1
|
de Oliveira Souza LB, Sicoli JPG, Olalla Saad ST, Benites BD. Modulation of the endocannabinoid system in chronic conditions: a potential therapeutic intervention yet to be explored in sickle cell disease. Expert Rev Hematol 2025; 18:215-224. [PMID: 39992131 DOI: 10.1080/17474086.2025.2471864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Individuals living with Sickle Cell Disease (SCD) are subject to numerous chronic complications, including disabling chronic pain, often dependent on opioids and with important repercussions on the quality of life. The use of Medicinal Cannabis in this scenario may be a promising strategy for mitigating this impact. AREAS COVERED This work compiles current knowledge regarding the endocannabinoid system in humans and the role of this system in various organic functions. Articles were retrieved through a comprehensive search of the PubMed NCBI database, covering relevant studies up to 2024. These data bring important speculations on the potential role of the use of medicinal cannabis in modulating SCD chronic complications, and the preliminary results of clinical trials carried out in this condition are discussed. EXPERT OPINION The search for understanding the role of cannabis-derived products in the management of chronic complications of sickle cell disease could add resources to the serious challenge of dealing with the multiple aspects of the disease faced by patients. They range from the management of chronic pain itself to the risks of opioid dependence, in addition to other difficult scenarios, such as leg ulcers and chronic inflammation and its consequences.
Collapse
Affiliation(s)
| | - Juliana Paiva Gouvea Sicoli
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (Hemocentro - UNICAMP), Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (Hemocentro - UNICAMP), Campinas, São Paulo, Brazil
| | - Bruno Deltreggia Benites
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas (Hemocentro - UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Sadler KE, Price TJ. A humanized focus on sickle cell pain. Blood 2024; 143:2016-2017. [PMID: 38753357 PMCID: PMC11143527 DOI: 10.1182/blood.2024024328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
|
3
|
Kamimura S, Smith M, Vogel S, Almeida LEF, Thein SL, Quezado ZMN. Mouse models of sickle cell disease: Imperfect and yet very informative. Blood Cells Mol Dis 2024; 104:102776. [PMID: 37391346 PMCID: PMC10725515 DOI: 10.1016/j.bcmd.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The root cause of sickle cell disease (SCD) has been known for nearly a century, however, few therapies to treat the disease are available. Over several decades of work, with advances in gene editing technology and after several iterations of mice with differing genotype/phenotype relationships, researchers have developed humanized SCD mouse models. However, while a large body of preclinical studies has led to huge gains in basic science knowledge about SCD in mice, this knowledge has not led to the development of effective therapies to treat SCD-related complications in humans, thus leading to frustration with the paucity of translational progress in the SCD field. The use of mouse models to study human diseases is based on the genetic and phenotypic similarities between mouse and humans (face validity). The Berkeley and Townes SCD mice express only human globin chains and no mouse hemoglobin. With this genetic composition, these models present many phenotypic similarities, but also significant discrepancies that should be considered when interpreting preclinical studies results. Reviewing genetic and phenotypic similarities and discrepancies and examining studies that have translated to humans and those that have not, offer a better perspective of construct, face, and predictive validities of humanized SCD mouse models.
Collapse
Affiliation(s)
- Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Khasabova IA, Khasabov SG, Johns M, Juliette J, Zheng A, Morgan H, Flippen A, Allen K, Golovko MY, Golovko SA, Zhang W, Marti J, Cain D, Seybold VS, Simone DA. Exosome-associated lysophosphatidic acid signaling contributes to cancer pain. Pain 2023; 164:2684-2695. [PMID: 37278638 PMCID: PMC10652716 DOI: 10.1097/j.pain.0000000000002967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/07/2023]
Abstract
ABSTRACT Pain associated with bone cancer remains poorly managed, and chemotherapeutic drugs used to treat cancer usually increase pain. The discovery of dual-acting drugs that reduce cancer and produce analgesia is an optimal approach. The mechanisms underlying bone cancer pain involve interactions between cancer cells and nociceptive neurons. We demonstrated that fibrosarcoma cells express high levels of autotaxin (ATX), the enzyme synthetizing lysophosphatidic acid (LPA). Lysophosphatidic acid increased proliferation of fibrosarcoma cells in vitro. Lysophosphatidic acid is also a pain-signaling molecule, which activates LPA receptors (LPARs) located on nociceptive neurons and satellite cells in dorsal root ganglia. We therefore investigated the contribution of the ATX-LPA-LPAR signaling to pain in a mouse model of bone cancer pain in which fibrosarcoma cells are implanted into and around the calcaneus bone, resulting in tumor growth and hypersensitivity. LPA was elevated in serum of tumor-bearing mice, and blockade of ATX or LPAR reduced tumor-evoked hypersensitivity. Because cancer cell-secreted exosomes contribute to hypersensitivity and ATX is bound to exosomes, we determined the role of exosome-associated ATX-LPA-LPAR signaling in hypersensitivity produced by cancer exosomes. Intraplantar injection of cancer exosomes into naive mice produced hypersensitivity by sensitizing C-fiber nociceptors. Inhibition of ATX or blockade of LPAR attenuated cancer exosome-evoked hypersensitivity in an ATX-LPA-LPAR-dependent manner. Parallel in vitro studies revealed the involvement of ATX-LPA-LPAR signaling in direct sensitization of dorsal root ganglion neurons by cancer exosomes. Thus, our study identified a cancer exosome-mediated pathway, which may represent a therapeutic target for treating tumor growth and pain in patients with bone cancer.
