1
|
Malek N, Hutchinson J, Naz A, Cordivari C. Evaluation of small fibre neuropathies. Pract Neurol 2025; 25:102-108. [PMID: 39179381 DOI: 10.1136/pn-2023-004054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Small fibre neuropathies (SFNs) are common and can significantly affect patients' lives due to debilitating pain and autonomic symptoms. We explain the tests that neurologists can use to diagnose SFNs and how neurophysiologists perform and interpret them. This review focuses on neurophysiological tests that can be used to investigate SFNs, their sensitivity, specificity and limitations. Some of these tests are available only in specialist centres. However, newer technologies are emerging from scientific research that may make it easier to diagnose these conditions in the future.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Joseph Hutchinson
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Asma Naz
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Carla Cordivari
- Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
2
|
Furia A, Liguori R, Donadio V. Small-Fiber Neuropathy: An Etiology-Oriented Review. Brain Sci 2025; 15:158. [PMID: 40002491 PMCID: PMC11853085 DOI: 10.3390/brainsci15020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Small-fiber neuropathy (SFN), affecting Aδ or C nerve fibers, is characterized by alterations of pain and temperature sensation, as well as autonomic dysfunction. Its diagnosis may still remain challenging as methods specifically assessing small nerve fibers are not always readily available, and standard techniques for large-fiber neuropathies, such as electroneuromyography, yield negative results. Still, skin biopsy for epidermal innervation and quantitative sensory testing allow for diagnosis in the presence of a congruent clinical picture. OBJECTIVES Many different etiologies may underlie small-fiber neuropathy, of which metabolic (diabetes mellitus/impaired glucose tolerance) and idiopathic remain prevalent. The aim of this narrative review is to provide a general picture of SFN while focusing on the different etiologies described in the literature in order to raise awareness of the variegated set of different causes of SFN and promote adequate diagnostic investigation. METHODS The term "Small-Fiber Neuropathy" was searched on the PubMed database with its different recognized etiologies: the abstracts of the articles were reviewed and described in the article if relevant for a total of 40 studies. RESULTS Many different disorders have been associated with SFN, even though often in the form of case reports or small case series. CONCLUSIONS Idiopathic forms of SFN remain the most prevalent in the literature, but association with different disorders (e.g., infectious, autoimmune) should prompt investigation for SFN in the presence of a congruent clinical picture (e.g., pain with neuropathic features).
Collapse
Affiliation(s)
- Alessandro Furia
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40138 Bologna, Italy
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40138 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| | - Vincenzo Donadio
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40138 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| |
Collapse
|
3
|
Coluzzi F, Di Stefano G, Scerpa MS, Rocco M, Di Nardo G, Innocenti A, Vittori A, Ferretti A, Truini A. The Challenge of Managing Neuropathic Pain in Children and Adolescents with Cancer. Cancers (Basel) 2025; 17:460. [PMID: 39941827 PMCID: PMC11816330 DOI: 10.3390/cancers17030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Neuropathic pain (NP) is a common complication associated with some types of childhood cancer, mainly due to nerve compression, chronic post-surgical pain, chemotherapy, and radiotherapy. NP is usually less responsive to traditional analgesics, and there is generally a lack of evidence on its management in cancer patients, leading to recommendations often based on clinical trials conducted on other forms of non-malignant NP. In pediatric oncology, managing NP is still very challenging for physicians. Different factors contribute to increasing the risk of undertreatment: (a) children may be unable to describe the quality of pain; therefore, the risk for NP to be underestimated or remain unrecognized; (b) specific tools to diagnose NP have not been validated in children; (c) there is a lack of randomized clinical trials involving children, with most evidence being based on case series and case reports; (d) most drugs used for adult patients are not approved for childhood cancers, and drug regulation varies among different countries; (e) recommendations for pediatric pain treatment are still not available. In this paper, a multidisciplinary team will review the current literature regarding children with cancer-related NP to define the best possible diagnostic strategies (e.g., clinical and instrumental tests) and propose a therapeutic care pathway, including both non-pharmacological and pharmacological approaches, which could help pediatricians, oncologists, neurologists, and pain therapists in designing the most effective multidisciplinary approach.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University, 00189 Rome, Italy; (G.D.S.); (A.T.)
| | - Maria Sole Scerpa
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Monica Rocco
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit Anesthesia, Intensive Care and Pain Therapy, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Giovanni Di Nardo
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy; (G.D.N.); (A.F.)
- Pediatric Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Alice Innocenti
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, 00189 Rome, Italy;
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Paediatric Hospital Bambino Gesù IRCCS, 00189 Rome, Italy;
| | - Alessandro Ferretti
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy; (G.D.N.); (A.F.)
- Pediatric Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, 00189 Rome, Italy; (G.D.S.); (A.T.)
| |
Collapse
|
4
|
Hubli M, Leone C. Clinical neurophysiology of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:125-154. [PMID: 39580211 DOI: 10.1016/bs.irn.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Timely and accurate diagnosis of neuropathic pain is critical for optimizing therapeutic outcomes and minimizing treatment delays. According to current standards, the diagnosis of definite neuropathic pain requires objective confirmation of a lesion or disease affecting the somatosensory nervous system. This can be provided by specialized neurophysiological techniques as conventional methods like nerve conduction studies and somatosensory evoked potentials may not be sufficient as they do not assess pain pathways. These specialized techniques apply various stimuli, such as thermal, electrical, or mechanical, alongside assessments of spinal/cortical potential or electromyographic reflex recordings. The selection of techniques is guided by the patient's clinical history and examination. The most common neurophysiological tests used in clinical practice are pain-related evoked potentials (PREPs) providing an objective evaluation of nociceptive pathways. Four types of PREPs are employed: laser evoked potentials, contact-heat evoked potentials, intra-epidermal electrical stimulation evoked potentials, and pinprick evoked potentials, with the two former ones being the most robust and reliable ones. These techniques investigate small-diameter fibers, primarily Aδ-fibers, and spinothalamic tracts allowing the identification of peripheral or central nervous system lesions. Yet, they are limited in capturing neuronal mechanisms underlying neuropathic pain or in providing objective quantification of pain sensation. Two neurophysiological measures which investigate the pain system beyond its integrity are the nociceptive withdrawal reflex and the N13 component of somatosensory evoked potentials. Both of these methods are more commonly used in research than clinical practice, but they pose interesting approaches to quantify central sensitization, a key underlying mechanism of neuropathic pain. Future investigations in neuropathic pain are therefore warranted.
Collapse
Affiliation(s)
- Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Røikjer J, Borbjerg MK, Andresen T, Giordano R, Hviid CVB, Mørch CD, Karlsson P, Klonoff DC, Arendt-Nielsen L, Ejskjaer N. Diabetic Peripheral Neuropathy: Emerging Treatments of Neuropathic Pain and Novel Diagnostic Methods. J Diabetes Sci Technol 2024:19322968241279553. [PMID: 39282925 PMCID: PMC11571639 DOI: 10.1177/19322968241279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. METHODS In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. RESULTS Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. CONCLUSION Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Krabsmark Borbjerg
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Trine Andresen
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Arendt-Nielsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
6
|
Maestrini I, Viganò A, Di Stefano G, Toscano M, Di Piero V. Neurophysiological investigations in a case of primary paroxysmal hemicrania-tic syndrome. Neurol Sci 2024; 45:3917-3921. [PMID: 38523207 DOI: 10.1007/s10072-024-07470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The association between paroxysmal hemicrania (PH) and trigeminal neuralgia-the so-called PH-tic syndrome-has rarely been described. However, a correct diagnosis is crucial since both disorders require specific treatments. Little is known about pathophysiological mechanisms, and, to date, there are no electrophysiological studies in patients with PH-tic syndrome. CASE We describe the case of a 52-year-old man with a PH-tic syndrome successfully treated with an association of carbamazepine (1200 mg/day) and indomethacin (150 mg/die). Patient underwent trigeminal reflex testing, including blink and masseter inhibitory reflex, and laser-evoked potential (LEP) recording after supraorbital region stimulation in the affected and unaffected side. Both neurophysiological investigations resulted normal; LEPs failed to detect any latency asymmetry between both sides. CONCLUSIONS Neurophysiological findings demonstrate for the first time the integrity of somatosensory system in a primary PH-tic syndrome case. Central pathophysiological mechanisms and hypothalamic dysregulation may contribute to the development of this rare syndrome.
Collapse
Affiliation(s)
- Ilaria Maestrini
- Department of Systems Medicine, University Hospital of Rome "Tor Vergata", Rome, Italy.
