quite chronic comorbid conditions are associated with pain, draws growing interest across its investigation and the underlying nociceptive mechanisms. Burn injuries associated problems might be of relevance in the older adult’s daily life, but in people with dementia, exposure to high temperatures and heat sources poses a significantly increased risk of burns. In this brief report, the hind paws and tail pain withdrawal reflexes and the emotional responses to thermal nociception in 3xTg-AD mice were characterized for the first time in the plantar test and compared to their non-transgenic (NTg) counterparts. We studied a cohort of male and female 3xTg-AD mice at asymptomatic (2 months), early (6 months), middle (9 months), and advanced (12 and 15 months) stages of the disease and as compared to sex- and age-matched NTg control mice with normal aging. At 20 and 40W intensities, the sensorial-discriminative thresholds eliciting the withdrawal responses were preserved from asymptomatic to advanced stages of the disease compared to NTg counterparts. Moreover, 3xTg-AD females consistently showed a greater sensory-discriminative sensitivity already at premorbid ages, whereas increased emotionality was shown in males. False-negative results were found in “blind to sex and age” analysis, warning about the need to study sexes independently. The current results and previous report in cold thermal stimulation provide two paradigms unveiling sex-specific early AD-phenotype nociceptive biomarkers to study the mechanistic underpinnings of sex-, age- and AD-disease-dependent thermal pain sensitivity.
Collapse
Affiliation(s)
- Toni Cañete
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Autonomous University of Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Cui D, Li ZH, Li C, Qiu C, Ma P, Wu M, Song XJ. Spinal beta-amyloid1-42 acts as an endogenous analgesic peptide in CCI-induced neuropathic pain. Eur J Pain 2021; 26:133-142. [PMID: 34288242 DOI: 10.1002/ejp.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The mechanism for reduced pain sensitivity associated with Alzheimer's disease (AD) has not been illustrated. We hypothesize that amyloid beta 1-42 (Aβ1-42) in the spinal cord acts as an endogenous analgesic peptide to suppress pain induced by nerve injury. METHODS We used chronic constriction injury of the sciatic nerve (CCI) to produce neuropathic pain in Sprague-Dawley rats. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were used to determine the level of Aβ1-42, the expression of Wnt3a/5b and glial activation in the spinal cord. Western blotting was used to determine the expression of interleukins, the phosphorylation of NR2B and ERK1/2, and the nuclear accumulation of transcriptional factors YAP/TAZ. Thermal hyperalgesia and mechanical allodynia were assessed after CCI and pharmacological manipulations through intrathecal administration. RESULTS Nerve injury increases spinal level of Aβ1-42, while intrathecal administration of MK-8931 reduces the level of Aβ1-42 and facilitates mechanical allodynia. Intrathecal administration of Aβ1-42 suppresses pain behaviors in the early and late phases of neuropathy. Spinal administration of Aβ1-42 regulates the expression of interleukins, reducing glial activation and phosphorylation of NR2B and ERK1/2 in the spinal cord of CCI rats. Furthermore, intrathecal administration of Aβ1-42 decreases Wnt5b expression and suppresses the nuclear accumulation of YAP and TAZ. Blocking the interaction between Aβ1-42 and Frizzled receptors by cSP5 reverses the analgesic effects of Aβ1-42. CONCLUSIONS These findings suggest that spinal Aβ1-42 acts as an endogenous analgesic peptide through regulating cytokines and Wnt pathways. This study may provide a potential target for the development of novel analgesic peptides. SIGNIFICANCE This study provides an explanation of reduced pain sensitivity associated with Alzheimer's disease. Furthermore, our findings propose a possible physiological function of beta-amyloid1-42 to regulate pain. This study may provide a potential target for the development of novel analgesics based on an existing endogenous peptide.
Collapse
Affiliation(s)
- Dong Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University Cancer Hospital & Institute, Beijing, China.,SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Ze-Hua Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University Cancer Hospital & Institute, Beijing, China.,SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Cheng Li
- SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Chengjie Qiu
- SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Pingchuan Ma
- SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Xue-Jun Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Peking University Cancer Hospital & Institute, Beijing, China.,SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
12
|
Altered nociception in Alzheimer disease is associated with striatal-enriched protein tyrosine phosphatase signaling. Pain 2021; 162:1669-1680. [PMID: 33433143 DOI: 10.1097/j.pain.0000000000002180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
ABSTRACT Alzheimer disease (AD) is the most common form of dementia, accounting for approximately 60% of cases. In addition to memory loss, changes in pain sensitivity are found in a substantial proportion of patients with AD. However, the mechanism of nociception deficits in AD is still unclear. Here, we hypothesize that the nociception abnormality in AD is due to the aberrant activation of striatal-enriched protein tyrosine phosphatase (STEP) signaling, which modulates proteins related to nociception transduction. Our results indicated that the transgenic mice carrying human amyloid precursor protein (APP) gene had lower sensitivity to mechanical and thermal stimulation than the wild-type group at the ages of 6, 9, and 12 months. These APP mice exhibited elevated STEP activity and decreased phosphorylation of proteins involved in nociception transduction in hippocampi. The pharmacological inhibition of STEP activity using TC-2153 further reversed nociception and cognitive deficits in the APP mice. Moreover, the phosphorylation of nociception-related proteins in the APP mice was also rescued after STEP inhibitor treatment, indicating the key role of STEP in nociception alteration. In summary, this study identifies a mechanism for the reduced nociceptive sensitivity in an AD mouse model that could serve as a therapeutic target to improve the quality of life for patients with AD.
