1
|
Hartman Budnik JV, Higgins TF, Malfait AM, Weinrich JA, Basbaum AI, Hsu JR, Morshed S, Bahney CS. New paradigms in pain management after skeletal trauma: Orthopaedic Trauma Association's 2023 Basic Science Focus Forum Symposium. OTA Int 2025; 8:e352. [PMID: 40170872 PMCID: PMC11956757 DOI: 10.1097/oi9.0000000000000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 04/03/2025]
Abstract
Traumatic injuries are associated with significant acute pain and subsequent high risk of the development of chronic pain. However, addressing pain after skeletal trauma presents a complex challenge to achieve effective pain relief that minimizes risk of addiction and does not interfere with functional recovery. The Orthopaedic Trauma Association's 2023 Basic Science Focus Forum aimed to bridge the gap between basic science and clinical outcomes with an educational symposium on pain management designed to foster collaboration and provide practical strategies from the frontiers of pain research. Owing to the subjective and multifaceted nature of pain, the development of effective preclinical and clinical pain assessment measures is the first step to making impactful progress in studying pain. Preclinical models prove a valuable tool for studying the molecular mechanisms associated with pain following orthopaedic trauma. These models also allow study of the efficacy of novel pain management techniques, such as testing novel analgesics. Translating novel analgesics and pain management strategies to the clinic requires that we have accurate methods to describe pain to determine whether new approaches are meaningful. It is also necessary to recognize the patient's role and the importance of patient education in the prevention of pain medication misuse, particularly in light of the current national opioid crisis. Overall, collaboration with orthopaedic surgeons in the application of these strategies in a clinical setting is vital for addressing the downfalls of current pain management efforts and providing patients with safe and effective improvements in pain relief after skeletal trauma.
Collapse
Affiliation(s)
| | | | - Anne-Marie Malfait
- Rush University, Chicago, IL
- Chicago Center on Musculoskeletal Pain, Chicago, IL
| | | | | | - Joseph R. Hsu
- Wake Forest University, Winston-Salem, NC
- Atrium Health, Charlotte, NC
| | - Saam Morshed
- University of California San Francisco, San Francisco, CA
| | - Chelsea S. Bahney
- Steadman Philippon Research Institute, Vail, CO
- University of California San Francisco, San Francisco, CA
| |
Collapse
|
2
|
Kaye AD, Nguyen A, Boullion J, Blue MEF, Allen DWH, Kelkar RA, Mouhaffel A, Ro AT, Ahmadzadeh S, Shekoohi S, Robinson CL. Efficacy of Immunotherapy for Complex Regional Pain Syndrome: A Narrative Review. Curr Pain Headache Rep 2025; 29:4. [PMID: 39754683 DOI: 10.1007/s11916-024-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE OF REVIEW Complex regional pain syndrome (CRPS) is a chronic condition characterized by disproportional pain typically affecting an extremity. Management of CRPS is centered around specific symptomatology, which tends to be a combination of autonomic dysfunction, nociceptive sensitization, chronic inflammation, and/or motor dysfunction. Targeting the autoimmune component of CRPS provides a way to both symptomatically treat as well as minimize progression of CRPS. RECENT FINDINGS Understanding the physiology of CRPS and strategies for treating and targeting immunophysiology behind CRPS allows examination of the efficacy of such treatments. IL-1 receptor antagonism, glucocorticoid administration, IVIG infusion, and TNFα inhibitors are treatments that target the immune response and decrease inflammation, thereby reducing pain and enhancing function in patients with CRPS. IL-1 receptor antagonism is thought to inhibit the inflammatory effects of IL-1, a key player in the inflammatory process in CRPS. Glucocorticoids have anti-inflammatory properties and can reduce inflammation in affected tissues. IVIG infusion involves administering immunoglobulins, which may modulate the immune response and reduce autoimmunity in CRPS. TNFα inhibitors block the action of TNFα, a pro-inflammatory cytokine associated with CRPS development. These therapies are further discussed at the extent of mechanism of action as well as advantages and limitations of such therapies. The present investigation provides a detailed summary of the mechanism of action, advantages, and limitations of novel immunomodulatory therapies and recent studies and trials that investigated these therapies for CRPS. Future studies are warranted related to the role of immunomodulators in the treatment of CRPS.
Collapse
Affiliation(s)
- Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Angela Nguyen
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Jolie Boullion
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Mary-Elizabeth F Blue
- American University of the Caribbean School of Medicine, 10315 USA Today Way, Miramar, FL, 33025, USA
| | - Dillion W Hopson Allen
- American University of the Caribbean School of Medicine, 10315 USA Today Way, Miramar, FL, 33025, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA
| | - Aya Mouhaffel
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Andrew T Ro
- Department of Internal Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
3
|
Guo TZ, Shi X, Li X, Li WW, Wei T, Sahbaie P, McAllister TN, Angst MS, Clark JD, Kingery WS. Autoantibodies cause nociceptive sensitization in a mouse model of degenerative osteoarthritis. Pain 2024:00006396-990000000-00794. [PMID: 39835597 DOI: 10.1097/j.pain.0000000000003500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/24/2024] [Indexed: 01/22/2025]
Abstract
ABSTRACT Previous preclinical and translational studies suggest that tissue trauma related to bony fracture and intervertebral disk disruption initiates the formation of pronociceptive antibodies that support chronic musculoskeletal pain conditions. This study tested this hypothesis in the monosodium iodoacetate (MIA) mouse model of osteoarthritis (OA) and extended the findings using OA patient samples. Monosodium iodoacetate was injected unilaterally into the knees of male and female wild-type (WT) and muMT mice (lacking B cells) to induce articular cartilage damage. Repeated nociceptive behavioral testing was performed, and serum was collected for antibody isolation and passive transfer experiments. Serum antibodies collected from patients with OA were tested in MIA-treated muMT mice. Biochemical analyses were performed on knee joint tissues. Monosodium iodoacetate-treated WT mice developed chronic ipsilateral hindlimb allodynia, hyperalgesia, and unweighting, but these pain behaviors were absent in MIA-treated muMT mice, indicating that cartilage injury-induced pain is B-cell dependent. IgM accumulation was observed in the knee tissues of MIA-treated mice, and intra-articular injection of IgM from MIA-treated mice into MIA-treated muMT mice caused nociceptive sensitization. Similarly, intra-articular injection of IgM from patients with OA was pronociceptive in muMT MIA mice and control subject IgM had no effect. Monosodium iodoacetate-injected joints demonstrate elevated levels of complement component 5a (C5a) and C5a receptor blockade using intra-articular PMX-53-reduced sensitization. These data suggest that MIA-treated mice and patients with OA generate pronociceptive antibodies, and further support the pronociceptive autoimmunity hypothesis for the transition from tissue injury to chronic musculoskeletal pain.
Collapse
Affiliation(s)
- Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xuanying Li
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Wen-Wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Tiffany N McAllister
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Martin S Angst
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
4
|
Lima Pessôa B, Netto JGM, Adolphsson L, Longo L, Hauwanga WN, McBenedict B. Complex Regional Pain Syndrome: Diagnosis, Pathophysiology, and Treatment Approaches. Cureus 2024; 16:e76324. [PMID: 39850174 PMCID: PMC11756781 DOI: 10.7759/cureus.76324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences. The diagnosis relies primarily on clinical evaluation using criteria such as the Budapest Criteria, supported by supplementary tests to exclude differential diagnoses. However, its overlapping features with other conditions complicate diagnostic accuracy. The management of CRPS necessitates a multidisciplinary approach combining physical therapy, psychological support, and pharmacotherapy. Physical therapies, including graded motor imagery and mirror therapy, are essential for preserving function and preventing complications. Pharmacological treatments target neuropathic pain and inflammatory components, utilizing agents such as gabapentinoids, corticosteroids, and bisphosphonates. In refractory cases, interventional modalities like spinal cord stimulation and dorsal root ganglia stimulation provide promising options, although their efficacy remains variable. Emerging therapies, such as immune-modulatory treatments and advanced neuromodulation techniques, reflect the ongoing pursuit of effective interventions. This review synthesizes current knowledge, providing insights into diagnostic frameworks, pathophysiological mechanisms, and evolving treatment strategies to improve outcomes for individuals affected by CRPS.