Collapse
Affiliation(s)
- Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Malcolm Johns
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Joe Juliette
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Aunika Zheng
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Hannah Morgan
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Alyssa Flippen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Kaje Allen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
- MNC, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - James Marti
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - David Cain
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Virginia S. Seybold
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Ivy ZK, Belcher JD, Khasabova IA, Chen C, Juliette JP, Abdulla F, Ruan C, Allen K, Nguyen J, Rogness VM, Beckman JD, Khasabov SG, Gupta K, Taylor RP, Simone DA, Vercellotti GM. Cold exposure induces vaso-occlusion and pain in sickle mice that depend on complement activation. Blood 2023; 142:1918-1927. [PMID: 37774369 PMCID: PMC10731576 DOI: 10.1182/blood.2022019282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE. We used cold to induce VOE in the Townes sickle homozygous for hemoglobin S (HbSS) mouse model and complement inhibitors to determine whether anaphylatoxin C5a mediates VOE. We used a dorsal skinfold chamber to measure microvascular stasis (vaso-occlusion) and von Frey filaments applied to the plantar surface of the hind paw to assess mechanical hyperalgesia in HbSS and control Townes mice homozygous for hemoglobin A (HbAA) mice after cold exposure at 10°C/50°F for 1 hour. Cold exposure induced more vaso-occlusion in nonhyperalgesic HbSS mice (33%) than in HbAA mice (11%) or HbSS mice left at room temperature (1%). Cold exposure also produced mechanical hyperalgesia as measured by paw withdrawal threshold in HbSS mice compared with that in HbAA mice or HbSS mice left at room temperature. Vaso-occlusion and hyperalgesia were associated with an increase in complement activation fragments Bb and C5a in plasma of HbSS mice after cold exposure. This was accompanied by an increase in proinflammatory NF-κB activation and VCAM-1 and ICAM-1 expression in the liver. Pretreatment of nonhyperalgesic HbSS mice before cold exposure with anti-C5 or anti-C5aR monoclonal antibodies (mAbs) decreased vaso-occlusion, mechanical hyperalgesia, complement activation, and liver inflammatory markers compared with pretreatment with control mAb. Anti-C5 or -C5aR mAb infusion also abrogated mechanical hyperalgesia in HbSS mice with ongoing hyperalgesia at baseline. These findings suggest that C5a promotes vaso-occlusion, pain, and inflammation during VOE and may play a role in chronic pain.
Collapse
Affiliation(s)
- Zalaya K. Ivy
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Iryna A. Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Joseph P. Juliette
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Fuad Abdulla
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Conglin Ruan
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Kaje Allen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Julia Nguyen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Victoria M. Rogness
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Joan D. Beckman
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Rogness VM, Juliette J, Khasabova IA, Gupta K, Khasabov SG, Simone DA. Descending Facilitation of Nociceptive Transmission From the Rostral Ventromedial Medulla Contributes to Hyperalgesia in Mice with Sickle Cell Disease. Neuroscience 2023; 526:1-12. [PMID: 37330194 PMCID: PMC10528639 DOI: 10.1016/j.neuroscience.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder that is associated with acute episodic and chronic pain. Mice with SCD have robust hyperalgesia mediated, in part, by sensitization of spinal dorsal horn neurons. However, underlying mechanisms are not fully understood. Since the rostral ventromedial medulla (RVM) is a major component of descending circuitry that modulates nociceptive transmission in the spinal cord, we examined if the RVM contributes to hyperalgesia in mice with SCD. Injection of lidocaine, but not vehicle, into the RVM eliminated mechanical and heat hyperalgesia in sickle (HbSS-BERK) mice without altering mechanical and heat sensitivity in naïve C57B mice. These data indicate that the RVM contributes to the maintenance of hyperalgesia in mice with SCD. In electrophysiological studies, we determined the changes in response properties of RVM neurons that might contribute to hyperalgesia in sickle mice. Recordings were made from single ON, OFF, and Neutral cells in the RVM of sickle and control (HbAA-BERK) mice. Spontaneous activity and responses of ON, OFF and Neutral cells evoked by heat (50 °C) and mechanical (26 g) stimuli applied to the hind paw were compared between sickle and control mice. Although there were no differences in the proportions of functionally-identified neurons or spontaneous activity between sickle and control mice, evoked responses of ON cells to heat and mechanical stimuli were increased approximately 3-fold in sickle mice as compared to control mice. Thus, the RVM contributes to hyperalgesia in sickle mice via a specific ON cell-dependent descending facilitation of nociceptive transmission.
Collapse
Affiliation(s)
- Victoria M Rogness
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph Juliette
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iryna A Khasabova
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, USA
| | - Sergey G Khasabov
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Ehlers VL, Sadler KE, Stucky CL. Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain 2023; 164:1874-1886. [PMID: 36897169 PMCID: PMC10363186 DOI: 10.1097/j.pain.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2023]
Abstract
ABSTRACT Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | |
Collapse
|
8
|
Ojo AS, Odipe OG, Owoseni O. Improving the Emergency Department Management of Sickle Cell Vaso-Occlusive Pain Crisis: The Role and Options of Sublingual and Intranasally Administered Analgesia. J Clin Med Res 2023; 15:10-22. [PMID: 36755761 PMCID: PMC9881494 DOI: 10.14740/jocmr4841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 01/26/2023] Open
Abstract
Vaso-occlusive crisis (VOC), characterized by periods of excruciating pain is the most common clinical manifestation of sickle cell disease (SCD), often resulting in emergency room presentation. These patients often experience long wait times in the emergency department before receiving their first dose of analgesia. This delay results from the complexities of the emergency care system. Using the intranasal or sublingual approach to administering analgesia to SCD patients with VOC offers a fast, safe, noninvasive, atraumatic, and easily accessible route of administration which could reduce the time to first dose of analgesia. With the evolving advances in the development and delivery of analgesic medications, providers should be conversant with the nuances of intranasal and sublingual analgesia in the management of acute vaso-occlusive pain crisis. This review explores the pharmacokinetic profiles, dosages, and administration of intranasal and sublingual analgesics with relevance to the SCD population.