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy.
| | - Alessandro Viganò
- Rehabilitation Neurology Unit, I.R.C.C.S. Fondazione Don Carlo Gnocchi, Via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Giulia Di Stefano
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
- Department of Neurology, Fatebenefratelli Hospital-Gemelli Isola, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Pavia, Italy
| |
Collapse
|
7
|
Zhang X, Tao J, Gong S, Yu X, Shao S. Effects of Recombinant Human Granulocyte/Macrophage Colony-Stimulating Factor on Diabetic Lower Extremity Ulcers: Case Series of Nine Patients [Response to Letter]. Diabetes Metab Syndr Obes 2024; 17:2201-2202. [PMID: 38854445 PMCID: PMC11162623 DOI: 10.2147/dmso.s478722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei Province, People’s Republic of China
| | - Jing Tao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei Province, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei Province, People’s Republic of China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei Province, People’s Republic of China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
8
|
Kersebaum D, Sendel M, Lassen J, Fabig SC, Forstenpointner J, Reimer M, Canaan-Kühl S, Gaedeke J, Rehm S, Gierthmühlen J, Baron R, Hüllemann P. Cold-evoked potentials in Fabry disease and polyneuropathy. FRONTIERS IN PAIN RESEARCH 2024; 5:1352711. [PMID: 38812855 PMCID: PMC11133603 DOI: 10.3389/fpain.2024.1352711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/02/2024] [Indexed: 05/31/2024] Open
Abstract
Background Fabry disease (FD) causes cold-evoked pain and impaired cold perception through small fiber damage, which also occurs in polyneuropathies (PNP) of other origins. The integrity of thinly myelinated fibers and the spinothalamic tract is assessable by cold-evoked potentials (CEPs). In this study, we aimed to assess the clinical value of CEP by investigating its associations with pain, autonomic measures, sensory loss, and neuropathic signs. Methods CEPs were examined at the hand and foot dorsum of patients with FD (n = 16) and PNP (n = 21) and healthy controls (n = 23). Sensory phenotyping was performed using quantitative sensory testing (QST). The painDETECT questionnaire (PDQ), FabryScan, and measures for the autonomic nervous system were applied. Group comparisons and correlation analyses were performed. Results CEPs of 87.5% of the FD and 85.7% of the PNP patients were eligible for statistical analysis. In all patients combined, CEP data correlated significantly with cold detection loss, PDQ items, pain, and autonomic measures. Abnormal CEP latency in FD patients was associated with an abnormal heart frequency variability item (r = -0.684; adjusted p = 0.04). In PNP patients, CEP latency correlated significantly with PDQ items, and CEP amplitude correlated with autonomic measures (r = 0.688, adjusted p = 0.008; r = 0.619, adjusted p = 0.024). Furthermore, mechanical pain thresholds differed significantly between FD (gain range) and PNP patients (loss range) (p = 0.01). Conclusions Abnormal CEPs were associated with current pain, neuropathic signs and symptoms, and an abnormal function of the autonomic nervous system. The latter has not been mirrored by QST parameters. Therefore, CEPs appear to deliver a wider spectrum of information on the sensory nervous system than QST alone.
Collapse
Affiliation(s)
- Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
- Schön Clinic Rendsburg, Department of Psychiatry, Psychotherapy and Psychosomatics, Rendsburg, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Josephine Lassen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Reimer
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sima Canaan-Kühl
- Division of Nephrology, Department of Medicine, Charité, Berlin, Germany
| | - Jens Gaedeke
- Division of Nephrology, Department of Medicine, Charité, Berlin, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Janne Gierthmühlen
- Interdisciplinary Pain and Palliative Care Division, Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
9
|
Di Stefano G, Falco P, Galosi E, De Stefano G, Di Pietro G, Leone C, Litewczuk D, Tramontana L, Strano S, Truini A. Pain associated with COVID-19 vaccination is unrelated to skin biopsy abnormalities. Pain Rep 2023; 8:e1089. [PMID: 38225959 PMCID: PMC10789449 DOI: 10.1097/pr9.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 01/17/2024] Open
Abstract
Introduction Previous clinical observations raised the possibility that COVID-19 vaccination might trigger a small-fibre neuropathy. Objectives In this uncontrolled observational study, we aimed to identify small fibre damage in patients complaining of generalized sensory symptoms and pain after COVID-19 vaccination. Methods We collected clinical data, including a questionnaire for assessing autonomic symptoms (Composite Autonomic Symptom Score-31), and investigated quantitative sensory testing (QST) and skin biopsy in 15 prospectively enrolled patients with generalized sensory symptoms and pain after COVID-19 vaccination. Nine patients complaining of orthostatic intolerance also underwent cardiovascular autonomic tests. Results We found that all patients experienced widespread pain, and most of them (11 of 15) had a fibromyalgia syndrome. All patients had normal skin biopsy findings, and in the 9 patients with orthostatic intolerance, cardiovascular autonomic tests showed normal findings. Nevertheless, 5 patients had cold and warm detection abnormalities at the QST investigation. Conclusions In our study, most patients complaining of generalized sensory symptoms and pain after COVID-19 vaccination had clinical and diagnostic test findings compatible with a fibromyalgia syndrome. Although the abnormal QST findings we found in 5 patients might be compatible with a small-fibre neuropathy, they should be cautiously interpreted given the psychophysical characteristics of this diagnostic test. Further larger controlled studies are needed to define precisely the association between small fibre damage and COVID-19 vaccination.
Collapse
Affiliation(s)
| | - Pietro Falco
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | | | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Daniel Litewczuk
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Stefano Strano
- Dipartimento Cuore e Grossi Vasi, Sapienza University, Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
10
|
Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, Bouhassira D, Cruccu G, Eisenberg E, Enax-Krumova E, Davis KD, Di Stefano G, Finnerup NB, Garcia-Larrea L, Hanafi I, Haroutounian S, Karlsson P, Rakusa M, Rice ASC, Sachau J, Smith BH, Sommer C, Tölle T, Valls-Solé J, Veluchamy A. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol 2023; 30:2177-2196. [PMID: 37253688 DOI: 10.1111/ene.15831] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND PURPOSE In these guidelines, we aimed to develop evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain (NeP). METHODS We systematically reviewed studies providing information on the sensitivity and specificity of screening questionnaires, and quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy. We also analysed how functional neuroimaging, peripheral nerve blocks, and genetic testing might provide useful information in diagnosing NeP. RESULTS Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I-DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, and S-LANSS (self-administered LANSS) and PainDETECT weak recommendations for their use in the diagnostic pathway for patients with possible NeP. We devised a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials in the NeP diagnosis. Trigeminal reflex testing received a strong recommendation in diagnosing secondary trigeminal neuralgia. Although many studies support the usefulness of corneal confocal microscopy in diagnosing peripheral neuropathy, no study specifically investigated the diagnostic accuracy of this technique in patients with NeP. Functional neuroimaging and peripheral nerve blocks are helpful in disclosing pathophysiology and/or predicting outcomes, but current literature does not support their use for diagnosing NeP. Genetic testing may be considered at specialist centres, in selected cases. CONCLUSIONS These recommendations provide evidence-based clinical practice guidelines for NeP diagnosis. Due to the poor-to-moderate quality of evidence identified by this review, future large-scale, well-designed, multicentre studies assessing the accuracy of diagnostic tests for NeP are needed.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Katina Aleksovska
- European Academy of Neurology, Vienna, Austria
- Department of Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Christopher C Anderson
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadine Attal
- Université Versailles Saint Quentin en Yvelines, Versailles, France
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Didier Bouhassira
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Giorgio Cruccu
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Elon Eisenberg
- Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre D'évaluation et de Traitement de la Douleur, Hôpital Neurologique, Lyon, France
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Tölle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josep Valls-Solé
- Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Chan ACY, Kumar S, Tan G, Wong HY, Ong JJY, Chandra B, Huang H, Sharma VK, Lai PS. Expanding the genetic causes of small-fiber neuropathy: SCN genes and beyond. Muscle Nerve 2023; 67:259-271. [PMID: 36448457 DOI: 10.1002/mus.27752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
Small-fiber neuropathy (SFN) is a disorder that exclusively affects the small nerve fibers, sparing the large nerve fibers. Thinly myelinated Aδ-fibers and unmyelinated C-fibers are damaged, leading to development of neuropathic pain, thermal dysfunction, sensory symptoms, and autonomic disturbances. Although many SFNs are secondary and due to immunological causes or metabolic disturbances, the etiology is unknown in up to half of the patients. Over the years, this proportion of "idiopathic SFN" has decreased, as familial and genetic causes have been discovered, thus shifting a proportion of once "idiopathic" cases to the genetic category. After the discovery of SCN9A-gene variants in 2012, SCN10A and SCN11A variants have been found to be pathogenic in SFN. With improved accessibility of SFN diagnostic tools and genetic tests, many non-SCN variants and genetically inherited systemic diseases involving the small nerve fibers have also been described, but only scattered throughout the literature. There are 80 SCN variants described as causing SFN, 8 genes causing hereditary sensory autonomic neuropathies (HSAN) described with pure SFN, and at least 7 genes involved in genetically inherited systemic diseases associated with SFN. This systematic review aims to consolidate and provide an updated overview on the genetic variants of SFN to date---SCN genes and beyond. Awareness of these genetic causes of SFN is imperative for providing treatment directions, prognostication, and management of expectations for patients and their health-care providers.