Collapse
Affiliation(s)
| | | | | | - Lucas Longo
- Neurosurgery, Fluminense Federal University, Niterói, BRA
| | - Wilhelmina N Hauwanga
- Cardiology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | |
Collapse
|
5
|
Sahbaie P, Guo TZ, Shi XY, Kingery WS, Clark JD. Effects of immunosuppression after limb fracture in mice on nociceptive, cognitive, and anxiety-related outcomes. Pain Rep 2024; 9:e1179. [PMID: 39263006 PMCID: PMC11390048 DOI: 10.1097/pr9.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Chronic pain is a common and problematic consequence of injuries with few proven methods for prevention or treatment. In addition to pain, functional limitations and neuropsychiatric changes such as cognitive impairment and anxiety worsen outcomes. Objectives To determine whether inhibiting activation of the adaptive immune response after limb fracture would reduce pain, functional loss, memory changes, and anxiety. Methods These experiments used a murine tibial fracture/cast immobilization model that develops these adverse outcomes. Adaptive immunity was blocked using the immunosuppressant FK506 beginning at the time of fracture. Results The administration of FK506 reduced mechanical allodynia and hind limb unweighting for weeks after cast removal as well as nonevoked pain measures. Fracture was associated with working memory loss in the Y-maze assay in vehicle- but not FK506-treated mice. Object recognition memory was not improved with FK506 after fracture. Also, vehicle- but not FK506-treated mice developed an anxiety phenotype. Impaired running wheel performance after cast removal over the following 2 weeks was not improved with FK506 administration. In addition, FK506 treatment blocked Immunoglobulin M (IgM) accumulation in the skin of the fractured limbs, and hippocampal enhancement of matrix metalloproteinase-8 expression, a metalloproteinase associated with neuroplastic changes after injuries, was completely blocked. Conclusion Taken together, our results show that blocking the adaptive immune response after limb trauma reduces the severity of nociceptive and biological changes. The same treatment may reduce the adverse consequences of anxiety and memory deficits using some measures, but other measures of memory are not affected, and activity is not enhanced.
Collapse
Affiliation(s)
- Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tian-Zhi Guo
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Xiao-You Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Mountford R, Adler BL, Andersson D, Bashford-Rogers R, Berwick R, Bevan S, Caro X, Chung TH, Clark JD, Dawes JM, Dong X, Helyes Z, Kingery W, van Middendorp JJ, Neiland H, Maurer M, Scheibenbogen C, Schmack K, Schreiner T, Svensson CI, Tékus V, Goebel A. Antibody-mediated autoimmunity in symptom-based disorders: position statement and proceedings from an international workshop. Pain Rep 2024; 9:e1167. [PMID: 38873615 PMCID: PMC11175924 DOI: 10.1097/pr9.0000000000001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024] Open
Abstract
A 2-day closed workshop was held in Liverpool, United Kingdom, to discuss the results of research concerning symptom-based disorders (SBDs) caused by autoantibodies, share technical knowledge, and consider future plans. Twenty-two speakers and 14 additional participants attended. This workshop set out to consolidate knowledge about the contribution of autoantibodies to SBDs. Persuasive evidence for a causative role of autoantibodies in disease often derives from experimental "passive transfer" approaches, as first established in neurological research. Here, serum immunoglobulin (IgM or IgG) is purified from donated blood and transferred to rodents, either systemically or intrathecally. Rodents are then assessed for the expression of phenotypes resembling the human condition; successful phenotype transfer is considered supportive of or proof for autoimmune pathology. Workshop participants discussed passive transfer models and wider evidence for autoantibody contribution to a range of SBDs. Clinical trials testing autoantibody reduction were presented. Cornerstones of both experimental approaches and clinical trial parameters in this field were distilled and presented in this article. Mounting evidence suggests that immunoglobulin transfer from patient donors often induces the respective SBD phenotype in rodents. Understanding antibody binding epitopes and downstream mechanisms will require substantial research efforts, but treatments to reduce antibody titres can already now be evaluated.
Collapse
Affiliation(s)
- Rebecca Mountford
- Pain Research Institute, University of Liverpool, Liverpool, United Kingdom
| | - Brittany L. Adler
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| | - David Andersson
- Wolfson SPaRC, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Richard Berwick
- Pain Research Institute, University of Liverpool, Liverpool, United Kingdom
- Wolfson SPaRC, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Stuart Bevan
- Wolfson SPaRC, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Xavier Caro
- Southern California Fibromyalgia Research & Treatment Centre, Northridge Hospital Medical Center Professional Building, Los Angeles, CA, USA
| | - Tae Hwan Chung
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - J. David Clark
- Department of Anesthesia, Stanford University School of Medicine, Redwood City, CA, USA
| | - John M. Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medial School, University of Pécs, Pécs, Hungary
- HUNREN-PTE Chronic Pain Research Group, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Wade Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | | | - Harvey Neiland
- Pain Research Institute, University of Liverpool, Liverpool, United Kingdom
| | - Margot Maurer
- Wolfson SPaRC, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany
| | - Katharina Schmack
- Francis Crick Institute, London, United Kingdom
- Division of Psychiatry, University College London, London, United Kingdom
| | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medial School, University of Pécs, Pécs, Hungary
- Department of Laboratory Diagnostics, University of Pécs, Pécs, Hungary
| | - Andreas Goebel
- Pain Research Institute, University of Liverpool, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
8
|
Devarajan J, Mena S, Cheng J. Mechanisms of complex regional pain syndrome. FRONTIERS IN PAIN RESEARCH 2024; 5:1385889. [PMID: 38828388 PMCID: PMC11140106 DOI: 10.3389/fpain.2024.1385889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is a chronic pain disorder characterized by a diverse array of symptoms, including pain that is disproportionate to the initial triggering event, accompanied by autonomic, sensory, motor, and sudomotor disturbances. The primary pathology of both types of CRPS (Type I, also known as reflex sympathetic dystrophy, RSD; Type II, also known as causalgia) is featured by allodynia, edema, changes in skin color and temperature, and dystrophy, predominantly affecting extremities. Recent studies started to unravel the complex pathogenic mechanisms of CRPS, particularly from an autoimmune and neuroimmune interaction perspective. CRPS is now recognized as a systemic disease that stems from a complex interplay of inflammatory, immunologic, neurogenic, genetic, and psychologic factors. The relative contributions of these factors may vary among patients and even within a single patient over time. Key mechanisms underlying clinical manifestations include peripheral and central sensitization, sympathetic dysregulation, and alterations in somatosensory processing. Enhanced understanding of the mechanisms of CRPS is crucial for the development of effective therapeutic interventions. While our mechanistic understanding of CRPS remains incomplete, this article updates recent research advancements and sheds light on the etiology, pathogenesis, and molecular underpinnings of CRPS.