Collapse
Affiliation(s)
- Ademola S. Ojo
- Department of Medicine, Howard University Hospital, Washington DC, USA,Corresponding Author: Ademola S. Ojo, Department of Internal Medicine, Howard University Hospital, Washington DC, USA.
| | - Olumayowa G. Odipe
- Department of Pediatrics and Child Health, Queen’s Medical Center, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University College of Pharmacy, Washington DC, USA
| |
Collapse
|
9
|
Chronic Pain. Hematol Oncol Clin North Am 2022; 36:1151-1165. [DOI: 10.1016/j.hoc.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Sagi V, Mittal A, Tran H, Gupta K. Pain in sickle cell disease: current and potential translational therapies. Transl Res 2021; 234:141-158. [PMID: 33711512 PMCID: PMC8217144 DOI: 10.1016/j.trsl.2021.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022]
Abstract
Pain is a major comorbidity of sickle cell disease (SCD). Patients with SCD may suffer from both acute and chronic pain. Acute pain is caused by recurrent and unpredictable episodes of vaso-occlusive crises (VOC), whereas the exact etiology of chronic pain is still unknown. Opioids are the mainstay for pain treatment, but the opioid epidemic has significantly altered access to prescription opioids and has brought concerns over their long-term use into the forefront, which have negatively impacted the treatment of sickle pain. Opioids remain potent analgesics but growing opioid-phobia has led to the realization of an unmet need to develop nonopioid therapies that can provide relief for severe sickle pain. This realization has contributed to the approval of 3 different drugs by the Food and Drug Administration (FDA) for the treatment of SCD, particularly to reduce VOC and/or have an impact on the pathobiology of SCD. In this review, we outline the challenges and need for validation of side-effects of opioids and provide an update on the development of mechanism-based translational therapies, specifically targeting pain in SCD.
Collapse
Affiliation(s)
- Varun Sagi
- School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Aditya Mittal
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Huy Tran
- School of Medicine, Kansas City University, Joplin, Missouri
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, Long Beach, California.
| |
Collapse
|
11
|
Zhuang J, Gao X, Wei W, Pelleg A, Xu F. Intralaryngeal application of ATP evokes apneic response mainly via acting on P2X3 (P2X2/3) receptors of the superior laryngeal nerve in postnatal rats. J Appl Physiol (1985) 2021; 131:986-996. [PMID: 34323594 DOI: 10.1152/japplphysiol.00091.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerosolized adenosine 5'-triphosphate (ATP) induces cough and bronchoconstriction by activating vagal sensory fibers' P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R). The goal of this study is to determine the effect of these receptors on the superior laryngeal nerve (SLN)-mediated cardiorespiratory responses to ATP challenge. We compared the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-methylene ATP in rat pups before and after 1) intralaryngeal perfusion of A-317491 (a P2X3R and P2X2/3R antagonist); 2) bilateral section of the SLN; and 3) peri-SLN treatment with capsaicin (to block conduction in superior laryngeal C-fibers, SLCFs) or A-317491. The immunoreactivity (IR) of P2X3R and P2X2R was determined in laryngeal sensory neurons of the nodose/jugular ganglia. Lastly, a whole-cell patch clamp recording was used to determine ATP- or α,β-mATP-induced currents without and with A-317491 treatment. It was found that intralaryngeal perfusion of both ATP and α,β-mATP induced immediate apnea, hypertension, and bradycardia. The apnea was eliminated and the hypertension and bradycardia were blunted by intralaryngeal perfusion of A-317491 and peri-SLN treatment with either A-317491 or capsaicin, while all of the cardiorespiratory responses were abolished by bilateral section of the SLN. P2X3R- and P2X2R-IR were observed in nodose and jugular ganglionic neurons labeled by fluoro-gold (FG). ATP- and α,β-mATP-induced currents recorded in laryngeal C-neurons were reduced by 75% and 95% respectively by application of A-317491. It is concluded that in anesthetized rat pups, the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-mATP are largely mediated by activation of SLCFs' P2X3R-P2X2/3R.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| |
Collapse
|
12
|
Zhang J, Embray L, Yanovsky Y, Brankačk J, Draguhn A. A New Apparatus for Recording Evoked Responses to Painful and Non-painful Sensory Stimulation in Freely Moving Mice. Front Neurosci 2021; 15:613801. [PMID: 33642977 PMCID: PMC7907443 DOI: 10.3389/fnins.2021.613801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022] Open
Abstract
Experiments on pain processing in animals face several methodological challenges including the reproducible application of painful stimuli. Ideally, behavioral and physiological correlates of pain should be assessed in freely behaving mice, avoiding stress, fear or behavioral restriction as confounding factors. Moreover, the time of pain-evoked brain activity should be precisely related to the time of stimulation, such that pain-specific neuronal activity can be unambiguously identified. This can be achieved with laser-evoked heat stimuli which are also well established for human pain research. However, laser-evoked neuronal potentials are rarely investigated in awake unrestrained rodents, partially due to the practical difficulties in precisely and reliably targeting and triggering stimulation. In order to facilitate such studies we have developed a versatile stimulation and recording system for freely moving mice. The custom-made apparatus can provide both laser- and mechanical stimuli with simultaneous recording of evoked potentials and behavioral responses. Evoked potentials can be recorded from superficial and deep brain areas showing graded pain responses which correlate with pain-specific behavioral reactions. Non-painful mechanical stimuli can be applied as a control, yielding clearly different electrophysiological and behavioral responses. The apparatus is suited for simultaneous acquisition of precisely timed electrophysiological and behavioral evoked responses in freely moving mice. Besides its application in pain research it may be also useful in other fields of sensory physiology.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Lee Embray
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Yevgenij Yanovsky
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Jurij Brankačk