Collapse
|
13
|
Lawn T, Aman Y, Rukavina K, Sideris-Lampretsas G, Howard M, Ballard C, Ray Chaudhuri K, Malcangio M. Pain in the neurodegenerating brain: insights into pharmacotherapy for Alzheimer disease and Parkinson disease. Pain 2021; 162:999-1006. [PMID: 33239526 PMCID: PMC7977618 DOI: 10.1097/j.pain.0000000000002111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Lawn
- Centre for Neuroimaging Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Katarina Rukavina
- The Maurice Wohl Clinical Neuroscience Institute, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - George Sideris-Lampretsas
- Wolfson Centre for Age Related Diseases, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Matthew Howard
- Centre for Neuroimaging Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | | | - Kallol Ray Chaudhuri
- The Maurice Wohl Clinical Neuroscience Institute, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Cao S, Fisher DW, Rodriguez G, Yu T, Dong H. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice. J Neuroinflammation 2021; 18:10. [PMID: 33407625 PMCID: PMC7789762 DOI: 10.1186/s12974-020-02054-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Lyu S, Xing H, Liu Y, Girdhar P, Zhang K, Yokoi F, Xiao R, Li Y. Deficiency of Meis1, a transcriptional regulator, in mice and worms: Neurochemical and behavioral characterizations with implications in the restless legs syndrome. J Neurochem 2020; 155:522-537. [PMID: 32910473 PMCID: PMC7894994 DOI: 10.1111/jnc.15177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Restless legs syndrome is a sleep-related sensorimotor neurological disease affecting up to 10% of the population. Genetic analyses have identified Myeloid Ecotropic viral Integration Site 1 (MEIS1), a transcriptional regulator, to be associated with not only the restless legs syndrome but also self-reported symptoms of insomnia and sleep. This study is to determine if Meis1 deficiency in mice can lead to restless legs syndrome-like phenotypes, and if it is the case, what the underlying mechanisms are. We used two genetic model systems, Caenorhabditis elegans and mice. Egg retention assay and fluorescent reporters were used with C. elegans. For mice, we performed behavioral tests, serum and brain iron detection, qRT-PCR, western blot, immunohistochemistry, and in vitro brain-slice recording. Our results showed that with C. elegans, the function of dop-3, an orthologue of DRD2, was diminished after the knockdown of unc-62, an ortholog of MEIS1. Additionally, unc-62 knockdown led to enhanced transcription of the orthologue of tyrosine hydroxylase, cat-2. Meis1 knockout mice were hyperactive and had a rest-phase-specific increased probability of waking. Moreover, Meis1 knockout mice had increased serum ferritin and altered striatal dopaminergic and cholinergic systems. Specifically, Meis1 knockout mice showed an increased mRNA level but decreased protein level of tyrosine hydroxylase in the striatum. Furthermore, Meis1 knockout mice had increased striatal dopamine turnover and decreased spontaneous firing regularity of striatal cholinergic interneurons. Our data suggest that Meis1 knockout mice have restless legs syndrome-like motor restlessness and changes in serum ferritin levels. The symptoms may be related to dysfunctional dopaminergic and cholinergic systems.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Pallavi Girdhar
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Keer Zhang
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
The geriatric pain experience in mice: intact cutaneous thresholds but altered responses to tonic and chronic pain. Neurobiol Aging 2020; 89:1-11. [DOI: 10.1016/j.neurobiolaging.2019.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
|
17
|
Cao S, Yuan J, Zhang D, Wen S, Wang J, Li Y, Deng W. Transcriptome Changes In Dorsal Spinal Cord Of Rats With Neuropathic Pain. J Pain Res 2019; 12:3013-3023. [PMID: 31807058 PMCID: PMC6850707 DOI: 10.2147/jpr.s219084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms of neuropathic pain are not fully understood. Molecular changes in spinal dorsal horn take part in the initiation and development of neuropathic pain. Methods To detect the transcriptome changes in the dorsal spinal cord of neuropathic pain rat, sciatic nerve chronic constriction injury (CCI) rats were used. Then, the CCI ipsilateral dorsal spinal cords of lumbar L3-L5 segments were collected at 14th day post-CCI and subjected to microRNA and long non-coding RNA (lncRNA)/mRNA microarray. To evaluate functions of differential mRNAs, bioinformatics methods including gene ontology (GO) and KEGG pathway