Collapse
Affiliation(s)
- Jagan Devarajan
- Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shayla Mena
- Department of Pain Management, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jianguo Cheng
- Department of Pain Management and Neurosciences, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
9
|
Biţă CE, Scorei IR, Vreju AF, Muşetescu AE, Mogoşanu GD, Biţă A, Dinescu VC, Dinescu ŞC, Criveanu C, Bărbulescu AL, Florescu A, Ciurea PL. Microbiota-Accessible Boron-Containing Compounds in Complex Regional Pain Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1965. [PMID: 38004014 PMCID: PMC10673453 DOI: 10.3390/medicina59111965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The microbiota-gut-brain axis has garnered increasing attention in recent years for its role in various health conditions, including neuroinflammatory disorders like complex regional pain syndrome (CRPS). CRPS is a debilitating condition characterized by chronic neuropathic pain, and its etiology and pathophysiology remain elusive. Emerging research suggests that alterations in the gut microbiota composition and function could play a significant role in CRPS development and progression. Our paper explores the implications of microbiota in CRPS and the potential therapeutic role of boron (B). Studies have demonstrated that individuals with CRPS often exhibit dysbiosis, with imbalances in beneficial and pathogenic gut bacteria. Dysbiosis can lead to increased gut permeability and systemic inflammation, contributing to the chronic pain experienced in CRPS. B, an essential trace element, has shown promise in modulating the gut microbiome positively and exerting anti-inflammatory effects. Recent preclinical and clinical studies suggest that B supplementation may alleviate neuropathic pain and improve CRPS symptoms by restoring microbiota balance and reducing inflammation. Our review highlights the complex interplay between microbiota, inflammation, and neuropathic pain in CRPS and underscores the potential of B as a novel therapeutic approach to target the microbiota-gut-brain axis, offering hope for improved management of this challenging condition.
Collapse
Affiliation(s)
- Cristina Elena Biţă
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
| | - Ananu Florentin Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Anca Emanuela Muşetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ştefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Cristina Criveanu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Andreea Lili Bărbulescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Alesandra Florescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Paulina Lucia Ciurea
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| |
Collapse
|
10
|
Limerick G, Christo DK, Tram J, Moheimani R, Manor J, Chakravarthy K, Karri J, Christo PJ. Complex Regional Pain Syndrome: Evidence-Based Advances in Concepts and Treatments. Curr Pain Headache Rep 2023; 27:269-298. [PMID: 37421541 DOI: 10.1007/s11916-023-01130-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW This review presents the most current information about the epidemiology of complex regional pain syndrome (CRPS), classification and diagnostic criteria, childhood CRPS, subtypes, pathophysiology, conventional and less conventional treatments, and preventive strategies. RECENT FINDINGS CRPS is a painful disorder with multifactorial pathophysiology. The data describe sensitization of the central and peripheral nervous systems, inflammation, possible genetic factors, sympatho-afferent coupling, autoimmunity, and mental health factors as contributors to the syndrome. In addition to conventional subtypes (type I and type II), cluster analyses have uncovered other proposed subtypes. Prevalence of CRPS is approximately 1.2%, female gender is consistently associated with a higher risk of development, and substantial physical, emotional, and financial costs can result from the syndrome. Children with CRPS seem to benefit from multifaceted physical therapy leading to a high percentage of symptom-free patients. The best available evidence along with standard clinical practice supports pharmacological agents, physical and occupational therapy, sympathetic blocks for engaging physical restoration, steroids for acute CRPS, neuromodulation, ketamine, and intrathecal baclofen as therapeutic approaches. There are many emerging treatments that can be considered as a part of individualized, patient-centered care. Vitamin C may be preventive. CRPS can lead to progressively painful sensory and vascular changes, edema, limb weakness, and trophic disturbances, all of which substantially erode healthy living. Despite some progress in research, more comprehensive basic science investigation is needed to clarify the molecular mechanisms of the disease so that targeted treatments can be developed for better outcomes. Incorporating a variety of standard therapies with different modes of action may offer the most effective analgesia. Introducing less conventional approaches may also be helpful when traditional treatments fail to provide sufficient improvement.
Collapse
Affiliation(s)
- Gerard Limerick
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Dana K Christo
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jennifer Tram
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | | | - John Manor
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Jay Karri
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul J Christo
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
11
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
12
|
Guo TZ, Shi X, Li WW, Wei T, Sahbaie P, Clark JD, Kingery WS. Pronociceptive autoantibodies in the spinal cord mediate nociceptive sensitization, loss of function, and spontaneous pain in the lumbar disk puncture model of chronic back pain. Pain 2023; 164:421-434. [PMID: 35976729 PMCID: PMC9823152 DOI: 10.1097/j.pain.0000000000002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Previously, we observed that B cells and autoantibodies mediated chronic nociceptive sensitization in the mouse tibia fracture model of complex regional pain syndrome and that complex regional pain syndrome patient antibodies were pronociceptive in fracture mice lacking mature B cells and antibodies (muMT). The current study used a lumbar spinal disk puncture (DP) model of low back pain in wild-type (WT) and muMT mice to evaluate pronociceptive adaptive immune responses. Spinal disks and cords were collected 3 weeks after DP for polymerase chain reaction and immunohistochemistry analyses. Wild-type DP mice developed 24 weeks of hindpaw mechanical allodynia and hyperalgesia, grip weakness, and a conditioned place preference response indicative of spontaneous pain, but pain responses were attenuated or absent in muMT DP mice. Spinal cord expression of inflammatory cytokines, immune cell markers, and complement components were increased in WT DP mice and in muMT DP mice. Dorsal horn immunostaining in WT DP mice demonstrated glial activation and increased complement 5a receptor expressionin spinal neurons. Serum collected from WT DP mice and injected into muMT DP mice caused nociceptive sensitization, as did intrathecal injection of IgM collected from WT DP mice, and IgM immune complexes were observed in lumbar spinal disks and cord of WT DP mice. Serum from WT tibia fracture mice was not pronociceptive in muMT DP mice and vice versa, evidence that each type of tissue trauma chronically generates its own unique antibodies and targeted antigens. These data further support the pronociceptive autoimmunity hypothesis for the transition from tissue injury to chronic musculoskeletal pain state.
Collapse
Affiliation(s)
- Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wen-wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
13
|
Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:946846. [PMID: 35859655 PMCID: PMC9289261 DOI: 10.3389/fpain.2022.946846] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.
Collapse
Affiliation(s)
- Jia-Xuan Yang
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Zhun Chen
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Han-Yu Li
- Second School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Chen Hu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - An-An Yu
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jun-Jun Wen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Si-Jia Chen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei-Dong Lai
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Song Wang
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yan Jin
| | - Jie Yu
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
- Jie Yu
| |
Collapse
|
14
|
Lee HJ, Remacle AG, Hullugundi SK, Dolkas J, Leung JB, Chernov AV, Yaksh TL, Strongin AY, Shubayev VI. Sex-Specific B Cell and Anti-Myelin Autoantibody Response After Peripheral Nerve Injury. Front Cell Neurosci 2022; 16:835800. [PMID: 35496906 PMCID: PMC9050049 DOI: 10.3389/fncel.2022.835800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.