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Syed MM, Doshi PJ, Bharshankh A, Dhavale DD, Kate SL, Kulkarni G, Doshi JB, Kulkarni MV. Repurposing of genistein as anti-sickling agent: elucidation by multi spectroscopic, thermophoresis, and molecular modeling techniques. J Biomol Struct Dyn 2020; 40:4038-4050. [PMID: 33305701 DOI: 10.1080/07391102.2020.1852967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sickle cell disease (SCD) is a major medical problem in which mono-therapeutic interventions have so far shown only limited effectiveness. We studied the repurpose of genistein, which could prevent sickle hemoglobin from polymerizing under hypoxic conditions in this disease. Genistein an important nutraceutical molecule found in soybean. The present study examines the repurposing genistein as an anti- sickling agent. Genistein shows inhibition of Hb S polymerization as well as a sickle reversal. Also, we have explored the interaction of the genistein with sickle hemoglobin (Hb S), using fluorescence, far-UV-CD spectroscopy, MicroScale Thermophoresis (MST), FTIR, combined with molecular modeling computations. The quenching constant decreases with increasing temperature, a characteristic that coincides with the static type of quenching mechanism. Temperature-dependent fluorescence measurements and molecular modeling studies reveal that apart from the hydrogen bonding, electrostatic interactions also play a crucial role in genistein and Hb S complex formation. In silico, distribution prediction of adsorption, digestion, metabolism, excretion, and toxicity (ADME/Tox) based on physical and chemical properties show that genistein is nontoxic and has ideal drug properties. The helicity and thermophoretic mobility of Hb S was a change in the presence of genistein, which leads to the destabilizing the Hb S polymer was examined using CD and MST, respectively. Our results open up the possibility for a promising therapeutic approach for the SCD by repurposed genistein as an anti-sickling agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Ankita Bharshankh
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Sudam L Kate
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Girish Kulkarni
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Jignesh B Doshi
- Toxoid Purification Department, Serum Institute of India Ltd, Hadapsar, Pune, Maharashtra, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| |
Collapse
|
14
|
Hallmark L, Almeida LE, Kamimura S, Smith M, Quezado ZM. Nitric oxide and sickle cell disease-Is there a painful connection? Exp Biol Med (Maywood) 2020; 246:332-341. [PMID: 33517776 DOI: 10.1177/1535370220976397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sickle cell disease is the most common hemoglobinopathy and affects millions worldwide. The disease is associated with severe organ dysfunction, acute and chronic pain, and significantly decreased life expectancy. The large body of work demonstrating that hemolysis results in rapid consumption of the endogenous vasodilator nitric oxide, decreased nitric oxide production, and promotion of vaso-occlusion provides the basis for the hypothesis that nitric oxide bioavailability is reduced in sickle cell disease and that this deficit plays a role in sickle cell disease pain. Despite initial promising results, large clinical trials using strategies to increase nitric oxide bioavailability in sickle cell disease patients yielded no significant change in duration or frequency of acute pain crises. Further, recent investigations showed that sickle cell disease patients and mouse models have elevated baseline levels of blood nitrite, a reservoir for nitric oxide formation and a product of nitric oxide metabolism, regardless of pain phenotype. These conflicting results challenge the hypotheses that nitric oxide bioavailability is decreased and that it plays a significant role in the pathogenesis in sickle cell disease acute pain crises. Conversely, a large body of work demonstrates that nitric oxide, as a neurotransmitter, has a complex role in pain neurobiology, contributes to the development of central sensitization, and can mediate hyperalgesia in inflammatory and neuropathic pain. These results support an alternative hypothesis: one proposing that altered nitric oxide signaling may contribute to the development of neuropathic and/or inflammatory pain in sickle cell disease through its role as a neurotransmitter.
Collapse
Affiliation(s)
- Lillian Hallmark
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis Ef Almeida
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide Mn Quezado
- Department of Perioperative Medicine, 2511National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Argueta DA, Aich A, Muqolli F, Cherukury H, Sagi V, DiPatrizio NV, Gupta K. Considerations for Cannabis Use to Treat Pain in Sickle Cell Disease. J Clin Med 2020; 9:E3902. [PMID: 33271850 PMCID: PMC7761429 DOI: 10.3390/jcm9123902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Pain in Sickle Cell Disease (SCD) is a major comorbidity and unique with acute pain due to recurrent and episodic vaso-occlusive crises as well as chronic pain, which can span an individual's entire life. Opioids are the mainstay treatment for pain in SCD. Due to recent health crises raised by adverse effects including deaths from opioid use, pain management in SCD is adversely affected. Cannabis and its products are most widely used for pain in multiple conditions and also by patients with SCD on their own. With the availability of "Medical Cannabis" and approval to use cannabis as medicine across majority of States in the United States as well as over-the-counter preparations, cannabis products are being used increasingly for SCD. The reliability of many of these products remains questionable, which poses a major health risk to the vulnerable individuals seeking pain relief. Therefore, this review provides up to date insights into available categories of cannabis-based treatment strategies, their mechanism of action and pre-clinical and clinical outcomes in SCD. It provides evidence for the benefits and risks of cannabis use in SCD and cautions about the unreliable and unvalidated products that may be adulterated with life-threatening non-cannabis compounds.
Collapse
Affiliation(s)
- Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Fjolla Muqolli
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Hemanth Cherukury
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
| | - Varun Sagi
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Twin Cities, MN 55455, USA;
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA;
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92868, USA; (D.A.A.); (A.A.); (F.M.); (H.C.)
