1
|
Zhang ZX, Tian Y, Li S, Jing HB, Cai J, Li M, Xing GG. Involvement of HDAC2-mediated kcnq2/kcnq3 genes transcription repression activated by EREG/EGFR-ERK-Runx1 signaling in bone cancer pain. Cell Commun Signal 2024; 22:416. [PMID: 39192337 PMCID: PMC11350972 DOI: 10.1186/s12964-024-01797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zi-Xian Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Yue Tian
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Song Li
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center and Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, 100191, China.
| |
Collapse
|
2
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
3
|
Xu S, Huang CH, Eyermann C, Georgakis GV, Turkman N. Design and radiosynthesis of class-IIa HDAC inhibitor with high molar activity via repositioning the 18F-radiolabel. Sci Rep 2024; 14:15100. [PMID: 38956204 PMCID: PMC11219833 DOI: 10.1038/s41598-024-65668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.
Collapse
Affiliation(s)
- Sulan Xu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chun-Han Huang
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher Eyermann
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Georgios V Georgakis
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA.
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Westlund KN, Montera M, Goins AE, Shilling MW, Afaghpour-Becklund M, Alles SR, Hui SE. Epigenetic HDAC5 Inhibitor Reverses Craniofacial Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2024; 25:428-450. [PMID: 37777035 PMCID: PMC10842645 DOI: 10.1016/j.jpain.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Identifying and resolving molecular complexities underlying chronic neuropathic pain is a significant challenge. Among the numerous classes of histone deacetylases, Class I (HDAC 1-3) and Class III (sirtuins) have been best studied in experimental pain models where inhibitor pre-treatments but not post-treatments abrogate the development of pain-related behaviors. Post-treatment here in week 3 with less well-studied Class IIa HDAC4/5 selective inhibitor LMK235 diminishes the trigeminal ganglia increases of HDAC5 RNA and protein in two chronic orofacial neuropathic pain models to levels measured in naïve mice at week 10 post-model induction. HDAC4 RNA reported in lower limb inflammatory pain models is not evident in the trigeminal models. Many other gene alterations persisting at week 10 in the trigeminal ganglia (TG) are restored to naïve levels in mice treated with LMK235. Important pain-related upregulated genes Hoxc8,b9,d8; P2rx4, Cckbr, growth hormone (Gh), and schlafen (Slfn4) are greatly reduced in LMK235-treated mice. Fold increase in axon regeneration/repair genes Sostdc1, TTr, and Folr1 after injury are doubled by LMK235 treatment. LMK235 reduces the excitability of trigeminal ganglia neurons in culture isolated from nerve injured mice compared to vehicle-treated controls, with no effect on neurons from naïve mice. Electrophysiological characterization profile includes a shift where ∼20% of the small neurons recorded under LMK235-treated conditions are high threshold, whereas none of the neurons under control conditions have high thresholds. LMK235 reverses long-standing mechanical and cold hypersensitivity in chronic trigeminal neuropathic pain models in males and females (5,10 mg/kg), preventing development of anxiety- and depression-like behaviors. PERSPECTIVE: Data here support HDAC5 as key epigenetic factor in chronic trigeminal neuropathic pain persistence, validated with the study of RNA alterations, TG neuronal excitability, and pain-related behaviors. HDAC5 inhibitor given in week 3 restores RNA balance at 10 weeks, while upregulation remains for response to wound healing and chronic inflammation RNAs.
Collapse
Affiliation(s)
- Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Marena Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Aleyah E. Goins
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Mark W. Shilling
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Mitra Afaghpour-Becklund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sascha R.A. Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - S. Elise Hui
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
7
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
8
|
Fan T, Yu Y, Chen YL, Gu P, Wong S, Xia ZY, Liu JA, Cheung CW. Histone deacetylase 5-induced deficiency of signal transducer and activator of transcription-3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia 2023; 71:1099-1119. [PMID: 36579750 DOI: 10.1002/glia.24328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Yu
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yong-Long Chen
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Stanley Wong
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zheng-Yuan Xia
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chi-Wai Cheung
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Wang C, Chen R, Zhu X, Zhang X. Suberoylanilide Hydroxamic Acid Ameliorates Pain Sensitization in Central Neuropathic Pain After Spinal Cord Injury via the HDAC5/NEDD4/SCN9A Axis. Neurochem Res 2023:10.1007/s11064-023-03913-z. [DOI: 10.1007/s11064-023-03913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
|
10
|
Mascheretti S, Forni D, Lampis V, Fumagalli L, Paquin S, Andlauer TFM, Wang W, Dionne G, Brendgen MR, Vitaro F, Ouellet-Morin I, Rouleau G, Gouin JP, Côté S, Tremblay RE, Turecki G, Garon-Carrier G, Boivin M, Battaglia M. Adolescent anxiety and pain problems: A joint, genome-wide investigation and pathway-based analysis. PLoS One 2023; 18:e0285263. [PMID: 37146008 PMCID: PMC10162554 DOI: 10.1371/journal.pone.0285263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
Both common pain and anxiety problems are widespread, debilitating and often begin in childhood-adolescence. Twin studies indicate that this co-occurrence is likely due to shared elements of risk, rather than reciprocal causation. A joint genome-wide investigation and pathway/network-based analysis of adolescent anxiety and pain problems can identify genetic pathways that subserve shared etiopathogenetic mechanisms. Pathway-based analyses were performed in the independent samples of: The Quebec Newborn Twin Study (QNTS; 246 twin pairs and 321 parents), the Longitudinal Study of Child Development in Quebec (QLSCD; n = 754), and in the combined QNTS and QLSCD sample. Multiple suggestive associations (p<1×10-5), and several enriched pathways were found after FDR correction for both phenotypes in the QNTS; many nominally-significant enriched pathways overlapped between pain problems and anxiety symptoms (uncorrected p<0.05) and yielded results consistent with previous studies of pain or anxiety. The QLSCD and the combined QNTS and QLSCD sample yielded similar findings. We replicated an association between the pathway involved in the regulation of myotube differentiation (GO:0010830) and both pain and anxiety problems in the QLSDC and the combined QNTS and QLSCD sample. Although limited by sample size and thus power, these data provide an initial support to conjoint molecular investigations of adolescent pain and anxiety problems. Understanding the etiology underlying pain and anxiety co-occurrence in this age range is relevant to address the nature of comorbidity and its developmental pathways, and shape intervention. The replication across samples implies that these effects are reliable and possess external validity.