analysis were conducted for significantly up- and downregulated mRNAs. Results MicroRNA microarrays showed that 13 microRNAs were differently expressed between CCI and sham-operated rats (fold change ≥ 2.0). Six of them were upregulated, and the other seven were downregulated in CCI group. MicroRNA-1b overexpressed 18.7 times after CCI. LncRNA/mRNA microarray detected 876 lncRNAs with significant differential expression (fold change ≥ 2.0). Among them, 339 were significantly upregulated, and 537 were downregulated in CCI group. Sixteen of them differentially expressed more than 10 times and the lncRNA XR_356687 overexpressed as high as 53 times. In addition, 950 mRNAs were differentially expressed (fold change ≥ 2.0), including 405 upregulated and 545 downregulated in CCI group. Ten of these mRNAs with changed expressions of more than 10 times. The Hspa1b (encodes heat shock protein 70) overexpressed 24 times in CCI rats. Gene ontology analysis revealed that hundreds of differentially expressed mRNAs involved in the biological processes, cellular component, and molecular function. In addition, these genes significantly enriched into 32 KEGG pathways, including the TNF, FoxO, cytokine–cytokine receptor interaction, and calcium signaling pathways. Conclusion Neuropathic pain induced comprehensive changes of transcription profile in the dorsal spinal cord. These differentially expressed transcripts in spinal cord could be potential targets in defeating neuropathic pain.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Dexing Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jie Wang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Ying Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
18
|
Aman Y, Pitcher T, Ballard C, Malcangio M. Impaired chronic pain-like behaviour and altered opioidergic system in the TASTPM mouse model of Alzheimer's disease. Eur J Pain 2018; 23:91-106. [PMID: 29987897 PMCID: PMC6492091 DOI: 10.1002/ejp.1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chronic pain conditions, especially osteoarthritis (OA), are as common in individuals with Alzheimer's disease (AD) as in the general elderly population, which results in detrimental impact on patient's quality of life. However, alteration in perception of pain in AD coupled with deteriorating ability to communicate pain sensations often result in under-diagnosis and inappropriate management of pain. Therefore, a better understanding of mechanisms in chronic pain processing in AD is needed. Here, we explored the development and progression of OA pain and the effect of analgesics in a transgenic mouse model of AD. METHODS Unilateral OA pain was induced chemically, via an intra-articular injection of monosodium iodoacetate (MIA) in the left knee joint of AD-mice (TASTPM) and age- and gender-matched C57BL/6J (WT). Pharmacological and biochemical assessments were conducted in plasma and spinal cord tissue. RESULTS MIA resulted in hind paw mechanical hypersensitivity (allodynia), initiating on day 3, in TASTPM and WT controls. However, from 14 to 28 days, TASTPM displayed partial attenuation of allodynia and diminished spinal microglial response compared to WT controls. Naloxone, an opioid antagonist, re-established allodynia levels as observed in the WT group. Morphine, an opioid agonist, induced heightened analgesia in AD-mice whilst gabapentin was devoid of efficacy. TASTPM exhibited elevated plasma level of β-endorphin post-MIA which correlated with impaired allodynia. CONCLUSIONS These results indicate an alteration of the opioidergic system in TASTPM as possible mechanisms underlying impaired persistent pain sensitivity in AD. This work provides basis for re-evaluation of opioid analgesic use for management of pain in AD. SIGNIFICANCE This study shows attenuated pain-like behaviour in a transgenic mouse model of Alzheimer's disease due to alterations in the opioidergic system and central plasticity mechanisms of persistent pain.
Collapse
Affiliation(s)
- Y Aman
- Wolfson Centre for Age Related Diseases, King's College London, UK
| | - T Pitcher
- Wolfson Centre for Age Related Diseases, King's College London, UK
| | - C Ballard
- Wolfson Centre for Age Related Diseases, King's College London, UK.,Medical School, University of Exeter, UK
| | - M Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, UK
| |
Collapse
|
19
|
Neural pathways in medial septal cholinergic modulation of chronic pain: distinct contribution of the anterior cingulate cortex and ventral hippocampus. Pain 2018; 159:1550-1561. [DOI: 10.1097/j.pain.0000000000001240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|