- Southern California Institute for Research and Education, Long Beach VA Medical Center, Long Beach, CA 90822, USA
| |
Collapse
|
16
|
Uhelski ML, Bruce D, Speltz R, Wilcox GL, Simone DA. Topical Application of Loperamide/Oxymorphindole, Mu and Delta Opioid Receptor Agonists, Reduces Sensitization of C-fiber Nociceptors that Possess Na V1.8. Neuroscience 2020; 446:102-112. [PMID: 32858141 DOI: 10.1016/j.neuroscience.2020.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
It was recently shown that local injection, systemic administration or topical application of the peripherally-restricted mu-opioid receptor (MOR) agonist loperamide (Lo) and the delta-opioid receptor (DOR) agonist oxymorphindole (OMI) synergized to produce highly potent anti-hyperalgesia that was dependent on both MOR and DOR located in the periphery. We assessed peripheral mechanisms by which this Lo/OMI combination produces analgesia in mice expressing the light-sensitive protein channelrhodopsin2 (ChR2) in neurons that express NaV1.8 voltage-gated sodium channels. These mice (NaV1.8-ChR2+) enabled us to selectively target and record electrophysiological activity from these neurons (the majority of which are nociceptive) using blue light stimulation of the hind paw. We assessed the effect of Lo/OMI on nociceptor activity in both naïve mice and mice treated with complete Freund's adjuvant (CFA) to induce chronic inflammation of the hind paw. Teased fiber recording of tibial nerve fibers innervating the plantar hind paw revealed that the Lo/OMI combination reduced responses to light stimulation in naïve mice and attenuated spontaneous activity (SA) as well as responses to light and mechanical stimuli in CFA-treated mice. These results show that Lo/OMI reduces activity of C-fiber nociceptors that express NaV1.8 and corroborate recent behavioral studies demonstrating the potent analgesic effects of this drug combination. Because of its peripheral site of action, Lo/OMI might produce effective analgesia without the side effects associated with activation of opioid receptors in the central nervous system.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Bruce
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca Speltz
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Orhurhu MS, Chu R, Claus L, Roberts J, Salisu B, Urits I, Orhurhu E, Viswanath O, Kaye AD, Kaye AJ, Orhurhu V. Neuropathic Pain and Sickle Cell Disease: a Review of Pharmacologic Management. Curr Pain Headache Rep 2020; 24:52. [PMID: 32705357 DOI: 10.1007/s11916-020-00885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Sickle cell disease (SCD) remains among the most common and severe monogenic disorders present in the world today. Although sickle cell pain has been traditionally characterized as nociceptive, a significant portion of sickle cell patients has reported neuropathic pain symptoms. Our review article will discuss clinical aspects of SCD-related neuropathic pain, epidemiology of neuropathic pain among individuals with SCD, pain mechanisms, and current and future potential pharmacological interventions. RECENT FINDINGS Neuropathic pain in SCD is a complicated condition that often has a lifelong and significant negative impact on life; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous, and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Our review article outlines several pharmacological modalities which may be employed to treat neuropathic pain in SCD patients.
Collapse
Affiliation(s)
- Mariam Salisu Orhurhu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Chu
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lauren Claus
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jacob Roberts
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Ejovwoke Orhurhu
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, USA.,Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.,Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA.,Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alan D Kaye
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, USA.,Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.,Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA.,Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Aaron J Kaye
- Department of Anesthesiology, Medical University South Carolina, Charleston, SC, USA
| | - Vwaire Orhurhu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Sagi V, Argueta DA, Kiven S, Gupta K. Integrative approaches to treating pain in sickle cell disease: Pre-clinical and clinical evidence. Complement Ther Med 2020; 51:102394. [PMID: 32507420 DOI: 10.1016/j.ctim.2020.102394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) is a genetic disorder characterized by hemolysis, end-organ damage, inflammation, and pain. Recurrent and unpredictable episodes of acute pain due to vaso-occlusive crises are a unique feature of SCD. Many patients also develop lifelong chronic pain. Opioids are the primary method of pain treatment in SCD; however, continued use is associated with several adverse effects. Integrative approaches to treating pain in SCD are increasingly being explored to prevent the side effects associated with opioids. In this review, we highlight the mechanisms of pain in SCD and describe mechanism-based integrative approaches for treating pain.
Collapse
Affiliation(s)
- Varun Sagi
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Donovan A Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, United States
| | - Stacy Kiven
- Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, United States
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States; Hematology/Oncology, Department of Medicine, University of California, Irvine and Southern California Institute for Research and Education, VA Medical Center, Long Beach, CA, United States.
| |
Collapse
|
19
|
Takaoka K, Cyril AC, Jinesh S, Radhakrishnan R. Mechanisms of pain in sickle cell disease. Br J Pain 2020; 15:213-220. [PMID: 34055342 DOI: 10.1177/2049463720920682] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives The hallmark of sickle cell disease (SCD) is acute and chronic pain, and the pain dominates the clinical characteristics of SCD patients. Although pharmacological treatments of SCD targeting the disease mechanisms have been improved, many SCD patients suffer from pain. To overcome the pain of the disease, there have been renewed requirements to understand the novel molecular mechanisms of the pain in SCD. Methods We concisely summarized the molecular mechanisms of SCD-related acute and chronic pain, focusing on potential drug targets to treat pain. Results Acute pain of SCD is caused by vaso-occulusive crisis (VOC), impaired oxygen supply or infarction-reperfusion tissue injuries. In VOC, inflammatory cytokines include tryptase activate nociceptors and transient receptor potential vanilloid type 1. In tissue injury, the secondary inflammatory response is triggered and causes further tissue injuries. Tissue injury generates cytokines and pain mediators including bradykinin, and they activate nociceptive afferent nerves and trigger pain. The main causes of chronic pain are from extended hyperalgesia after a VOC and central sensitization. Neuropathic pain could be due to central or peripheral nerve injury, and protein kinase C might be associated with the pain. In central sensitization, neuroplasticity in the brain and the activation of glial cells may be related with the pain. Discussion In this review, we summarized the molecular mechanisms of SCD-related acute and chronic pain. The novel treatments targeting the disease mechanisms would interrupt complications of SCD and reduce the pain of the SCD patients.
Collapse
Affiliation(s)
- Kensuke Takaoka
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | | | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
20
|
Neuropathic pain in individuals with sickle cell disease. Neurosci Lett 2020; 714:134445. [DOI: 10.1016/j.neulet.2019.134445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
21
|
Opioid treatment for acute and chronic pain in patients with sickle cell disease. Neurosci Lett 2020; 714:134534. [DOI: 10.1016/j.neulet.2019.134534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
|
22
|
|
23
|
Du S, Lin C, Tao YX. Updated mechanisms underlying sickle cell disease-associated pain. Neurosci Lett 2019; 712:134471. [PMID: 31505241 PMCID: PMC6815235 DOI: 10.1016/j.neulet.2019.134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Sickle cell disease (SCD) is one of the most common severe genetic diseases around the world. A majority of SCD patients experience intense pain, leading to hospitalization, and poor quality of life. Opioids form the bedrock of pain management, but their long-term use is associated with severe side effects including hyperalgesia, tolerance and addiction. Recently, excellent research has shown some new potential mechanisms that underlie SCD-associated pain. This review focused on how transient receptor potential vanilloid 1, endothelin-1/endothelin type A receptor, and cannabinoid receptors contributed to the pathophysiology of SCD-associated pain. Understanding these mechanisms may open a new avenue in managing SCD-associated pain and improving quality of life for SCD patients.