Collapse
Affiliation(s)
- Sara Mascheretti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Valentina Lampis
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Luca Fumagalli
- Bioinformatics, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Stéphane Paquin
- Department of Psychology, The Pennsylvania State University, State College, PA, United States of America
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wei Wang
- Centre for Complex Interventions Centre for Addiction and Mental Health, Toronto, Canada
| | - Ginette Dionne
- Ecole de Psychologie, Université Laval, Quebec City, QC, Canada
| | - Mara R Brendgen
- Département de Psychologie, Universite du Quebec a Montreal, Montreal, QC, Canada
| | - Frank Vitaro
- Research Unit for Children's Psychosocial Maladjustment, Montreal, QC, Canada
- School of Psycho-Éducation, Université de Montréal, Québec City, QC, Canada
| | - Isabelle Ouellet-Morin
- School of Criminology, University of Montreal & Research Center of the Montreal Mental Health University Institute, Montreal, Canada
| | - Guy Rouleau
- Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | | | - Sylvana Côté
- Département de Médecine Sociale et Préventive, Université de Montreal, Montreal, QC, Canada
| | - Richard E Tremblay
- Départements de Pédiatrie et de Psychologie, Université de Montreal, Montreal, QC, Canada
| | - Gustavo Turecki
- Douglas Research Centre, McGill University, Montreal, QC, Canada
| | | | - Michel Boivin
- Ecole de Psychologie, Université Laval, Quebec City, QC, Canada
| | - Marco Battaglia
- Child, Youth and Emerging Adults Programme Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Xu T, Liu CC, Xin WJ. The Epigenetic Mechanisms Involved in Chronic Pain in Rodents: A Mini- Review. Curr Neuropharmacol 2022; 20:1011-1021. [PMID: 34561983 PMCID: PMC9886825 DOI: 10.2174/1570159x19666210924104757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic pain is a common distressing neurological disorder and about 30% of the global population suffers from it. In addition to being highly prevalent, chronic pain causes a heavy economic and social burden. Although substantial progress has been achieved to dissect the underlying mechanism of chronic pain in the past few decades, the incidence and treatment of this neurological illness is yet not properly managed in clinical practice. While nerve injury-, chemotherapy- or inflammation-induced functional regulation of gene expression in the dorsal root ganglion and spinal cord are extensively reported to be involved in the pathogenic process of chronic pain, the specific mechanism of these altered transcriptional profile still remains unclear. Recent studies have shown that epigenetic mechanisms, including DNA/RNA methylation, histone modification and circular RNAs regulation, are involved in the occurrence and development of chronic pain. In this review, we provide a description of research on the role of epigenetic mechanism in chronic pain, summarize the latest clinical and preclinical advance in this field, and propose the potential directions for further research to elucidate the molecular mechanism underlying the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,These authors contributed equally.
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China,These authors contributed equally.