Collapse
Affiliation(s)
- Amanda C Y Chan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shivaram Kumar
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Tan
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yi Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Jonathan J Y Ong
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bharatendu Chandra
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Hua Huang
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vijay Kumar Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh San Lai
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
- Adjunct Faculty, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
13
|
Franz S, Heutehaus L, Tappe-Theodor A, Weidner N, Treede RD, Schuh-Hofer S. Noxious radiant heat evokes bi-component nociceptive withdrawal reflexes in spinal cord injured humans-A clinical tool to study neuroplastic changes of spinal neural circuits. Front Hum Neurosci 2023; 17:1141690. [PMID: 37200949 PMCID: PMC10185789 DOI: 10.3389/fnhum.2023.1141690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Investigating nocifensive withdrawal reflexes as potential surrogate marker for the spinal excitation level may widen the understanding of maladaptive nociceptive processing after spinal cord injury (SCI). The aim of this prospective, explorative cross-sectional observational study was to investigate the response behavior of individuals with SCI to noxious radiant heat (laser) stimuli and to assess its relation to spasticity and neuropathic pain, two clinical consequences of spinal hyperexcitability/spinal disinhibition. Laser stimuli were applied at the sole and dorsum of the foot and below the fibula head. Corresponding reflexes were electromyography (EMG) recorded ipsilateral. Motor responses to laser stimuli were analyzed and related to clinical readouts (severity of injury/spasticity/pain), using established clinical assessment tools. Twenty-seven participants, 15 with SCI (age 18-63; 6.5 years post-injury; AIS-A through D) and 12 non-disabled controls, [non-disabled controls (NDC); age 19-63] were included. The percentage of individuals with SCI responding to stimuli (70-77%; p < 0.001), their response rates (16-21%; p < 0.05) and their reflex magnitude (p < 0.05) were significantly higher compared to NDC. SCI-related reflexes clustered in two time-windows, indicating involvement of both A-delta- and C-fibers. Spasticity was associated with facilitated reflexes in SCI (Kendall-tau-b p ≤ 0.05) and inversely associated with the occurrence/severity of neuropathic pain (Fisher's exact p < 0.05; Eta-coefficient p < 0.05). However, neuropathic pain was not related to reflex behavior. Altogether, we found a bi-component motor hyperresponsiveness of SCI to noxious heat, which correlated with spasticity, but not neuropathic pain. Laser-evoked withdrawal reflexes may become a suitable outcome parameter to explore maladaptive spinal circuitries in SCI and to assess the effect of targeted treatment strategies. Registration: https://drks.de/search/de/trial/DRKS00006779.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Steffen Franz,
| | - Laura Heutehaus
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Anke Tappe-Theodor
- Department of Molecular Pharmacology, Medical Faculty Heidelberg, Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
- Department of Neurology and Epileptology, University of Tübingen, Tübingen, Germany
- *Correspondence: Sigrid Schuh-Hofer,
| |
Collapse
|
14
|
Just Breathe: Improving LEP Outcomes through Long Interval Breathing. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Laser-evoked potentials (LEPs) constitute an objective clinical diagnostic method used to investigate the functioning of the nociceptor system, including signaling in thin peripheral nerve fibers: Aδ and C fibers. There is preliminary evidence that phase locking LEPs with the breathing cycle can improve the parameters used to evaluate LEPs. Methods: We tested a simple breathing protocol as a low-cost improvement to LEP testing of the hands. Twenty healthy participants all underwent three variants of LEP protocols: following a video-guided twelve-second breathing instruction, watching a nature video, or using the classic LEP method of focusing on the hand being stimulated. Results: The breath protocol produced significantly shorter latencies as compared with the nature or classic protocol. It was also the least prone to artifacts and was deemed most acceptable by the subjects. There was no difference between the protocols regarding LEP amplitudes. Conclusions: Using a breathing video can be a simple, low-cost improvement for LEP testing in research and clinical diagnostics.
Collapse
|
15
|
Strand N, Wie C, Peck J, Maita M, Singh N, Dumbroff J, Tieppo Francio V, Murphy M, Chang K, Dickerson DM, Maloney J. Small Fiber Neuropathy. Curr Pain Headache Rep 2022; 26:429-438. [PMID: 35384587 DOI: 10.1007/s11916-022-01044-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This narrative review aims to summarize advances in the field of small fiber neuropathy made over the last decade, with emphasis on novel research highlighting the distinctive features of SFN. RECENT FINDINGS While the management of SFNs is ideally aimed at treating the underlying cause, most patients will require pain control via multiple, concurrent therapies. Herein, we highlight the most up-to-date information for diagnosis, medication management, interventional management, and novel therapies on the horizon. Despite the prevalence of small fiber neuropathies, there is no clear consensus on guidelines specific for the treatment of SFN. Despite the lack of specific guidelines for SFN treatment, the most recent general neuropathic pain guidelines are based on Cochrane studies and randomized controlled trials (RCTs) which have individually examined therapies used for the more commonly studied SFNs, such as painful diabetic neuropathy and HIV neuropathy. The recommendations from current guidelines are based on variables such as number needed to treat (NNT), safety, ease of use, and effect on quality of life.
Collapse
Affiliation(s)
- N Strand
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA.
| | - C Wie
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - J Peck
- Performing Arts Medicine Department, Shenandoah University, Winchester, USA
| | - M Maita
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| | - N Singh
- OrthoAlabama Spine and Sports, Birmingham, AL, USA
| | - J Dumbroff
- Mount Sinai Morningside and West Department of Anesthesiology, New York, NY, USA
| | - V Tieppo Francio
- Department of Rehabilitation on Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - M Murphy
- Department of Rehabilitation on Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - K Chang
- Department of Anesthesiology and Critical Care, Emory University, Atlanta, GA, USA
| | - D M Dickerson
- NorthShore University HealthSystem, Evanston, IL, USA
- University of Chicago Medicine, Chicago,, IL, USA
| | - J Maloney
- Division of Pain Medicine, Mayo Clinic Hospital, Phoenix, AZ, USA
| |
Collapse
|
16
|
Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Bernhard Nilsen K, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: Report from an IFCN expert group. Clin Neurophysiol 2022; 136:13-38. [DOI: 10.1016/j.clinph.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/09/2023]
|
17
|
Fustes OJH, Kay CSK, Lorenzoni PJ, Ducci RDP, Werneck LC, Scola RH. Somatosensory evoked potentials in clinical practice: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:824-831. [PMID: 34669817 DOI: 10.1590/0004-282x-anp-2020-0427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
The authors present a review of the current use of somatosensory evoked potentials (SSEPs) in neurological practice as a non-invasive neurophysiological technique. For this purpose we have reviewed articles published in English or Portuguese in the PubMed and LILACS databases. In this review, we address the role of SSEPs in neurological diseases that affect the central nervous system and the peripheral nervous system, especially in demyelinating diseases, for monitoring coma, trauma and the functioning of sensory pathways during surgical procedures. The latter, along with new areas of research, has become one of the most important applications of SSEPs.
Collapse
Affiliation(s)
- Otto Jesus Hernández Fustes
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Paulo José Lorenzoni
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Renata Dal-Prá Ducci
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Lineu Cesar Werneck
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares e Desmielinizantes, Curitiba PR, Brazil
| |
Collapse
|
18
|
Gemignani F, Bellanova MF, Saccani E, Pavesi G. Non-length-dependent small fiber neuropathy: Not a matter of stockings and gloves. Muscle Nerve 2021; 65:10-28. [PMID: 34374103 DOI: 10.1002/mus.27379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
The clinical spectrum of small fiber neuropathy (SFN) encompasses manifestations related to the involvement of thinly myelinated A-delta and unmyelinated C fibers, including not only the classical distal phenotype, but also a non-length-dependent (NLD) presentation that can be patchy, asymmetrical, upper limb-predominant, or diffuse. This narrative review is focused on NLD-SFN. The diagnosis of NLD-SFN can be problematic, due to its varied and often atypical presentation, and diagnostic criteria developed for distal SFN are not suitable for NLD-SFN. The topographic pattern of NLD-SFN is likely related to ganglionopathy restricted to the small neurons of dorsal root ganglia. It is often associated with systemic diseases, but about half the time is idiopathic. In comparison with distal SFN, immune-mediated diseases are more common than dysmetabolic conditions. Treatment is usually based on the management of neuropathic pain. Disease-modifying therapy, including immunotherapy, may be effective in patients with identified causes. Future research on NLD-SFN is expected to further clarify the interconnected aspects of phenotypic characterization, diagnostic criteria, and pathophysiology.