Collapse
Affiliation(s)
- Hee Jong Lee
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- Department of Anesthesiology & Pain Medicine, Hanyang University, Seoul, South Korea
| | - Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Swathi K. Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jake B. Leung
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- *Correspondence: Veronica I. Shubayev,
| |
Collapse
|
15
|
Autoantibodies from patients with complex regional pain syndrome (CRPS) induce pro-inflammatory effects and functional disturbances on endothelial cells in vitro. Pain 2022; 163:2446-2456. [PMID: 35384930 DOI: 10.1097/j.pain.0000000000002646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) is an inadequate local response after a limb trauma, which leads to severe pain and autonomic and trophic changes of the affected limb. Autoantibodies directed against human β2 adrenergic and muscarinic M2-receptors (hβ2AR and hM2R) have been described in CRPS-patients previously.We analyzed sera from CRPS-patients for autoantibodies against hß2AR, hM2R and endothelial cells, and investigated the functional effects of purified IgG, derived from 13 CRPS patients, on endothelial cells. Eleven healthy controls, seven radial fracture patients without CRPS, and 10 patients with peripheral arterial vascular disease served as controls.CRPS-IgG, but not control IgG, bound to the surface of endothelial cells (P < 0.001) and to hβ2AR and hM2R (P < 0.05), the latter being reversed by adding β2AR and M2R antagonists. CRPS-IgG led to an increased cytotoxicity and a reduced proliferation rate of endothelial cells, and by adding specific antagonists, the effect was neutralized. Regarding second messenger pathways, CRPS-IgG induced ERK-1/2-, P38-, and STAT1-phosphorylation, while AKT-phosphorylation was decreased at the protein level. In addition, increased expression of adhesion molecules (ICAM-1, VCAM-1) on the mRNA-level was induced by CRPS-IgG, thus inducing a pro-inflammatory condition of the endothelial cells.Our results show that patients with CRPS not only develop autoantibodies against hβ2AR and hM2R, but these antibodies interfere with endothelial cells, inducing functional effects on these in vitro, and thus might contribute to the pathophysiology of CRPS.
Collapse
|
16
|
Sahbaie P, Li WW, Guo TZ, Shi XY, Kingery WS, Clark JD. Autonomic Regulation of Nociceptive and Immunologic Changes in a Mouse Model of Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2022; 23:472-486. [PMID: 34699985 PMCID: PMC8920776 DOI: 10.1016/j.jpain.2021.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 01/16/2023]
Abstract
Chronic pain frequently develops after limb injuries, and its pathogenesis is poorly understood. We explored the hypothesis that the autonomic nervous system regulates adaptive immune system activation and nociceptive sensitization in a mouse model of chronic post-traumatic pain with features of complex regional pain syndrome (CRPS). In studies sympathetic signaling was reduced using 6-hydroxydopamine (6-OHDA) or lofexidine, while parasympathetic signaling was augmented by nicotine administration. Hindpaw allodynia, unweighting, skin temperature, and edema were measured at 3 and 7 weeks after fracture. Hypertrophy of regional lymph nodes and IgM deposition in the skin of injured limbs were followed as indices of adaptive immune system activation. Passive transfer of serum from fracture mice to recipient B cell deficient (muMT) mice was used to assess the formation of pain-related autoantibodies. We observed that 6-OHDA or lofexidine reduced fracture-induced hindpaw nociceptive sensitization and unweighting. Nicotine had similar effects. These treatments also prevented IgM deposition, hypertrophy of popliteal lymph nodes, and the development of pronociceptive serum transfer effects. We conclude that inhibiting sympathetic or augmenting parasympathetic signaling inhibits pro-nociceptive immunological changes accompanying limb fracture. These translational results support the use of similar approaches in trials potentially alleviating persistent post-traumatic pain and, possibly, CRPS. PERSPECTIVE: Selective treatments aimed at autonomic nervous system modulation reduce fracture-related nociceptive and functional sequelae. The same treatment strategies limit pain-supporting immune system activation and the production of pro-nociceptive antibodies. Thus, the therapeutic regulation of autonomic activity after limb injury may reduce the incidence of chronic pain.
Collapse
Affiliation(s)
- Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California.
| | - Wen-Wu Li
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Department of Anesthesia, Perioperative and Pain Medicine; Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tian-Zhi Guo
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Xiao-you Shi
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Department of Anesthesia, Perioperative and Pain Medicine; Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - J David Clark
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Department of Anesthesia, Perioperative and Pain Medicine; Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Goebel A, Andersson D, Helyes Z, Clark JD, Dulake D, Svensson C. The autoimmune aetiology of unexplained chronic pain. Autoimmun Rev 2022; 21:103015. [PMID: 34902604 DOI: 10.1016/j.autrev.2021.103015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 01/10/2023]
Abstract
Chronic pain is the leading cause of life years lived with disability worldwide. The aetiology of most chronic pain conditions has remained poorly understood and there is a dearth of effective therapies. The WHO ICD-11 has categorised unexplained chronic pain states as 'chronic primary pains' (CPP), which are further defined by their association with significant distress and/or dysfunction. The new mechanistic term, 'nociplasticic pain' has been developed to illustrate their presumed generation by a structurally intact, but abnormally functioning nociceptive system. Recently, researchers have unravelled the surprising, ubiquitous presence of pain-sensitising autoantibodies in four investigated CPP indicating autoimmune causation. In persistent complex regional pain syndrome, fibromyalgia syndrome, chronic post-traumatic limb pain, and non-inflammatory joint pain associated with rheumatoid arthritis, passive transfer experiments have shown that either IgG or IgM antibodies from patient-donors cause symptoms upon injection to rodents that closely resemble those of the clinical disorders. Targets of antibody-binding and downstream effects vary between conditions, and more research is needed to elucidate the molecular and cellular details. The central nervous system appears largely unaffected by antibody binding, suggesting that the clinically evident CNS symptoms associated with CPP might arise downstream of peripheral processes. In this narrative review pertinent findings are described, and it is suggested that additional symptom-based disorders might be examined for the contribution of antibody-mediated autoimmune mechanisms.
Collapse
Affiliation(s)
- Andreas Goebel
- Pain Research Institute, Institute for Life Course and Medical Sciences, University of Liverpool, UK and Walton Centre NHS Foundation Trust, Liverpool, UK.
| | - David Andersson
- Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Disease, King's College London, UK
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - J David Clark
- Anaesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, USA
| | | | - Camilla Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 76, Sweden
| |
Collapse
|
18
|
Liu Y, Liang Y, Gao M, Li Y, Zhao T, Zhao Y. Animal Models of Complex Regional Pain Syndrome Type I. J Pain Res 2021; 14:3711-3721. [PMID: 34899000 PMCID: PMC8654689 DOI: 10.2147/jpr.s333270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain disorder characterized by spontaneous or evoked regionally-confined pain which is out of proportion to the initial trauma event. The disease can seriously affect the quality of the patients' life, increase the psychological burden, and cause various degrees of disability. Despite the awareness of CRPS among medical practitioners for over a century, its pathogenesis remains unclear, and the available treatment is still unsatisfactory. Effective animal models are the foundation of disease research, which is helpful in understanding the pathogenesis and an in-depth exploration of the appropriate therapeutic approaches. Currently, researchers have established a series of animal models of the disease. There are four main CRPSI animal models: chronic post-ischemic pain (CPIP) model, tibial fracture/cast immobilization model, passive transfer-trauma model, and the needlestick-nerve-injury (NNI) model. The modeling methods of these models are constantly improving over time. In preclinical studies, the interpretation of experimental results and the horizontal comparison between similar studies may be affected by the nature of the experimental animal breeds, sex, diet, and psychology. There is need to facilitate the choice of appropriate animal models and avoid the interference of the factors influencing animal models on the interpretation of research results. The review will provide a basic overview of the influencing factors, modeling methods, and the characteristics of CRPSI animal models.