Collapse
Affiliation(s)
- Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Corinna Lin
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
24
|
Sadler KE, Langer SN, Menzel AD, Moehring F, Erb AN, Brandow AM, Stucky CL. Gabapentin alleviates chronic spontaneous pain and acute hypoxia-related pain in a mouse model of sickle cell disease. Br J Haematol 2019; 187:246-260. [PMID: 31247672 PMCID: PMC6786911 DOI: 10.1111/bjh.16067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Pain is the main complication of sickle cell disease (SCD). Individuals with SCD experience acute pain episodes and chronic daily pain, both of which are managed with opioids. Opioids have deleterious side effects and use-associated stigma that make them less than ideal for SCD pain management. After recognizing the neuropathic qualities of SCD pain, clinically-approved therapies for neuropathic pain, including gabapentin, now present unique non-opioid based therapies for SCD pain management. These experiments explored the efficacy of gabapentin in relieving evoked and spontaneous chronic pain, and hypoxia/reoxygenation (H/R)-induced acute pain in mouse models of SCD. When administered following H/R, a single dose of gabapentin alleviated mechanical hypersensitivity in SCD mice by decreasing peripheral fibre activity. Gabapentin treatment also alleviated spontaneous ongoing pain in SCD mice. Longitudinal daily administration of gabapentin failed to alleviate H/R-induced pain or chronic evoked mechanical, cold or deep tissue hypersensitivity in SCD mice. Consistent with this observation, voltage-gated calcium channel (VGCC) α2 δ1 subunit expression was similar in sciatic nerve, dorsal root ganglia and lumbar spinal cord tissue from SCD and control mice. Based on these data, gabapentin may be an effective opioid alternative for the treatment of chronic spontaneous and acute H/R pain in SCD.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sarah N Langer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony D Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley N Erb
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amanda M Brandow
- Department of Pediatrics, Section of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Sadler KE, Lewis TR, Waltz TB, Besharse JC, Stucky CL. Peripheral nerve pathology in sickle cell disease mice. Pain Rep 2019; 4:e765. [PMID: 31579856 PMCID: PMC6728004 DOI: 10.1097/pr9.0000000000000765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Many patients with sickle cell disease (SCD) suffer from chronic pain, which is often described as neuropathic in nature. Although vascular and inflammatory pathology undoubtedly contribute to the SCD pain experience, the nociceptive signals that ultimately drive symptoms are detected and transmitted by peripheral sensory neurons. To date, no systematic histological examination of peripheral nerves has been completed in patients or mouse models of SCD to diagnose disease-related neuropathy. OBJECTIVES In this brief report, we compared peripheral nerve morphology in tissues obtained from Berkeley transgenic SCD mice and control animals. METHODS Sciatic nerves were visualized using light and transmission electron microscopy. Myelin basic protein expression was assessed through Western blot. Blood-nerve barrier permeability was measured using Evan's blue plasma extravasation. RESULTS Peripheral fibers from SCD mice have thinner myelin sheaths than control mice and widespread myelin instability as evidenced by myelin sheath infolding and unwrapping. Deficits are also observed in nonmyelinating Schwann cell structures; Remak bundles from SCD nerves contain fewer C fibers, some of which are not fully ensheathed by the corresponding Schwann cell. Increased blood-nerve barrier permeability and expression of myelin basic protein are noted in SCD tissue. CONCLUSIONS These data are the first to characterize Berkeley SCD mice as a naturally occurring model of peripheral neuropathy. Widespread myelin instability is observed in nerves from SCD mice. This pathology may be explained by increased permeability of the blood-nerve barrier and, thus, increased access to circulating demyelinating agents at the level of primary sensory afferents.
Collapse
Affiliation(s)
- Katelyn E. Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tylor R. Lewis
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tyler B. Waltz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph C. Besharse
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
Children and adolescents with sickle cell disease have worse cold and mechanical hypersensitivity during acute painful events. Pain 2019; 160:407-416. [PMID: 30247266 DOI: 10.1097/j.pain.0000000000001407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sickle cell disease (SCD) pain associates with cold temperature and touch. Patients and murine models with SCD have baseline thermal and mechanical pain. In SCD mice, the baseline hypersensitivity is exacerbated by experimental vaso-occlusive crises. We hypothesized that patients with SCD will similarly experience increased hypersensitivity to thermal and mechanical stimuli during acute painful events compared with baseline health. We conducted a prospective study of 24 patients with SCD aged 7 to 19 years. Patients underwent quantitative sensory testing to thermal (cold/heat) and mechanical stimuli on the thenar eminence of the nondominant hand (glabrous skin) and the lateral dorsum of the foot (hairy skin) during baseline health and within 48 hours of hospitalization for acute pain. Primary outcomes were changes in: (1) cold pain threshold (°C), (2) heat pain threshold (°C), and (3) mechanical pain threshold (g). Median age was 10.5 (interquartile range [IQR] 9-14.8) years, 67% were females, and 92% were on hydroxyurea. Patients with SCD had increased cold pain sensitivity in the hand during hospitalization compared with baseline (25.2°C [IQR 18.4-27.5°C] vs 21.3°C [IQR 4.9-26.2°C]; P = 0.011) and increased mechanical pain sensitivity in the foot during hospitalization (0.32 g [IQR 0.09-1.1 g] vs 1.7 g [IQR 0.4-8.3 g]; P = 0.003). There were no differences in heat pain sensitivity. The increased cold (P = 0.02) and mechanical (P = 0.0016) pain sensitivity during hospitalization persisted after adjusting for age, sex, hydroxyurea use, opioid consumption, and numeric pain score. Thus, cold and mechanical pain is significantly worse during an acute SCD painful event as compared to baseline health in patients with SCD.