Collapse
Affiliation(s)
- Franco Gemignani
- Neurology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria F Bellanova
- Laboratory of Neuromuscular Histopathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Saccani
- Neurology Unit, Department of Specialized Medicine, University Hospital of Parma, Parma, Italy
| | - Giovanni Pavesi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Lefaucheur JP, Abbas SA, Lefaucheur-Ménard I, Rouie D, Tebbal D, Bismuth J, Nordine T. Small nerve fiber selectivity of laser and intraepidermal electrical stimulation: A comparative study between glabrous and hairy skin. Neurophysiol Clin 2021; 51:357-374. [PMID: 34304975 DOI: 10.1016/j.neucli.2021.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In clinical neurophysiology practice, various methods of stimulation can be used to activate small-diameter nociceptive cutaneous afferents located in the epidermis. These methods include different types of laser and intraepidermal electrical stimulation techniques. The diffusion of the stimulation in the skin, inside or under the epidermis, depends on laser wavelength and electrode design, in particular. The aim of this study was to compare several of these techniques in their ability to selectively stimulate small nerve fibers. METHODS In 8 healthy subjects, laser stimulation (using a CO2 or Nd:YAP laser) and intraepidermal electrical stimulation (using a micropatterned, concentric planar, or concentric needle electrode), were applied at increasing energy or intensity on the dorsal or volar aspect of the right hand or foot. The subjects were asked to define the perceived sensation (warm, pinprick, or electric shock sensation, corresponding to the activation of C fibers, Aδ fibers, or Aβ fibers, respectively) after each stimulation. Depending on the difference in the sensations perceived between dorsal (hairy skin with thin stratum corneum) and volar (glabrous skin with thick stratum corneum) stimulations, the diffusion of the stimulation inside or under the epidermis and the nature of the activated afferents were determined. RESULTS Regarding laser stimulation, the perceived sensations turned from warm to pinprick with increasing energies of stimulation, in particular with the Nd:YAP laser, of which pulse could penetrate deep in the skin according to its short wavelength. In contrast, CO2 laser stimulation produced only warm sensations and no pricking sensation when applied to the glabrous skin, perhaps due to a thicker stratum corneum and the shallow penetration of the CO2 laser pulse. Regarding intraepidermal electrical stimulation using concentric electrodes, the perceived sensations turned from pinprick to a combination of pinprick and electrical shocks with increasing intensities. Using the concentric planar electrode, the sensations perceived at high stimulation intensity even consisted of electric shocks without concomitant pinprick. In contrast, using the micropatterned electrode, only pinprick sensations were produced by the stimulation of the hairy skin, while the stimulation of the glabrous skin produced no sensation at all within the limits of stimulation intensities used in this study. CONCLUSIONS Using the CO2 laser or the micropatterned electrode, pinprick sensations were selectively produced by the stimulation of hairy skin, while only warm sensation or no sensation at all were produced by the stimulation of glabrous skin. These two techniques appear to be more selective with a limited diffusion of the stimulation into the skin, restricting the activation of sensory afferents to the most superficial and smallest intraepidermal nerve fibers.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France.
| | - Samar A Abbas
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | | | - Denis Rouie
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Denise Tebbal
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Julie Bismuth
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Tarik Nordine
- Univ Paris Est Creteil, EA4391, ENT, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| |
Collapse
|
20
|
Frasson E, Tozzi MC, Bordignon M, Motti L, Ferrari F, Torre G, Graziottin A, Monaco S, Bertolasi L. Laser-Evoked Potentials to Pudendal Stimulation in Healthy Subjects: A Pilot Study. J Clin Neurophysiol 2021; 38:317-322. [PMID: 32217884 DOI: 10.1097/wnp.0000000000000694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Laser-evoked potentials (LEPs) are useful neurophysiological tools for investigating the A-delta sensory peripheral fibers and the central nociceptive pathway. The current investigation aims to obtain normative values of LEPs via pudendal nerve stimulation in healthy adult volunteers. METHODS Laser-evoked potentials were recorded in 16 men and 22 women, 22 to 75 years of age, using neodymium and yttrium and aluminum and perovskite laser bilateral stimulation to the pudendal nerve-supplied skin and the dorsal surface of the hands and feet. We assessed the perceptive threshold, latency, and amplitude of the N1 component and main vertex N2-P2 complex. The relationship between gender, age, height, and site of stimulation was statistically analyzed. RESULTS Both in men and in women, laser perceptive threshold increased from genitalia to foot and from hand to foot (P ≤ 0.001). N1 and N2-P2 latencies progressively increased from pudendal area to hand to foot (P ≤ 0.008). N1 and N2-P2 complex LEP amplitudes progressively decreased from hand to genitalia to foot (P ≤ 0.04). The latencies of N1 component and N2-P2 complex of LEPs correlated with body height, whereas the amplitude of the N2-P2 complex correlated negatively with age; no correlations were observed between the latencies and amplitudes with gender. CONCLUSIONS This study provides normative data on pudendal LEPs versus hand and foot LEPs. Incorporation of pudendal LEPs into clinical practice could provide a valuable neurophysiological tool for the study of pelvic pain syndromes.
Collapse
Affiliation(s)
- Emma Frasson
- Department of Neurology, AULSS 6 Euganea, Cittadella Hospital, Padua, Italy
| | - Maria Chiara Tozzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Monia Bordignon
- Department of Management Control, AULSS 6 Euganea, Cittadella Hospital, Padua, Italy
| | - Luisa Motti
- Department of Neurophysiology, Azienda Ospedaliera S. Maria Nuova, Reggio Emilia, Italy ; and
| | - Francesca Ferrari
- Department of Neurophysiology, Azienda Ospedaliera S. Maria Nuova, Reggio Emilia, Italy ; and
| | - Gabriella Torre
- Department of Neurophysiology, Azienda Ospedaliera S. Maria Nuova, Reggio Emilia, Italy ; and
| | - Alessandra Graziottin
- Gynaecology and Medical Sexology Centre, Hospitale San Raffaele Resnati, Milan, Italy
| | - Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Laura Bertolasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Kersebaum D, Fabig SC, Sendel M, Muntean AC, Baron R, Hüllemann P. Revealing the time course of laser-evoked potential habituation by high temporal resolution analysis. Eur J Pain 2021; 25:2112-2128. [PMID: 34155707 DOI: 10.1002/ejp.1823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/10/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Reduced laser-evoked potential (LEP) habituation indicates abnormal central pain processing. But the paradigm (four stimulation blocks a 25 stimuli) is time consuming and potentially omits important information on the exact habituation time course. This study examined whether a high temporal resolution (HTR) analysis (dividing the four stimulation blocks into 12 analysis blocks) can answer the following questions: (a) After how many stimuli does LEP habituation occur? (b) Is there a difference in LEP habituation in younger versus older subjects? (c) Is HTR applicable on radiculopathy patients? METHODS EEG data of 129 subjects were included. Thirty-four young healthy and 28 advanced-aged healthy subjects were tested with LEPs on the hand dorsum. Thirty-seven radiculopathy patients and 30 controls were tested with LEPs on the L3 dermatome. The EEG data of the hand dorsa have been analysed conventionally and with HTR analysis. The applicability of HTR has been tested on radiculopathy patients and respective controls. RESULTS HTR was well feasible in young healthy subjects and revealed a strong habituation effect during the first 25 stimuli (i.e. within the first 5 min). After approximately 48 stimuli, no further significant habituation was detectable. LEP amplitudes were higher in young subjects. HTR was unsuitable for elderly subjects and middle-aged radiculopathy patients. CONCLUSIONS In young healthy subjects, HTR allows a shortening of the test protocol while providing a detailed information on the time course of LEP habituation. A shorter protocol might be useful for the applicability of the LEP paradigm for clinical and experimental settings as well as pharmacological studies. SIGNIFICANCE The usage of high temporal resolution (HTR) analysis in young healthy subjects enables a short test protocol and provides the exact time course of laser-evoked potential habituation. This can be useful for the examination of neurological conditions affecting younger patients and for pharmacological studies. HTR was inapplicable in advanced-aged subjects and patients with radiculopathy.