Collapse
Affiliation(s)
- Yu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Ying Liang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Min Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Yingchun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Tingting Zhao
- Shaanxi University of Traditional Chinese Medicine, Xi’an, Shaanxi, 712046, People’s Republic of China
| | - Yani Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| |
Collapse
|
19
|
Bharwani KD, Kersten AB, Stone AL, Birklein F, Bruehl S, Dirckx M, Drummond PD, Gierthmühlen J, Goebel A, Knudsen L, Huygen FJPM. Denying the Truth Does Not Change the Facts: A Systematic Analysis of Pseudoscientific Denial of Complex Regional Pain Syndrome. J Pain Res 2021; 14:3359-3376. [PMID: 34737631 PMCID: PMC8558034 DOI: 10.2147/jpr.s326638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Several articles have claimed that complex regional pain syndrome (CRPS) does not exist. Although a minority view, it is important to understand the arguments presented in these articles. We conducted a systematic literature search to evaluate the methodological quality of articles that claim CRPS does not exist. We then examined and refuted the arguments supporting this claim using up-to-date scientific literature on CRPS. Methods A systematic search was conducted in MEDLINE, EMBASE and Cochrane CENTRAL databases. Inclusion criteria for articles were (a) a claim made that CRPS does not exist or that CRPS is not a distinct diagnostic entity and (b) support of these claims with subsequent argument(s). The methodological quality of articles was assessed if possible. Results Nine articles were included for analysis: 4 narrative reviews, 2 personal views, 1 letter, 1 editorial and 1 case report. Seven points of controversy were used in these articles to argue that CRPS does not exist: 1) disagreement with the label “CRPS”; 2) the “unclear” pathophysiology; 3) the validity of the diagnostic criteria; 4) CRPS as a normal consequence of immobilization; 5) the role of psychological factors; 6) other identifiable causes for CRPS symptoms; and 7) the methodological quality of CRPS research. Conclusion The level of evidence for the claim that CRPS does not exist is very weak. Published accounts concluding that CRPS does not exist, in the absence of primary evidence to underpin them, can harm patients by encouraging dismissal of patients’ signs and symptoms.
Collapse
Affiliation(s)
- K D Bharwani
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A B Kersten
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A L Stone
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - F Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - S Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Dirckx
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - P D Drummond
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - J Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - A Goebel
- Director of the Pain Research Institute Reader in Pain Medicine, University of Liverpool Honorary Consultant in Pain Medicine, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - L Knudsen
- The National Rehabilitation Centre for Neuromuscular Diseases, Aarhus, Denmark
| | - F J P M Huygen
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
Guo TZ, Shi X, Li W, Wei T, Kingery WS, Clark JD. Dimethyl Fumarate Reduces Oxidative Stress and Pronociceptive Immune Responses in a Murine Model of Complex Regional Pain Syndrome. Anesth Analg 2021; 132:1475-1485. [PMID: 33646995 PMCID: PMC8049952 DOI: 10.1213/ane.0000000000005440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a highly disabling cause of pain often precipitated by surgery or trauma to a limb. Both innate and adaptive immunological changes contribute to this syndrome. Dimethyl fumarate (DMF) works through the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and other targets to activate antioxidant systems and to suppress immune system activation. We hypothesized that DMF would reduce nociceptive, functional, and immunological changes measured in a model of CRPS. METHODS Male C57BL/6 mice were used in the well-characterized tibial fracture model of CRPS. Some groups of mice received DMF 25 mg/kg/d orally, per os for 3 weeks after fracture versus vehicle alone. Homozygous Nrf2 null mutant mice were used as test subjects to address the need for this transcription factor for DMF activity. Allodynia was assessed using von Frey filaments and hindlimb weight-bearing data were collected. The markers of oxidative stress malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were quantified in the skin of the fractured mice using immunoassays along with the innate immune system cytokines IL-1β and IL-6. The accumulation of IgM in the fractured limbs and lymph node hypertrophy were used as indexes of adaptive immune system activation, and the passive transfer of serum from wildtype fractured mice to B cell-deficient fractured muMT mice (mice lacking B cells and immunoglobulin) helped to assess the pronociceptive activity of humoral factors. RESULTS We observed that oral DMF administration strongly prevented nociceptive sensitization and reduced uneven hindlimb weight bearing after fracture. DMF was also very effective in reducing the accumulation of markers of oxidative stress, activation of innate immune mediator production, lymph node hypertrophy, and the accumulation of IgM in fractured limbs. The sera of fractured vehicle-treated but not DMF-treated mice conferred pronociceptive activity to recipient mice. Unexpectedly, the effects of DMF were largely unchanged in the Nrf2 null mutant mice. CONCLUSIONS Oxidative stress and immune system activation are robust after hindlimb fracture in mice. DMF strongly reduces activation of those systems, and the Nrf2 transcription factor is not required. DMF or drugs working through similar mechanisms might provide effective therapy for CRPS or other conditions where oxidative stress causes immune system activation.
Collapse
Affiliation(s)
- Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Xiaoyou Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wenwu Li
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
Li WW, Yang Y, Guo TZ, Sahbaie P, Shi XY, Guang Q, Kingery WS, Herzenberg LA, Clark JD. IL-6 signaling mediates the germinal center response, IgM production and nociceptive sensitization in male mice after tibia fracture. Brain Behav Immun 2021; 94:148-158. [PMID: 33636311 PMCID: PMC8058295 DOI: 10.1016/j.bbi.2021.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Up-regulated interleukin 6 (IL-6) signaling, immune system activation, and pronociceptive autoantibodies are characteristic of complex regional pain syndrome (CRPS). IL-6 is known to promote B cell differentiation, thus we hypothesized that IL-6 signaling plays a crucial role in the development of adaptive immune responses and nociceptive sensitization in a murine tibia fracture model of CRPS. METHODS Mice deficient in IL-6 expression (IL-6-/-) or B cell deficient (muMT) underwent tibia fracture and 3 weeks of cast immobilization or sham injury. The deposition of IgM in fractured limbs was followed using Western blotting, and passive serum transfer to muMT fracture mice was used to detect nociception-supporting autoantibodies. Lymph nodes were assessed for hypertrophy, IL-6 expression was measured using qPCR and ELISA, and germinal center formation was evaluated using FACS and immunohistochemistry. The therapeutic effects of exogenous neutralizing anti-IL-6 antibodies were also evaluated in the CRPS fracture model. RESULTS Functional IL-6 signaling was required for the post fracture development of nociceptive sensitization, vascular changes, and IgM immune complex deposition in the skin of injured limbs. Passive transfer of sera from wild-type, but not IL-6-/- fracture mice into muMT fracture mice caused enhanced allodynia and postural unweighting. IL-6-/- fracture mice displayed reduced popliteal lymphadenopathy after fracture. Germinal center responses were detected in the popliteal lymph nodes of wild-type, but not in IL-6-/- fracture mice. We observed that IL-6 expression was dramatically enhanced in popliteal lymph node tissue after fracture. Conversely, administration of anti-IL-6 antibodies reduced nociceptive and vascular changes after fracture and inhibited lymphadenopathy. CONCLUSIONS Collectively, these data support the hypothesis that IL-6 signaling in the fracture limb of mice is required for germinal center formation, IgM autoantibody production and nociceptive sensitization. Anti-IL-6 therapies might, therefore, reduce pain after limb fracture or in the setting of CRPS.
Collapse
Affiliation(s)
- Wen-Wu Li
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States.,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94305, United States
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94305, USA.