Collapse
|
27
|
|
28
|
Uhelski ML, Simone DA. Sensitization of nociceptors and dorsal horn neurons contributes to pain in sickle cell disease. Neurosci Lett 2019; 705:20-26. [PMID: 30995520 DOI: 10.1016/j.neulet.2019.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Sickle cell disease (SCD) describes a group of disorders associated with a point mutation in the beta chain of hemoglobin. The mutation leads to the creation of sickle hemoglobin (HbS) and causes distortion of erythrocytes through polymerization under low oxygen, resulting in characteristic sickle red blood cells. Vaso-occlusion episodes caused by accumulation of sRBCs results in ischemia-reperfusion injury, reduced oxygen supply to organs, oxidative stress, organ damage and severe pain that often requires hospitalization and opioid treatment. Further, many patients suffer from chronic pain, including hypersensitivity to heat and cold stimuli. Progress towards the development of novel strategies for both acute and chronic pain in patients with SCD has been impeded by a lack of understanding the mechanisms underlying pain in SCD. The purpose of this review is to highlight evidence for the contribution of peripheral and central sensitization that leads to widespread, chronic pain and hyperalgesia. Targeting the mechanisms that initiate and maintain sensitization in SCD might offer effective approaches to manage the severe and debilitating pain associated with this condition.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Pain Medicine, Division of Anesthesiology, Critical Care and Pain Medicine. The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN 55455, United States.
| |
Collapse
|
29
|
Sensitization of nociceptors by prostaglandin E 2-glycerol contributes to hyperalgesia in mice with sickle cell disease. Blood 2019; 133:1989-1998. [PMID: 30796025 DOI: 10.1182/blood-2018-11-884346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/12/2019] [Indexed: 12/23/2022] Open
Abstract
Pain is a characteristic feature of sickle cell disease (SCD), 1 of the most common inherited diseases. Patients may experience acute painful crises as well as chronic pain. In the Berkley transgenic murine model of SCD, HbSS-BERK mice express only human hemoglobin S. These mice share many features of SCD patients, including persistent inflammation and hyperalgesia. Cyclooxygenase-2 (COX-2) is elevated in skin, dorsal root ganglia (DRG), and spinal cord in HbSS-BERK mice. In addition to arachidonic acid, COX-2 oxidizes the endocannabinoid 2-arachidonoylglycerol (2-AG) to produce prostaglandin E2 (PGE2)-glycerol (PGE2-G); PGE2-G is known to produce hyperalgesia. We tested the hypotheses that PGE2-G is increased in DRGs of HbSS-BERK mice and sensitizes nociceptors (sensory neurons that respond to noxious stimuli), and that blocking its synthesis would decrease hyperalgesia in HbSS-BERK mice. Systemic administration of R-flurbiprofen preferentially reduced production of PGE2-G over that of PGE2 in DRGs, decreased mechanical and thermal hyperalgesia, and decreased sensitization of nociceptors in HbSS-BERK mice. The same dose of R-flurbiprofen had no behavioral effect in HbAA-BERK mice (the transgenic control), but local injection of PGE2-G into the hind paw of HbAA-BERK mice produced sensitization of nociceptors and hyperalgesia. Coadministration of a P2Y6 receptor antagonist blocked the effect of PGE2-G, indicating that this receptor is a mediator of pain in SCD. The ability of R-flurbiprofen to block the synthesis of PGE2-G and to normalize levels of 2-AG suggests that R-flurbiprofen may be beneficial to treat pain in SCD, thereby reducing the use of opioids to relieve pain.
Collapse
|
30
|
Sagi V, Mittal A, Gupta M, Gupta K. Immune cell neural interactions and their contributions to sickle cell disease. Neurosci Lett 2019; 699:167-171. [PMID: 30738871 DOI: 10.1016/j.neulet.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Sickle cell disease (SCD) is characterized by hemolysis, inflammation, and pain. Mechanisms of pain manifestation are complex, and there is a major gap in knowledge of how the nervous and immune systems interact to contribute to pain and other comorbidities in SCD. Sterile inflammation in the periphery and central nervous system contributes to vascular and neural activation. Cellular and soluble mediators create an inflammatory and neuroinflammatory microenvironment contributing to neurogenic inflammation and acute and chronic pain. In this review we highlight relevant neuro-immune interactions that contribute to the pathobiology of SCD.
Collapse
Affiliation(s)
- Varun Sagi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditya Mittal
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
31
|
Abstract
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer.
Collapse
Affiliation(s)
- Kalpna Gupta
- Vascular Biology Center, Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
32
|
Sadler KE, Stucky CL. Neuronal transient receptor potential (TRP) channels and noxious sensory detection in sickle cell disease. Neurosci Lett 2018; 694:184-191. [PMID: 30508569 DOI: 10.1016/j.neulet.2018.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
Pain is the leading cause for hospitalization in patients with sickle cell disease (SCD). While the characteristics of SCD pain can vary widely between patients and between phases of the disease (e.g. vasoocclusive crisis pain vs. chronic pain), similar neuronal mechanisms likely underlie the various aspects of nociceptive processing. In the peripheral nervous system, small unmyelinated C fibers and lightly-myelinated Aδ fibers detect and transmit noxious stimuli. Both classes of neurons express members of the transient receptor potential (TRP) family, a group of ligand gated ion-channels that are activated by thermal, chemical, and mechanical stimuli. Promiscuous TRP channel family members are activated by a wide range of stimuli, many of which are dysregulated in patients with SCD and transgenic SCD mouse models. In 2011, our lab published the first report of TRP channel contributions to rodent SCD pain. Since that time, additional basic and clinical research efforts have investigated the genetic and biochemical status of TRP channels in SCD, placing particular focus on TRPV1. This review will discuss these advances and highlight the clinical SCD presentations that have not yet been studied, but which may be mediated by TRP channel activity.