Collapse
Affiliation(s)
- Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Alexandra Cristina Muntean
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Clinic Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
22
|
Leone C, Galosi S, Mollica C, Fortunato M, Possidente C, Milone V, Misuraca S, Berillo L, Truini A, Cruccu G, Ferrara M, Terrinoni A. Dissecting pain processing in adolescents with Non-Suicidal Self Injury: Could suicide risk lurk among the electrodes? Eur J Pain 2021; 25:1815-1828. [PMID: 33982830 PMCID: PMC8453562 DOI: 10.1002/ejp.1793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022]
Abstract
Background Although non‐suicidal self‐injury (NSSI) disorder is highly prevalent in adolescents, its relationship with pain system function and suicidality is still controversial. The present study was designed to assess the function of the nociceptive afferent pathways and the endogenous pain modulation in adolescent patients with NSSI and to longitudinally register any suicide attempt, describe its frequency and find a possible association between suicide, neurophysiological measures and psychological measures. Methods We enrolled 30 adolescents suffering from NSSI and 20 age‐ and gender‐matched healthy controls. Patients underwent a comprehensive psychological evaluation. Each participant underwent thermal pain thresholds of the quantitative sensory testing, laser‐evoked potential recording to study the ascending nociceptive pathway and the conditioned pain modulation testing to test the endogenous pain modulation. Results We found that patients with NSSI had a reduced amplitude of the N2 component of laser‐evoked potentials and an abnormal conditioned pain modulation. The amplitude of the N2 was associated with suicidal risk. Conclusions The deficit of the endogenous pain modulation likely depends on a saturation due to continuous pain solicitation. The strong association of a reduced amplitude of the N2 component with suicide suggests that it may serve as a possible biomarker in self‐harming adolescents. Significance The present study identifies the N2 component of laser‐evoked potentials as a possible neurophysiological biomarker of suicidal risk in patients with non‐suicidal self‐injury, therefore, raising the possibility for a non‐invasive test to identify subjects at higher risk of suicide among self‐harming patients.
Collapse
Affiliation(s)
- Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Cristina Mollica
- Department of Methods and Models for Economics, Territory and Finance, Sapienza University, Rome, Italy
| | - Mattia Fortunato
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Valeria Milone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Sofia Misuraca
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Luana Berillo
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Mauro Ferrara
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | |
Collapse
|
23
|
Leone CM, Celletti C, Gaudiano G, Puglisi PA, Fasolino A, Cruccu G, Camerota F, Truini A. Pain due to Ehlers-Danlos Syndrome Is Associated with Deficit of the Endogenous Pain Inhibitory Control. PAIN MEDICINE 2021; 21:1929-1935. [PMID: 32176287 DOI: 10.1093/pm/pnaa038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Although pain is a common complication of the hypermobile type of Ehlers-Danlos syndrome, its underlying mechanisms are still an issue of controversy. In this psychophysical study, we aimed at testing small-fiber function and the endogenous pain inhibitory control in patients with pain due to Ehlers-Danlos syndrome. METHODS In 22 patients with pain due to Ehlers-Danlos syndrome and 22 healthy participants, matched for age and sex, we tested small-fiber function using quantitative sensory testing and the endogenous pain inhibitory control using the conditioned pain modulation (CPM) protocol. As quantitative sensory testing methods, we included thermal pain and mechanical pain thresholds and the wind-up ratio. The CPM protocol consisted of two heat painful stimuli, that is, a test stimulus and a conditioning stimulus. RESULTS All patients complained of widespread pain. Quantitative sensory testing revealed no small-fiber deficit; in the area of maximum pain, we found an increased wind-up ratio. Whereas in the healthy participants the CPM protocol showed that the test stimulus rating was significantly reduced during conditioning, in patients with pain due to hEDS, the test stimulus rating increased during conditioning. CONCLUSIONS Our psychophysical study showing that patients with pain due to hEDS have an increased wind-up ratio in the area of maximum pain and abnormal CPM protocol suggests that in this condition, pain is associated with central sensitization, possibly due to deficit of the endogenous pain inhibitory control. These data might be relevant to pharmacological treatment.
Collapse
Affiliation(s)
| | - Claudia Celletti
- Department of Physical medicine and Rehabilitation, Sapienza University, Rome, Italy
| | | | - Paola Anna Puglisi
- Faculty of Information Engineering, Informatics, and Statistics, Sapienza University, Rome, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Filippo Camerota
- Department of Physical medicine and Rehabilitation, Sapienza University, Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
24
|
Marshall A, Alam U, Themistocleous A, Calcutt N, Marshall A. Novel and Emerging Electrophysiological Biomarkers of Diabetic Neuropathy and Painful Diabetic Neuropathy. Clin Ther 2021; 43:1441-1456. [PMID: 33906790 DOI: 10.1016/j.clinthera.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Small and large peripheral nerve fibers can be involved in DPN. Large nerve fiber damage causes paresthesia, sensory loss, and muscle weakness, and small nerve fiber damage is associated with pain, anesthesia, foot ulcer, and autonomic symptoms. Treatments for DPN and painful DPN (pDPN) pose considerable challenges due to the lack of effective therapies. To meet these challenges, there is a major need to develop biomarkers that can reliably diagnose and monitor progression of nerve damage and, for pDPN, facilitate personalized treatment based on underlying pain mechanisms. METHODS This study involved a comprehensive literature review, incorporating article searches in electronic databases (Google Scholar, PubMed, and OVID) and reference lists of relevant articles with the authors' substantial expertise in DPN. This review considered seminal and novel research and summarizes emerging biomarkers of DPN and pDPN that are based on neurophysiological methods. FINDINGS From the evidence gathered from 145 papers, this submission describes emerging clinical neurophysiological methods with potential to act as biomarkers for the diagnosis and monitoring of DPN as well as putative future roles as predictors of response to antineuropathic pain medication in pDPN. Nerve conduction studies only detect large fiber damage and do not capture pathology or dysfunction of small fibers. Because small nerve fiber damage is prominent in DPN, additional biomarkers of small nerve fiber function are needed. Activation of peripheral nociceptor fibers using laser, heat, or targeted electrical stimuli can generate pain-related evoked potentials, which are an objective neurophysiological measure of damage along the small fiber pathways. Assessment of nerve excitability, which provides a surrogate of axonal properties, may detect alterations in function before abnormalities are detected by nerve conduction studies. Microneurography and rate-dependent depression of the Hoffmann-reflex can be used to dissect underlying pain-generating mechanisms arising from the periphery and spinal cord, respectively. Their role in informing mechanistic-based treatment of pDPN as well as facilitating clinical trials design is discussed. IMPLICATIONS The neurophysiological methods discussed, although currently not practical for use in busy outpatient settings, detect small fiber and early large fiber damage in DPN as well as disclosing dominant pain mechanisms in pDPN. They are suited as diagnostic and predictive biomarkers as well as end points in mechanistic clinical trials of DPN and pDPN.
Collapse
Affiliation(s)
- Anne Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Uazman Alam
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Andrew Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
25
|
Small-fibre pathology has no impact on somatosensory system function in patients with fibromyalgia. Pain 2021; 161:2385-2393. [PMID: 32897040 DOI: 10.1097/j.pain.0000000000001920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We aimed to investigate whether small-fibre pathology, a common skin biopsy finding in patients with fibromyalgia, implies clinically important abnormalities of somatosensory system function and verify whether it is associated with voltage-gated sodium channel variants. In 57 consecutively enrolled patients with fibromyalgia, we used skin biopsy to distinguish patients with and without small-fibre pathology. In all patients, we assessed somatosensory system function using quantitative sensory testing (QST) and laser-evoked potentials and investigated voltage-gated sodium channel genotyping. We then compared these variables in patients with and without small-fibre pathology. We found that clinical measures, QST, and laser-evoked potential variables did not differ between patients with and without small-fibre pathology. In most patients with small-fibre pathology, QST and laser-evoked potential variables fell within normative ranges commonly used in clinical practice. Of the 57 patients, one patient without small-fibre pathology and 2 patients with small-fibre pathology had rare variants of voltage-gated sodium channels, namely SCN11A, SCN9A, and SCN1A variants. The SCN9A variant, found in a patient with small-fibre pathology, was an already profiled gain-of-function mutation, previously reported in small-fibre neuropathy. Our findings suggest that small-fibre pathology has a negligible impact on somatosensory system function in fibromyalgia. The genetic analysis suggests that patients with rare small-fibre neuropathy due to voltage-gated sodium channel variants may be misdiagnosed as patients with fibromyalgia.