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, USA.
| | - Xiao-you Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States.,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94305, United States
| | - Qin Guang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94305, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, United States
| | - Leonore A. Herzenberg
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94305, United States
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, United States.,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94305, United States
| |
Collapse
|
22
|
Shi X, Guo TZ, Li WW, Birklein F, Escolano FL, Herrnberger M, Clark JD, Kingery WS. C5a complement and cytokine signaling mediate the pronociceptive effects of complex regional pain syndrome patient IgM in fracture mice. Pain 2021; 162:1400-1415. [PMID: 33259455 PMCID: PMC8049958 DOI: 10.1097/j.pain.0000000000002150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT It has been proposed that complex regional pain syndrome (CRPS) is a posttraumatic autoimmune disease. Previously, we observed that B cells contribute to CRPS-like changes in a mouse tibia fracture model, and that early (<12 months duration) CRPS patient IgM antibodies have pronociceptive effects in the skin and spinal cord of muMT fracture mice lacking B cells. The current study evaluated the pronociceptive effects of intraplantar or intrathecal injections of early CRPS IgM (5 µg) in muMT fracture mice. Skin and lumbar spinal cord were collected for immunohistochemistry and polymerase chain reaction analyses. Wild-type mice exhibited postfracture increases in complement component C5a and its receptor expression in skin and spinal cord, predominantly on dermal macrophages and spinal microglia. Intraplantar IgM injection caused nociceptive sensitization in muMT fracture mice with increased complement component C1q and inflammatory cytokine expression, and these IgM effects were blocked by a C5a receptor antagonist (PMX53) or a global cytokine inhibitor (pentoxifylline). Intrathecal IgM injection also had pronociceptive effects with increased spinal cytokine expression, effects that were blocked by PMX53 or pentoxifylline treatment. Intrathecal injection of chronic (>12 months duration) CRPS patient IgM (but not IgG) caused nociceptive sensitization in muMT fracture mice, but intraplantar injection of chronic CRPS IgM or IgG had no effect. We postulate that CRPS IgM antibodies bind to neoantigens in the fracture limb skin and corresponding spinal cord to activate C5a complement signaling in macrophages and microglia, evoking proinflammatory cytokine expression contributing to nociceptive sensitization in the injured limb.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wen-wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Frank Birklein
- Department of Neurology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Fabiola L. Escolano
- Department of Neurology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Myriam Herrnberger
- Department of Neurology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
23
|
Complex regional pain syndrome patient immunoglobulin M has pronociceptive effects in the skin and spinal cord of tibia fracture mice. Pain 2021; 161:797-809. [PMID: 31815913 DOI: 10.1097/j.pain.0000000000001765] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been proposed that complex regional pain syndrome (CRPS) is a post-traumatic autoimmune disease. Previously, we observed that B cells are required for the full expression of CRPS-like changes in a mouse tibia fracture model and that serum immunoglobulin M (IgM) antibodies from fracture mice have pronociceptive effects in muMT fracture mice lacking B cells. The current study evaluated the pronociceptive effects of injecting CRPS patient serum or antibodies into muMT fracture mice by measuring hind paw allodynia and unweighting changes. Complex regional pain syndrome serum binding was measured against autoantigens previously identified in the fracture mouse model. Both CRPS patient serum or IgM antibodies had pronociceptive effects in the fracture limb when injected systemically in muMT fracture mice, but normal subject serum and CRPS patient IgG antibodies had no effect. Furthermore, CRPS serum IgM antibodies had pronociceptive effects when injected into the fracture limb hind paw skin or intrathecally in the muMT fracture mice. Early (1-12 months after injury) CRPS patient (n = 20) sera were always pronociceptive after systemic injection, and chronic (>12 months after injury) CRPS sera were rarely pronociceptive (2/20 patients), while sera from normal subjects (n = 20) and from patients with uncomplicated recoveries from orthopedic surgery and/or fracture (n = 15) were never pronociceptive. Increased CRPS serum IgM binding was observed for keratin 16, histone 3.2, gamma actin, and alpha enolase autoantigens. We postulate that CRPS patient IgM antibodies bind to neoantigens in the fracture mouse skin and spinal cord to initiate a regionally restricted pronociceptive complement response potentially contributing to the CRPS disease process.
Collapse
|
24
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Crock LW, Baldridge MT. A role for the microbiota in complex regional pain syndrome? NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100054. [PMID: 33305068 PMCID: PMC7708695 DOI: 10.1016/j.ynpai.2020.100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 04/28/2023]
Abstract
Complex regional pain syndrome (CRPS) is a debilitating neuroinflammatory condition of unknown etiology. Symptoms include excruciating pain and trophic changes in the limbs as defined by the Budapest criteria. The severity and functional recovery of CRPS, unlike most pain conditions, is quantifiable using a variation of the Budapest criteria known as the CRPS severity score. Like many chronic pain conditions, CRPS is difficult to treat once pain has been present for more than 12 months. However, previous work has demonstrated that a subset of patients with new-onset CRPS (~50%) improve if treated within one year, while the rest have minimal to no symptom improvement. Unfortunately, this leads to permanent disability and often requires invasive and costly treatments such as spinal cord stimulation or long-term opioid therapy. Because the etiology is unknown, treatment is multimodal, and often supportive. Biomarkers that predict severity or resolution of symptoms would significantly change treatment but have not yet been identified. Interestingly, there are case reports of remission or resolution of CRPS symptoms with the use of antibiotics known to affect the gut flora. Mouse studies have demonstrated that modulation of the gut microbiome is anti-nociceptive in visceral, inflammatory and neuropathic pain models. We hypothesize that the variable clinical potential for recovery and response to therapy in CRPS may be secondary to or reflected in changes in the gut microbiota. We suggest that the microbiota may mediate or reflect clinical status via the metabolome, activation of the immune system and/or microglial activation. We hypothesize that the gut microbiome is a potential mediator in development and persistence of CRPS symptoms and propose that the clinical condition of CRPS could provide a unique opportunity to identify biomarkers of the microbiota and potential therapies to prevent pain chronification.
Collapse
Affiliation(s)
- Lara W. Crock
- Department of Anesthesiology and Pain Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Corresponding author.
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
26
|
Li WW, Yang Y, Shi XY, Guo TZ, Guang Q, Kingery WS, Herzenberg LA, Clark JD. Germinal center formation, immunoglobulin production and hindlimb nociceptive sensitization after tibia fracture. Brain Behav Immun 2020; 88:725-734. [PMID: 32413559 PMCID: PMC7416484 DOI: 10.1016/j.bbi.2020.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that Complex Regional Pain Syndrome (CRPS) is in part a post-traumatic autoimmune disease mediated by an adaptive immune response after limb injuries. We previously observed in a murine tibial fracture model of CRPS that pain-related behaviors were dependent upon adaptive immune mechanisms including the neuropeptide-dependent production of IgM for 5 months after injury. However, the time course of induction of this immune response and the demonstration of germinal center formation in lymphoid organs has not been evaluated. Using the murine fracture model, we employed behavioral tests of nociceptive sensitization and limb dysfunction, serum passive transfer techniques, western blot analysis of IgM accumulation, fluorescence-activated cell sorting (FACS) of lymphoid tissues and immunohistochemistry to follow the temporal activation of the adaptive immune response over the first 3 weeks after fracture. We observed that: 1) IgM protein levels in the skin of the fractured mice were elevated at 3 weeks post fracture, but not at earlier time points, 2) serum from fracture mice at 3 weeks, but not 1 and 2 weeks post fracture, had pro-nociceptive effects when passively transferred to fractured muMT mice lacking B cells, 3) fracture induced popliteal lymphadenopathy occurred ipsilateral to fracture beginning at 1 week and peaking at 3 weeks post fracture, 4) a germinal center reaction was detected by FACS analysis in the popliteal lymph nodes from injured limbs by 3 weeks post fracture but not in other lymphoid tissues, 5) germinal center formation was characterized by the induction of T follicular helper cells (Tfh) and germinal center B cells in the popliteal lymph nodes of the injured but not contralateral limbs, and 6) fracture mice treated with the Tfh signaling inhibitor FK506 had impaired germinal center reactions, reduced IgM levels, reduced nociceptive sensitization, and no pronociceptive serum effects after administration to fractured muMT mice. Collectively these data demonstrate that tibia fracture induces an adaptive autoimmune response characterized by popliteal lymph node germinal center formation and Tfh cell dependent B cell activation, resulting in nociceptive sensitization within 3 weeks.