Collapse
Affiliation(s)
- Katelyn E Sadler
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Cheryl L Stucky
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
33
|
Sagi V, Song-Naba WL, Benson BA, Joshi SS, Gupta K. Mouse Models of Pain in Sickle Cell Disease. ACTA ACUST UNITED AC 2018; 85:e54. [PMID: 30265442 DOI: 10.1002/cpns.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sickle cell disease (SCD) is a genetic blood disorder that impacts millions of individuals worldwide. SCD is characterized by debilitating pain that can begin during infancy and may continue to increase throughout life. This pain can be both acute and chronic. A characteristic feature specific to acute pain in SCD occurs during vaso-occlusive crisis (VOC) due to the blockade of capillaries with sickle red blood cells. The acute pain of VOC is intense, unpredictable, and requires hospitalization. Chronic pain occurs in a significant population with SCD. Treatment options for sickle pain are limited and primarily involve the use of opioids. However, long-term opioid use is associated with numerous side effects. Thus, pain management in SCD remains a major challenge. Humanized transgenic mice expressing exclusively human sickle hemoglobin show features of pain and pathobiology similar to that in patients with SCD. Therefore, these mice offer the potential for investigating the mechanisms of pain in SCD and allow for development of novel targeted analgesic therapies. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Varun Sagi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Waogwende L Song-Naba
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Barbara A Benson
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Sonal S Joshi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
34
|
Cataldo G, Lunzer MM, Olson JK, Akgün E, Belcher JD, Vercellotti GM, Portoghese PS, Simone DA. Bivalent ligand MCC22 potently attenuates nociception in a murine model of sickle cell disease. Pain 2018; 159:1382-1391. [PMID: 29578946 PMCID: PMC6008209 DOI: 10.1097/j.pain.0000000000001225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sickle cell disease (SCD) is a chronic inflammatory disorder accompanied by chronic pain. In addition to ongoing pain and hyperalgesia, vaso-occlusive crises-induced pain can be chronic or episodic. Because analgesics typically used to treat pain are not very effective in SCD, opioids, including morphine, are a primary treatment for managing pain in SCD but are associated with many serious side effects, including constipation, tolerance, addiction, and respiratory depression. Thus, there is a need for the development of novel treatments for pain in SCD. In this study, we used the Townes transgenic mouse model of SCD to investigate the antinociceptive efficacy of the bivalent ligand, MCC22, and compared its effectiveness with morphine. MCC22 consists of a mu-opioid receptor agonist and a chemokine receptor-5 (CCR5) antagonist that are linked through a 22-atom spacer. Our results show that intraperitoneal administration of MCC22 produced exceptionally potent dose-dependent antihyperalgesia as compared to morphine, dramatically decreased evoked responses of nociceptive dorsal horn neurons, and decreased expression of proinflammatory cytokines in the spinal cord. Moreover, tolerance did not develop to its analgesic effects after repeated administration. In view of the extraordinary potency of MCC22 without tolerance, MCC22 and similar compounds may vastly improve the management of pain associated with SCD.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Julie K. Olson
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Gregory M. Vercellotti
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Donald A. Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| |
Collapse
|
35
|
Gupta K, Jahagirdar O, Gupta K. Targeting pain at its source in sickle cell disease. Am J Physiol Regul Integr Comp Physiol 2018; 315:R104-R112. [PMID: 29590553 PMCID: PMC6087885 DOI: 10.1152/ajpregu.00021.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is a genetic disorder associated with hemolytic anemia, end-organ damage, reduced survival, and pain. One of the unique features of SCD is recurrent and unpredictable episodes of acute pain due to vasoocclusive crisis requiring hospitalization. Additionally, patients with SCD often develop chronic persistent pain. Currently, sickle cell pain is treated with opioids, an approach limited by adverse effects. Because pain can start at infancy and continue throughout life, preventing the genesis of pain may be relatively better than treating the pain once it has been evoked. Therefore, we provide insights into the cellular and molecular mechanisms of sickle cell pain that contribute to the activation of the somatosensory system in the peripheral and central nervous systems. These mechanisms include mast cell activation and neurogenic inflammation, peripheral nociceptor sensitization, maladaptation of spinal signals, central sensitization, and modulation of neural circuits in the brain. In this review, we describe potential preventive/therapeutic targets and their targeting with novel pharmacologic and/or integrative approaches to ameliorate sickle cell pain.
Collapse
Affiliation(s)
- Kanika Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Om Jahagirdar
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
36
|
Morrone K, Mitchell WB, Manwani D. Novel Sickle Cell Disease Therapies: Targeting Pathways Downstream of Sickling. Semin Hematol 2018; 55:68-75. [PMID: 30616808 DOI: 10.1053/j.seminhematol.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Sickle cell disease is an inherited hemoglobinopathy characterized by hemolytic anemia, frequent painful episodes, poor quality of life, end organ damage and a shortened lifespan. Although the seminal event is the polymerization of the abnormal hemoglobin, the downstream pathophysiology of vaso-occlusion results from heterotypic interactions between the altered, adhesive sickle cell RBCs, neutrophils, endothelium, and platelets. Ischemia reperfusion injury, hemolysis and oxidant damage all contribute to heightened inflammation and activation of the hemostatic system. These downstream targets are the focus of emerging treatments with considerable potential to ameliorate disease manifestations. This review summarizes the progress on development of these agents.
Collapse
Affiliation(s)
- Kerry Morrone
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - William Beau Mitchell
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY.
| |
Collapse
|
37
|
Targeting novel mechanisms of pain in sickle cell disease. Blood 2017; 130:2377-2385. [PMID: 29187376 DOI: 10.1182/blood-2017-05-782003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
|
38
|
Tran H, Gupta M, Gupta K. Targeting novel mechanisms of pain in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:546-555. [PMID: 29222304 PMCID: PMC6142592 DOI: 10.1182/asheducation-2017.1.546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
Affiliation(s)
- Huy Tran
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, CA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|