Collapse
|
26
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|
27
|
Galosi E, Di Pietro G, La Cesa S, Di Stefano G, Leone C, Fasolino A, Di Lionardo A, Leonetti F, Buzzetti R, Mollica C, Cruccu G, Truini A. Differential involvement of myelinated and unmyelinated nerve fibers in painful diabetic polyneuropathy. Muscle Nerve 2020; 63:68-74. [PMID: 32996600 DOI: 10.1002/mus.27080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND We aimed at evaluating the differential involvement of large myelinated Aβ-, small myelinated Aδ-, and unmyelinated C-fibers in patients with diabetic polyneuropathy and how they contribute to neuropathic pain. METHODS We collected clinical and diagnostic test variables in 133 consecutive patients with diabetic polyneuropathy. All patients underwent Aβ-fiber mediated nerve conduction study, Aδ-fiber mediated laser-evoked potentials and skin biopsy mainly assessing unmyelinated C-fibers. RESULTS Pure large-fiber and small-fiber polyneuropathy were relatively uncommon; conversely mixed-fiber polyneuropathy was the most common type of diabetic polyneuropathy (74%). The frequency of neuropathic pain was similar in the three different polyneuropathies. Ongoing burning pain and dynamic mechanical allodynia were similarly associated with specific small-fiber related variables. CONCLUSIONS Diabetic polyneuropathy mainly manifests as a mixed-fiber polyneuropathy, simultaneously involving Aβ-, Aδ-, and C-fibers. In most patients, neuropathic pain is distinctly associated with small-fiber damage. The evidence that the frequency of neuropathic pain does not differ across pure large-, pure small-, and mixed-fiber polyneuropathy, raises the possibility that in patients with pure large-fiber polyneuropathy nociceptive nerve terminal involvement might be undetected by standard diagnostic techniques.
Collapse
Affiliation(s)
- Eleonora Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Di Pietro
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Silvia La Cesa
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Di Lionardo
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Diabetes Unit, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Raffaella Buzzetti
- Experimental Medicine Department, Sapienza University of Rome, Rome, Italy
| | - Cristina Mollica
- Dipartimento di Metodi e Modelli per l'Economia, il Territorio e la Finanza, Sapienza University of Rome, Rome, Italy
| | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Jutzeler CR, Linde LD, Rosner J, Hubli M, Curt A, Kramer JLK. Single-trial averaging improves the physiological interpretation of contact heat evoked potentials. Neuroimage 2020; 225:117473. [PMID: 33099013 DOI: 10.1016/j.neuroimage.2020.117473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022] Open
Abstract
Laser and contact heat evoked potentials (LEPs and CHEPs, respectively) provide an objective measure of pathways and processes involved in nociception. The majority of studies analyzing LEP or CHEP outcomes have done so based on conventional, across-trial averaging. With this approach, evoked potential components are potentially confounded by latency jitter and ignore relevant information contained within single trials. The current study addressed the advantage of analyzing nociceptive evoked potentials based on responses to noxious stimulations within each individual trial. Single-trial and conventional averaging were applied to data previously collected in 90 healthy subjects from 3 stimulation locations on the upper limb. The primary analysis focused on relationships between single and across-trial averaged CHEP outcomes (i.e., N2P2 amplitude and N2 and P2 latencies) and subject characteristics (i.e., age, sex, height, and rating of perceived intensity), which were examined by way of linear mixed model analysis. Single-trial averaging lead to larger N2P2 amplitudes and longer N2 and P2 latencies. Age and ratings of perceived intensity were the only subject level characteristics associated with CHEPs outcomes that significantly interacted with the method of analysis (conventional vs single-trial averaging). The strength of relationships for age and ratings of perceived intensity, measured by linear fit, were increased for single-trial compared to conventional across-trial averaged CHEP outcomes. By accounting for latency jitter, single-trial averaging improved the associations between CHEPs and physiological outcomes and should be incorporated as a standard analytical technique in future studies.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Swiss Federal Institute of Technology (ETH Zurich), Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Switzerland; Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
| | - Lukas D Linde
- ICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- ICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Devigili G, Cazzato D, Lauria G. Clinical diagnosis and management of small fiber neuropathy: an update on best practice. Expert Rev Neurother 2020; 20:967-980. [PMID: 32654574 DOI: 10.1080/14737175.2020.1794825] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small fiber neuropathy (SFN) is a heterogeneous group of disorders affecting thin myelinated Aδ and unmyelinated C fibers. Common symptoms include neuropathic pain and autonomic disturbances, and the typical clinical presentation is that of a length-dependent polyneuropathy, although other distributions could be present. AREA COVERED This review focuses on several aspects of SFN including etiology, clinical presentation, diagnostic criteria and tests, management, and future perspectives. Diagnostic challenges are discussed, encompassing the role of accurate and standardized assessment of symptoms and signs and providing clues for the clinical practice. The authors discuss the evidence in support of skin biopsy and quantitative sensory testing as diagnostic tests and present an overview of other diagnostic techniques to assess sensory and autonomic fibers dysfunction. The authors also suggest a systematic approach to the etiology including a set of laboratory tests and genetic examinations of sodium channelopathies and other rare conditions that might drive the therapeutic approach based on underlying cause or symptoms treatment. EXPERT OPINION SFN provides a useful model for neuropathic pain whose known mechanisms and cause could pave the way toward personalized treatments.
Collapse
Affiliation(s)
- Grazia Devigili
- Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan, Italy
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan , Milan, Italy
| |
Collapse
|
30
|
de Tommaso M, Betti V, Bocci T, Bolognini N, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Arcara G, Berchicci M, Bianco V, Delussi M, Gentile E, Giovannelli F, Mannarelli D, Marino M, Mussini E, Pauletti C, Pellicciari MC, Pisoni A, Raggi A, Valeriani M. Pearls and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part I. Neurol Sci 2020; 41:2711-2735. [PMID: 32388645 DOI: 10.1007/s10072-020-04420-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Event-related potentials (ERPs) are obtained from the electroencephalogram (EEG) or the magnetoencephalogram (MEG, event-related fields (ERF)), extracting the activity that is time-locked to an event. Despite the potential utility of ERP/ERF in cognitive domain, the clinical standardization of their use is presently undefined for most of procedures. The aim of the present review is to establish limits and reliability of ERP medical application, summarize main methodological issues, and present evidence of clinical application and future improvement. The present section of the review focuses on well-standardized ERP methods, including P300, Contingent Negative Variation (CNV), Mismatch Negativity (MMN), and N400, with a chapter dedicated to laser-evoked potentials (LEPs). One section is dedicated to proactive preparatory brain activity as the Bereitschaftspotential and the prefrontal negativity (BP and pN). The P300 and the MMN potentials have a limited but recognized role in the diagnosis of cognitive impairment and consciousness disorders. LEPs have a well-documented usefulness in the diagnosis of neuropathic pain, with low application in clinical assessment of psychophysiological basis of pain. The other ERP components mentioned here, though largely applied in normal and pathological cases and well standardized, are still confined to the research field. CNV, BP, and pN deserve to be largely tested in movement disorders, just to explain possible functional changes in motor preparation circuits subtending different clinical pictures and responses to treatments.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy
| | - Tommaso Bocci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milan, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Sara Invitto
- INSPIRE - Laboratory of Cognitive and Psychophysiological Olfactory Processes, University of Salento, Lecce, Italy
| | - Giacomo Koch
- IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy.,Department of Neuroscience, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Aldo Ragazzoni
- Unit of Neurology and Clinical Neurophysiology, Fondazione PAS, Scandicci, Florence, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience Siena Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Siena, Italy
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valentina Bianco
- IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Gentile
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Fabio Giovannelli
- Section of Psychology - Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy
| | - Daniela Mannarelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Marco Marino
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Elena Mussini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Caterina Pauletti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy
| | - Alberto Raggi
- Unit of Neurology, G.B. Morgagni - L. Pierantoni Hospital, Forlì, Italy
| | - Massimiliano Valeriani
- Neurology Ward Unit, Bambino Gesù Hospital, Rome, Italy. .,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
31
|
Fabry V, Gerdelat A, Acket B, Cintas P, Rousseau V, Uro-Coste E, Evrard SM, Pavy-Le Traon A. Which Method for Diagnosing Small Fiber Neuropathy? Front Neurol 2020; 11:342. [PMID: 32431663 PMCID: PMC7214721 DOI: 10.3389/fneur.2020.00342] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/07/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction: Small fiber neuropathies (SFN) induce pain and/or autonomic symptoms. The diagnosis of SFN poses a challenge because the role of skin biopsy as a reference method and of each neurophysiological test remain to be discussed. This study compares six methods evaluating small sensory and autonomic nerve fibers: skin biopsy, Quantitative Sensory Testing (QST), quantitative sweat measurement system (Q-Sweat), Laser Evoked Potentials (LEP), Electrochemical Skin Conductance (ESC) measurement and Autonomic CardioVascular Tests (ACVT). Methods: This is a single center, retrospective study including patients tested for symptoms compatible with SFN between 2013 and 2016 using the afore-mentioned tests. Patients were ultimately classified according to the results and clinical features as "definite SFN," "possible SFN" or "no SFN." The sensitivity (Se) and specificity (Sp) of each test were calculated based on the final diagnosis and the best diagnostic strategy was then evaluated. Results: Two hundred and forty-five patients were enrolled (164 females (66.9%), age: 50.4 ± 15 years). The results are as follows: skin biopsy: Se = 58%, Sp = 91%; QST: Se = 72%, Sp = 39%; Q-Sweat: Se = 53%, Sp = 69%; LEP: Se = 66%, Sp = 89%; ESC: Se = 60%, Sp = 89%; Cardiovascular tests: Se = 15%, Sp = 99%. The combination of skin biopsy, LEP, QST and ESC has a Se of 90% and a Sp of 87%. Conclusion: Our study outlines the benefits of combining skin biopsy, ESC, LEP and QST in the diagnosis of SFN.