Collapse
Affiliation(s)
- Wen-Wu Li
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94304, United States.
| | - Xiao-you Shi
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Tian-Zhi Guo
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Veterans Affairs Institute for Research, 3801 Miranda Ave., Palo Alto, California 94304
| | - Qin Guang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Wade S. Kingery
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Veterans Affairs Institute for Research, 3801 Miranda Ave., Palo Alto, California 94304
| | - Leonore A. Herzenberg
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - J. David Clark
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| |
Collapse
|
27
|
Tajerian M, Alvarado SG, Clark JD. Differential olfactory bulb methylation and hydroxymethylation are linked to odor location memory bias in injured mice. Mol Pain 2020; 15:1744806919873475. [PMID: 31407613 PMCID: PMC6712758 DOI: 10.1177/1744806919873475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is often linked to comorbidities such as anxiety and cognitive dysfunction, alterations that are reflected in brain plasticity in regions such as the prefrontal cortex and the limbic area. Despite the growing interest in pain-related cognitive deficits, little is known about the relationship between the emotional valence of the stimulus and the salience of its memory following painful injuries. We used the tibia fracture model of chronic pain in mice to determine whether pleasant and unpleasant odor location memories differ in their salience seven weeks following the onset of the painful injury. Our results indicate that injured mice show a bias toward recalling unpleasant memories, thereby propagating the vicious cycle of chronic pain and negative affect. Next, we linked these behavioral differences to mechanisms of molecular plasticity by measuring the levels of global methylation and hydroxymethylation in the olfactory bulb. Compared to controls, global methylation levels were shown to be increased, while hydroxymethylation levels were decreased in the olfactory bulb of injured mice, indicative of overall changes in DNA regulation machinery and the subsequent alterations in sensory systems.
Collapse
Affiliation(s)
- Maral Tajerian
- 1 Department of Biology, Queens College, City University of New York, Queens, NY, USA
| | - Sebastian G Alvarado
- 1 Department of Biology, Queens College, City University of New York, Queens, NY, USA
| | - J David Clark
- 2 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,3 Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA.,4 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
28
|
Shoenfeld Y, Ryabkova VA, Scheibenbogen C, Brinth L, Martinez-Lavin M, Ikeda S, Heidecke H, Watad A, Bragazzi NL, Chapman J, Churilov LP, Amital H. Complex syndromes of chronic pain, fatigue and cognitive impairment linked to autoimmune dysautonomia and small fiber neuropathy. Clin Immunol 2020; 214:108384. [PMID: 32171889 DOI: 10.1016/j.clim.2020.108384] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Chronic fatigue syndrome, postural orthostatic tachycardia syndrome, complex regional pain syndrome and silicone implant incompatibility syndrome are a subject of debate among clinicians and researchers. Both the pathogenesis and treatment of these disorders require further study. In this paper we summarize the evidence regarding the role of autoimmunity in these four syndromes with respect to immunogenetics, autoimmune co-morbidities, alteration in immune cell subsets, production of autoantibodies and presentation in animal models. These syndromes could be incorporated in a new concept of autoimmune neurosensory dysautonomia with the common denominators of autoantibodies against G-protein coupled receptors and small fiber neuropathy. Sjogren's syndrome, which is a classical autoimmune disease, could serve as a disease model, illustrating the concept. Development of this concept aims to identify an apparently autoimmune subgroup of the disputable disorders, addressed in the review, which may most benefit from the immunotherapy.
Collapse
Affiliation(s)
- Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv, Israel; Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Russia.
| | - Varvara A Ryabkova
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Russia
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Louise Brinth
- Department of Nuclear Medicine, Herlev Gentofte Hospital, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - Manuel Martinez-Lavin
- Rheumatology Department, National Institute of Cardiology, Juan Badiano 1, 14080 Mexico City, Mexico
| | - Shuichi Ikeda
- Intractable Disease Care Center, Shinshu University Hospital, Matsumoto 390-0802, Japan
| | | | - Abdulla Watad
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv, Israel; Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| | - Nicola L Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Joab Chapman
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv, Israel
| | - Leonid P Churilov
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Russia
| | - Howard Amital
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv, Israel
| |
Collapse
|
29
|
Guo TZ, Shi X, Li WW, Wei T, Clark JD, Kingery WS. Sex differences in the temporal development of pronociceptive immune responses in the tibia fracture mouse model. Pain 2019; 160:2013-2027. [PMID: 31033779 PMCID: PMC6699904 DOI: 10.1097/j.pain.0000000000001592] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously, distinct sex differences were observed in the pronociceptive role of spinal immune cells in neuropathic and inflammatory mouse pain models. Both peripheral and central innate and adaptive immune changes contribute to sensitization in the tibia fracture rodent model of complex regional pain syndrome, and the current study evaluated sex differences in the development of pronociceptive immune responses after fracture. At 4 and 7 weeks after fracture, the analgesic effects of a microglia inhibitor were tested in male and female mice, and polymerase chain reaction was used to measure inflammatory mediator expression in skin and spinal cord. The temporal progression of complex regional pain syndrome-like changes in male and female wild-type and muMT fracture mice lacking B cells and antibodies were evaluated, and IgM antibody deposition measured. Pronociceptive effects of injecting wild-type fracture mouse serum into muMT fracture mice were also tested in both sexes, and the role of sex hormones was evaluated in the postfracture development of pronociceptive immune responses. Long-lasting immune changes developed in the fracture limb and corresponding spinal cord of both male and female mice, including upregulated neuropeptide and cytokine signaling, microglial activation, and pronociceptive autoimmunity. These complex postfracture immune responses were sexually dichotomous and interacted in temporally evolving patterns that generated post-traumatic nociceptive sensitization in both sexes lasting for up to 5 months. Unfortunately, the redundancy and plasticity of these chronic post-traumatic immune responses suggest that clinical interventions focusing on any single specific pronociceptive immune change are likely to be ineffectual.
Collapse
Affiliation(s)
- Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Wen-wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
30
|
|
31
|
Exercise Reverses Nociceptive Sensitization, Upregulated Neuropeptide Signaling, Inflammatory Changes, Anxiety, and Memory Impairment in a Mouse Tibia Fracture Model. Anesthesiology 2019; 129:557-575. [PMID: 29994924 DOI: 10.1097/aln.0000000000002332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: This study tested the hypothesis that ad lib running wheel exercise in a tibia fracture model of complex regional pain syndrome can reverse hindlimb nociceptive sensitization and inflammation in mice. METHODS Three weeks after tibia fracture, the cast was removed and hindlimb von Frey thresholds and unweighting were tested; the mice were then randomized to either ad lib access to a running wheel for 4 weeks or no wheel access. After 4 weeks the behavioral testing was repeated and then skin, sciatic nerve, and spinal cord tissues collected for polymerase chain reaction and enzyme immunoassay measurements of neuropeptide and inflammatory mediator levels. A similar protocol was used in fracture mice treated with exercise for 4 weeks, and then the running wheel was removed for 2 weeks. Memory and anxiety were measured in both groups with use of open-field, zero-maze, and novel-objects recognition assays. RESULTS At 7 weeks postfracture the mice with no wheel access exhibited hindlimb allodynia and unweighting, anxiety, memory loss, upregulated spinal neuropeptide signaling, and increased hind paw and spinal inflammatory mediator expression, but the postfracture mice allowed to exercise for 4 weeks exhibited none of these changes (n = 12/cohort). When exercise was stopped for 2 weeks after 4 weeks of running, hindlimb allodynia and unweighting were rekindled, and this nociceptive sensitization was associated with increased sciatic nerve neuropeptide levels and hind paw skin interleukin 6 and nerve growth factor expression (n = 12/cohort). CONCLUSIONS Daily exercise reversed nociceptive sensitization, inflammation, anxiety, and memory loss after tibia fracture.
Collapse
|
32
|
Shubayev VI, Strongin AY, Yaksh TL. Structural homology of myelin basic protein and muscarinic acetylcholine receptor: Significance in the pathogenesis of complex regional pain syndrome. Mol Pain 2018; 14:1744806918815005. [PMID: 30392459 PMCID: PMC6287297 DOI: 10.1177/1744806918815005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome is an extremely painful condition that develops after trauma to a limb. Complex regional pain syndrome exhibits autoimmune features in part mediated by autoantibodies against muscarinic‐2 acetylcholine (M2) receptor. The mechanisms underlying the M2 receptor involvement in complex regional pain syndrome remain obscure. Based on our recent work demonstrating that limb nerve trauma releases a potent proalgesic, immunodominant myelin basic protein fragment, our present sequence database analyses reveal an unexpected and previously undescribed structural homology of the proalgesic myelin basic protein fragment with the M2 receptor. As both complex regional pain syndrome and the proalgesic myelin basic protein activity are prevalent in females, this myelin basic protein/M2 homology presents an inviting hypothesis explaining the mechanisms of autoimmune pathogenesis and sexual dimorphism that underlies vulnerability toward developing complex regional pain syndrome and other pain states with neuropathic features. This hypothesis may aid in the development of novel diagnostic and therapeutic strategies to chronic pain.
Collapse
Affiliation(s)
- Veronica I Shubayev
- 1 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA.,2 VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alex Y Strongin
- 3 Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tony L Yaksh
- 1 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Birklein F, Ibrahim A, Schlereth T, Kingery WS. The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. THE JOURNAL OF PAIN 2018; 19:1102.e1-1102.e19. [PMID: 29684510 PMCID: PMC6163066 DOI: 10.1016/j.jpain.2018.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
Distal limb fracture is the most common cause of complex regional pain syndrome (CRPS), thus the rodent tibia fracture model (TFM) was developed to study CRPS pathogenesis. This comprehensive review summarizes the published TFM research and compares these experimental results with the CRPS literature. The TFM generated spontaneous and evoked pain behaviors, inflammatory symptoms (edema, warmth), and trophic changes (skin thickening, osteoporosis) resembling symptoms in early CRPS. Neuropeptides, inflammatory cytokines, and nerve growth factor (NGF) have been linked to pain behaviors, inflammation, and trophic changes in the TFM model and proliferating keratinocytes were identified as the primary source of cutaneous cytokines and NGF. Tibia fracture also activated spinal glia and upregulated spinal neuropeptide, cytokine, and NGF expression, and in the brain it changed dendritic architecture. B cell-expressed immunoglobulin M antibodies also contributed to pain behavior, indicating a role for adaptive immunity. These results modeled many findings in early CRPS, but significant differences were also noted. PERSPECTIVE Multiple neuroimmune signaling mechanisms contribute to the pain, inflammation, and trophic changes observed in the injured limb of the rodent TFM. This model replicates many of the symptoms, signs, and pathophysiology of early CRPS, but most post-fracture changes resolve within 5 months and may not contribute to perpetuating chronic CRPS.
Collapse
Affiliation(s)
- Frank Birklein
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Alaa Ibrahim
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Tanja Schlereth
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
34
|
David Clark J, Tawfik VL, Tajerian M, Kingery WS. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol Pain 2018; 14:1744806918799127. [PMID: 30124090 PMCID: PMC6125849 DOI: 10.1177/1744806918799127] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1β, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
Collapse
Affiliation(s)
- J David Clark
- 1 Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivianne L Tawfik
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maral Tajerian
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- 3 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
35
|
Li WW, Guo TZ, Shi X, Birklein F, Schlereth T, Kingery WS, Clark JD. Neuropeptide regulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome. J Neuroinflammation 2018; 15:105. [PMID: 29642930 PMCID: PMC5896028 DOI: 10.1186/s12974-018-1145-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022] Open
Abstract
Background Both dysfunctional neuropeptide signaling and immune system activation are characteristic of complex regional pain syndrome (CRPS). Unknown is whether substance P (SP) or calcitonin gene-related peptide (CGRP) support autoantibody production and, consequently, nociceptive sensitization. Methods These experiments involved the use of a well-characterized tibia fracture model of CRPS. Mice deficient in SP expression (Tac1−/−) and CGRP signaling (RAMP1−/−) were used to probe the neuropeptide dependence of post-fracture sensitization and antibody production. The deposition of IgM in the spinal cord, sciatic nerves, and skin was followed using Western blotting, as was expression of the CRPS-related autoantigen cytokeratin 16 (Krt16). Passive serum transfer to B-cell-deficient muMT mice was used to assess the production of functional autoantibodies in CRPS model mice. The use of immunohistochemistry allowed us to assess neuropeptide-containing fiber distribution and Langerhans cell abundance in mouse and human CRPS patient skin, while Langerhans cell-deficient mice were used to assess the functional contributions of these cells. Results Functional SP and CGRP signaling were required both for the full development of nociceptive sensitization after fracture and the deposition of IgM in skin and neural tissues. Furthermore, the passive transfer of serum from wildtype but not neuropeptide-deficient mice to fractured muMT mice caused enhanced allodynia and postural unweighting. Langerhans cells were increased in number in the skin of fracture mice and CRPS patients, and those increases in mice were reduced in neuropeptide signaling-deficient animals. Unexpectedly, Langerhans cell-deficient mice showed normal nociceptive sensitization after fracture. However, the increased expression of Krt16 after tibia fracture was not seen in neuropeptide-deficient mice. Conclusions Collectively, these data support the hypothesis that neuropeptide signaling in the fracture limb of mice is required for autoantigenic IgM production and nociceptive sensitization. The mechanism may be related to neuropeptide-supported autoantigen expression.
Collapse
Affiliation(s)
- Wen-Wu Li
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Xiaoyou Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center, Mainz, Germany
| | - Tanja Schlereth
- Department of Neurology, University Medical Center, Mainz, Germany.,Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. .,Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Urits I, Shen AH, Jones MR, Viswanath O, Kaye AD. Complex Regional Pain Syndrome, Current Concepts and Treatment Options. Curr Pain Headache Rep 2018; 22:10. [PMID: 29404787 DOI: 10.1007/s11916-018-0667-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Complex regional pain syndrome (CRPS) refers to a chronic pain condition that is characterized by progressively worsening spontaneous regional pain without dermatomal distribution. The symptomatology includes pain out of proportion in time and severity to the inciting event. The purpose of this review is to present the most current information concerning epidemiology, diagnosis, pathophysiology, and therapy for CRPS. RECENT FINDINGS In recent years, discovery of pathophysiologic mechanisms of CRPS has led to significant strides in the understanding of the disease process. Continued elucidation of the underlying pathophysiological mechanisms will allow for the development of more targeted and effective evidence-based therapy protocols. Further large clinical trials are needed to investigate mechanisms and treatment of the disorder.
Collapse
Affiliation(s)
- Ivan Urits
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Mark R Jones
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Lousiana State University Health Science Center, 1542 Tulane Avenue Suite 659, New Orleans, LA, 70112, USA.
| |
Collapse
|