Collapse
Affiliation(s)
- Vincent Fabry
- Department of Neurology, Toulouse University Hospital, Toulouse, France.,University of Toulouse III Paul Sabatier, Toulouse, France
| | | | - Blandine Acket
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Pascal Cintas
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Vanessa Rousseau
- MeDatAS Unit, Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Toulouse, France
| | - Emmanuelle Uro-Coste
- University of Toulouse III Paul Sabatier, Toulouse, France.,Department of Pathology, Toulouse University Hospital, IUC-Oncopole, Toulouse, France.,INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Solène M Evrard
- University of Toulouse III Paul Sabatier, Toulouse, France.,Department of Pathology, Toulouse University Hospital, IUC-Oncopole, Toulouse, France.,INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Anne Pavy-Le Traon
- Department of Neurology, Toulouse University Hospital, Toulouse, France.,University of Toulouse III Paul Sabatier, Toulouse, France.,Institute of Cardiovascular and Metabolic Diseases (I2MCUMR1048), Toulouse, France
| |
Collapse
|
32
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
33
|
Di Stefano G, Di Lionardo A, La Cesa S, Di Pietro G, Fasolino A, Galosi E, Leone C, Cruccu G, Marinelli L, Leandri M, Truini A. The new micropatterned interdigitated electrode for selective assessment of the nociceptive system. Eur J Pain 2020; 24:956-966. [DOI: 10.1002/ejp.1545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Silvia La Cesa
- Department of Human Neuroscience Sapienza University Rome Italy
| | | | | | - Eleonora Galosi
- Department of Human Neuroscience Sapienza University Rome Italy
| | - Caterina Leone
- Department of Human Neuroscience Sapienza University Rome Italy
| | - Giorgio Cruccu
- Department of Human Neuroscience Sapienza University Rome Italy
| | - Lucio Marinelli
- Department of Neuroscience Genetics, Maternal and Child Health (DINOGMI) University of Genova Genova Italy
- Department of Neuroscience Ospedale Policlinico San Martino Genova Italy
| | - Massimo Leandri
- Department of Neuroscience Genetics, Maternal and Child Health (DINOGMI) University of Genova Genova Italy
| | - Andrea Truini
- Department of Human Neuroscience Sapienza University Rome Italy
| |
Collapse
|
34
|
Van Assche DCF, Plaghki L, Masquelier E, Hatem SM. Fibromyalgia syndrome—A laser‐evoked potentials study unsupportive of small nerve fibre involvement. Eur J Pain 2019; 24:448-456. [DOI: 10.1002/ejp.1501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
Affiliation(s)
| | - Leon Plaghki
- Institute of Neuroscience Université catholique de Louvain Brussels Belgium
| | - Etienne Masquelier
- Institute of Neuroscience Université catholique de Louvain Brussels Belgium
- Multidisciplinary Pain Center CHU UCL Namur, site Godinne Yvoir Belgium
| | - Samar M. Hatem
- Physical Medicine and Rehabilitation Brugmann University Hospital Brussels Belgium
- Institute of Neuroscience Université catholique de Louvain Brussels Belgium
- Faculty of Medicine and Pharmacy Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
35
|
Abstract
Sensory polyneuropathies, which are caused by dysfunction of peripheral sensory nerve fibers, are a heterogeneous group of disorders that range from the common diabetic neuropathy to the rare sensory neuronopathies. The presenting symptoms, acuity, time course, severity, and subsequent morbidity vary and depend on the type of fiber that is affected and the underlying cause. Damage to small thinly myelinated and unmyelinated nerve fibers results in neuropathic pain, whereas damage to large myelinated sensory afferents results in proprioceptive deficits and ataxia. The causes of these disorders are diverse and include metabolic, toxic, infectious, inflammatory, autoimmune, and genetic conditions. Idiopathic sensory polyneuropathies are common although they should be considered a diagnosis of exclusion. The diagnostic evaluation involves electrophysiologic testing including nerve conduction studies, histopathologic analysis of nerve tissue, serum studies, and sometimes autonomic testing and cerebrospinal fluid analysis. The treatment of these diseases depends on the underlying cause and may include immunotherapy, mitigation of risk factors, symptomatic treatment, and gene therapy, such as the recently developed RNA interference and antisense oligonucleotide therapies for transthyretin familial amyloid polyneuropathy. Many of these disorders have no directed treatment, in which case management remains symptomatic and supportive. More research is needed into the underlying pathophysiology of nerve damage in these polyneuropathies to guide advances in treatment.
Collapse
Affiliation(s)
- Kelly Graham Gwathmey
- Virginia Commonwealth University, Department of Neurology, 1101 E. Marshall Street, PO Box 980599, Richmond, VA 23298, USA
| | - Kathleen T Pearson
- Virginia Commonwealth University, Department of Neurology, 1101 E. Marshall Street, PO Box 980599, Richmond, VA 23298, USA
| |
Collapse
|
36
|
|
37
|
A cross-sectional study investigating frequency and features of definitely diagnosed diabetic painful polyneuropathy. Pain 2019; 159:2658-2666. [PMID: 30161042 DOI: 10.1097/j.pain.0000000000001378] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This cross-sectional multicentre study aimed at investigating frequency and features of painful diabetic polyneuropathy. We consecutively enrolled 816 patients attending hospital diabetic outpatient clinics. We first definitely diagnosed diabetic polyneuropathy and pure small-fibre polyneuropathy using clinical examination, nerve conduction study, and skin biopsy or quantitative sensory testing. Adhering to widely agreed criteria, we then identified neuropathic pain and diagnosed painful polyneuropathy using a combined approach of clinical examination and diagnostic tests. Of the 816 patients, 36% had a diabetic polyneuropathy associated with male sex, age, and diabetes severity; 2.5% of patients had a pure small-fibre polyneuropathy, unrelated to demographic variables and diabetes severity. Of the 816 patients, 115 (13%) suffered from a painful polyneuropathy, with female sex as the only risk factor for suffering from painful polyneuropathy. In this large study, providing a definite diagnosis of diabetic polyneuropathy and pure small-fibre polyneuropathy, we show the frequency of painful polyneuropathy and demonstrate that this difficult-to-treat complication is more common in women than in men.
Collapse
|
38
|
Zouari HG, Wahab A, Ng Wing Tin S, Sène D, Lefaucheur JP. The Clinical Features of Painful Small-Fiber Neuropathy Suggesting an Origin Linked to Primary Sjögren's Syndrome. Pain Pract 2019; 19:426-434. [PMID: 30636091 DOI: 10.1111/papr.12763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We attempted to determine whether clinical features could differentiate painful small-fiber neuropathy related to primary Sj€ogren's syndrome (pSS-SFN) from idiopathic SFN (idio-SFN). METHODS Validated clinical questionnaires and neurophysiological investigations specific for pain and SFN assessment were performed in 25 patients with pSS-SFN and 25 patients with idio-SFN. RESULTS Patients with idio-SFN had more frequent severe burning sensations and higher mean anxiety scores and daily pain intensity compared to patients with pSSSFN. Conversely, patients with pSS-SFN had reduced electrochemical skin conductance measured by Sudoscan_, and almost half of them had the sensation of walking on cotton wool. CONCLUSION Our results suggest that idio-SFN more specifically involved small sensory fibers than pSS-SFN, in which subtle dysfunction of larger sensory fibers and damage of distal autonomic sudomotor innervation may occur. A practical algorithm is proposed to help to differentiate SFN associated with pSS from idio-SFN, based on information very easy to obtain by clinical interview.
Collapse
Affiliation(s)
- Hela G Zouari
- EA 4391, Faculty of Medicine, Paris-Est-Creteil University, Créteil, France.,Physiological Investigations, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Abir Wahab
- EA 4391, Faculty of Medicine, Paris-Est-Creteil University, Créteil, France.,Neurology Department, Henri Mondor University Hospital, AP-HP, Creteil, France
| | - Sophie Ng Wing Tin
- EA 4391, Faculty of Medicine, Paris-Est-Creteil University, Créteil, France.,Physiological Investigations & Sport Medicine, Avicenne Hospital, AP-HP, Bobign, France.,EA 2363, UFR SMBH, Paris_13 University, Bobigny, France
| | - Damien Sène
- Internal Medicine Department, Lariboisiere Hospital, AP-HP, Paris-7 University, Paris, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Faculty of Medicine, Paris-Est-Creteil University, Créteil, France.,Clinical Neurophysiology, Henri Mondor University Hospital, AP-HP, Créteil, France
| |
Collapse
|
39
|
Abstract
Clinical neurophysiologic investigation of pain pathways in humans is based on specific techniques and approaches, since conventional methods of nerve conduction studies and somatosensory evoked potentials do not explore these pathways. The proposed techniques use various types of painful stimuli (thermal, laser, mechanical, or electrical) and various types of assessments (measurement of sensory thresholds, study of nerve fiber excitability, or recording of electromyographic reflexes or cortical potentials). The two main tests used in clinical practice are quantitative sensory testing and pain-related evoked potentials (PREPs). In particular, PREPs offer the possibility of an objective assessment of nociceptive pathways. Three types of PREPs can be distinguished depending on the type of stimulation used to evoke pain: laser-evoked potentials, contact heat evoked potentials, and intraepidermal electrical stimulation evoked potentials (IEEPs). These three techniques investigate both small-diameter peripheral nociceptive afferents (mainly Aδ nerve fibers) and spinothalamic tracts without theoretically being able to differentiate the level of lesion in the case of abnormal results. In routine clinical practice, PREP recording is a reliable method of investigation for objectifying the existence of a peripheral or central lesion or loss of function concerning the nociceptive pathways, but not the existence of pain. Other methods, such as nerve fiber excitability studies using microneurography, more directly reflect the activities of nociceptive axons in response to provoked pain, but without detecting or quantifying the presence of spontaneous pain. These methods are more often used in research or experimental study design. Thus, it should be kept in mind that most of the results of neurophysiologic investigation performed in clinical practice assess small fiber or spinothalamic tract lesions rather than the neuronal mechanisms directly at the origin of pain and they do not provide objective quantification of pain.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Excitabilité Nerveuse et Thérapeutique, Faculté de Médecine de Créteil, Université Paris-Est-Créteil, Hôpital Henri Mondor, Créteil, France; Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
40
|
Fealey RD. Thermoregulation in neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:777-787. [PMID: 30459040 DOI: 10.1016/b978-0-444-64074-1.00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Peripheral neuropathy affecting autonomic and small sensory fibers can cause abnormalities of both autonomic and behavioral thermoregulation. Quantitative autonomic and sensory neurophysiologic tests and quantification of the linear density of intraepidermal nerve fibers potentially can stratify those at risk of impaired thermoregulation during cold and heat challenges. New data relating to thermoregulatory sweating impairment in neuropathy are presented in this chapter. Of 516 neuropathy patients analyzed, 345 were found to have thermoregulatory sweat test (TST) abnormalities with a mean percentage of anterior body surface anhidrosis (TST%) of 12% and a significant reduction in total body sweat rate, although the rate of core temperature rise with heating (slope) was not significantly different from that of patients with a normal TST. However a subset of abnormal TST patients having 25% or greater TST% showed a significantly more rapid rise in core temperature (lower slope) than age- and sex-matched neuropathy patients with a normal TST. Etiologies of neuropathy in this more severe group included diabetes, erythromelalgia, immune-mediated autonomic neuropathy, primary systemic amyloidosis, and neuropathy associated with postganglionic-autonomic degenerative disorders.
Collapse
Affiliation(s)
- Robert D Fealey
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
41
|
De Keyser R, van den Broeke EN, Courtin A, Dufour A, Mouraux A. Event-related brain potentials elicited by high-speed cooling of the skin: A robust and non-painful method to assess the spinothalamic system in humans. Clin Neurophysiol 2018; 129:1011-1019. [PMID: 29567583 DOI: 10.1016/j.clinph.2018.02.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate whether cool-evoked potentials (CEP) elicited by brisk innocuous cooling of the skin could serve as an alternative to laser-evoked potentials (LEP), currently considered as the best available neurophysiological tool to assess the spinothalamic tract and diagnose neuropathic pain. METHODS A novel device made of micro-Peltier elements and able to cool the skin at -300 °C/s was used to record CEPs elicited by stimulation of the hand dorsum in 40 healthy individuals, characterize the elicited responses, and assess their signal-to-noise ratio. Various stimulation surfaces (40 mm2 and 120 mm2), cooling ramps (-200 °C/s and -133 °C/s) and temperature steps (20 °C, 15 °C, 10 °C, 5 °C) were tested to identify optimal stimulation conditions. RESULTS CEPs were observed in all conditions and subjects, characterized by a biphasic negative-positive complex maximal at the vertex (Cz), peaking 190-400 ms after stimulus onset, preceded by a negative wave over central-parietal areas contralateral to the stimulated hand. Their magnitude was modulated by stimulation surface, cooling ramp and temperature step. CONCLUSION Rapid innocuous skin cooling elicits robust CEPs at latencies compatible with the conduction velocity of Aδ-fibers. SIGNIFICANCE CEPs can be a complementary tool to the recording of LEPS for assessing the function of small-diameter Aδ-fibers and the spinothalamic tract.
Collapse
Affiliation(s)
- Roxane De Keyser
- Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | - Arthur Courtin
- Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - André Dufour
- Centre d'investigations neurocognitives et neurophysiologiques (CI2N), CNRS, University of Strasbourg, France
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium.
| |
Collapse
|
42
|
Bocci T, De Carolis G, Paroli M, Barloscio D, Parenti L, Tollapi L, Valeriani M, Sartucci F. Neurophysiological Comparison Among Tonic, High Frequency, and Burst Spinal Cord Stimulation: Novel Insights Into Spinal and Brain Mechanisms of Action. Neuromodulation 2018; 21:480-488. [PMID: 29314454 DOI: 10.1111/ner.12747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE Spinal cord stimulation (SCS) is an effective option for neuropathic pain treatment. New technological developments, as high-frequency (HF) and theta burst stimulation (TBS), have shown promising results, although putative mechanisms of action still remain debated. METHODS thirty patients with lower back pain were enrolled and underwent LF, HF, and TBS. Laser evoked potentials (LEPs) were recorded by using a Nd:YAG laser. Amplitudes and latencies of the main two components (N1, N2/P2) were compared among different experimental sessions. Changes in resting motor threshold (RMT), cortical silent period (cSP), short intracortical inhibition (SICI), and intracortical facilitation (ICF) were also evaluated. RESULTS TBS dampened LEP amplitudes compared with LF (N1: p = 0.032; N2/P2: p < 0.0001) and HF stimulation (N1: p = 0.029; N2/P2: p < 0.0001, Holm-Sidak post-hoc test). Concurrently, TBS increased N1 latency, when compared with baseline and LF stimulation (p = 0.009 and 0.0033). Whereas RMT and SICI did not change among experimental conditions, TBS significantly prolonged cSP duration compared with baseline (p = 0.002), LF (p = 0.048), and HF-SCS (p = 0.016); finally, both HF (p = 0.004) and TBS (p = 0.0039) increased ICF. CONCLUSION TBS modulates medial and lateral pain pathways through distinct mechanisms, possibly involving both GABA(a)ergic and Glutamatergic networks at an intracortical level. These results may have implications for therapy and for the choice of best stimulation protocol.
Collapse
Affiliation(s)
- Tommaso Bocci
- Department of Clinical and Experimental Medicine, Section of Neurophysiopathology, Pisa University Medical School, Pisa, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Mery Paroli
- Pain Therapy Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Davide Barloscio
- Department of Clinical and Experimental Medicine, Section of Neurophysiopathology, Pisa University Medical School, Pisa, Italy
| | - Laura Parenti
- Department of Clinical and Experimental Medicine, Section of Neurophysiopathology, Pisa University Medical School, Pisa, Italy
| | - Lara Tollapi
- Pain Therapy Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Massimiliano Valeriani
- Division of Neurology, Ospedale Bambino Gesù, IRCCS, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Ferdinando Sartucci
- Department of Clinical and Experimental Medicine, Section of Neurophysiopathology, Pisa University Medical School, Pisa, Italy.,Neuroscience Institute, National Research Council Pisa, Pisa, Italy
| |
Collapse
|
43
|
Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017; 16:934-944. [DOI: 10.1016/s1474-4422(17)30329-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
|
44
|
Diagnostic accuracy of laser evoked potentials in diabetic neuropathy: Erratum. Pain 2017. [DOI: 10.1097/j.pain.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|