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,Address correspondence to this author at the Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, China; E-mail:
| |
Collapse
|
12
|
Xie Y, Li Z, Xu H, Ma J, Li T, Shi C, Jin J. Downregulation of Sp1 Inhibits the Expression of HDAC1/SOX10 to Alleviate Neuropathic Pain-like Behaviors after Spinal Nerve Ligation in Mice. ACS Chem Neurosci 2022; 13:1446-1455. [PMID: 35420781 DOI: 10.1021/acschemneuro.2c00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Specific protein 1 (Sp1) is a member of the Sp/Kruppel-like factor family, which regulates cellular processes of neurons in the nervous system. This study was performed to examine the regulatory role and the underlying mechanism of transcription factor Sp1 in neuropathic pain (NP)-like behaviors after spinal nerve ligation (SNL). Sp1 and histone deacetylase 1(HDAC1) expressions were determined in the C57BL6 mouse model with NP-like behaviors after SNL, which demonstrated that Sp1 and HDAC1 elevation occurred in neurons in the spinal dorsal horn of SNL mice. The chromatin immunoprecipitation assay verified that Sp1 was bound to the HDAC1 promoter region and HDAC1 to the SRY-box-containing gene 10 (SOX10) promoter region in the spinal dorsal horn. Immunofluorescence was performed to determine Sp1, HDAC1, and SOX10 in the spinal dorsal horn neurons as well as the neuronal marker (NeuN), microglial marker (Iba-1), and astrocyte marker (GFAP). The nociceptive test was performed to characterize the hindlimb paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of mice 0-10 days after model establishment. Loss- and gain-of-function assays revealed that Sp1 promoted HDAC1 expression, and HDAC1 in turn promoted SOX10 expression. HDAC1 elevation reversed the effects of Sp1 silencing, and the increased PWT and PWL of SNL mice were negated after SOX10 overexpression. Meanwhile, SOX10 also restored the results by Sp1 knockdown. Collectively, downregulating Sp1 alleviates NP-like behaviors after SNL via the HDAC1/SOX10 axis.
Collapse
Affiliation(s)
- Yonggang Xie
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Zhen Li
- Department of Otorhinolaryngology, Yantaishan Hospital, Yantai 264000, P. R. China
| | - Hongyu Xu
- Department of Anesthesiology, Central Hospital of Zibo City, Zibo 255000, P. R. China
| | - Jiahai Ma
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Tao Li
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Cunxian Shi
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Jin Jin
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P. R. China
| |
Collapse
|
13
|
A review on the treatment of multiple myeloma with small molecular agents in the past five years. Eur J Med Chem 2022; 229:114053. [PMID: 34974338 DOI: 10.1016/j.ejmech.2021.114053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is currently incurable, and the incidence rate is increasing year by year worldwide. Although in recent years the combined treatment plan based on proteasome inhibitors and immunomodulatory drugs has greatly improved the treatment effect of multiple myeloma, most patients still relapse and become resistant to current treatments. To solve this problem, scientists are committed to developing drugs with higher specificity, such as iberdomide, which is highly specific to ikaros and aiolos. This review aims to focus on the small molecular agents that are being researched/clinically used for the treatment of multiple myeloma, including the target mechanism, structure-activity relationship and application prospects of small molecular agents.
Collapse
|
14
|
Adiponectin regulates electroacupuncture-produced analgesic effects in association with a crosstalk between the peripheral circulation and the spinal cord. Brain Behav Immun 2022; 99:43-52. [PMID: 34562596 DOI: 10.1016/j.bbi.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Neurotransmitter-mediated acupuncture analgesia has been widely studied in nervous systems. It remains largely unclear if peripheral substances are involved the acupuncture analgesia. Adiponectin (APN), a circulating adipokine, shows analgesic effects. The study aimed to examine whether APN regulates analgesic effects of electroacupuncture (EA) in the complete Freund's adjuvant (CFA)-induced mouse model. APN wild type (WT) and knockout (KO) mouse were employed in the study. We found that EA attenuates the CFA-induced pain as demonstrated by the Hargreaves thermal test and the von Frey filament test. The deletion of APN significantly reduced the acupuncture analgesia in the CFA-treated APN KO mice while the intrathecal administration of APN mimicked the analgesic effects of EA. We further revealed that EA produced analgesic effects mainly via APN/AdipoR2-mediated AMPK pathway by the siRNA inhibitions of APN receptors (adipoR1/2) in the spinal cord. The immunofluorescence staining analysis showed that EA increased the APN accumulation in spinal cord through the blood circulation. In conclusion, the study indicates a novel mechanism that acupuncture produces analgesic effects at least partially via APN/AdipoR2-AMPK pathway in the spinal cord.
Collapse
|
15
|
Romanelli MN, Borgonetti V, Galeotti N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol Res 2021; 173:105901. [PMID: 34547384 DOI: 10.1016/j.phrs.2021.105901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
16
|
Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain 2021; 162:1960-1976. [PMID: 34130310 DOI: 10.1097/j.pain.0000000000002218] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT The methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord. Mimicking this decease by knocking down or conditionally deleting spinal Mettl3 elevated the levels of m6A in ten-eleven translocation methylcytosine dioxygenases 1 (Tet1) mRNA and TET1 protein in the spinal cord, leading to production of pain hypersensitivity. By contrast, overexpressing Mettl3 reversed a loss of m6A in Tet1 mRNA and blocked the CFA-induced increase of TET1 in the spinal cord, resulting in the attenuation of pain behavior. Furthermore, the decreased level of spinal YT521-B homology domain family protein 2 (YTHDF2), an RNA m6A reader, stabilized upregulation of spinal TET1 because of the reduction of Tet1 mRNA decay by the binding to m6A in Tet1 mRNA in the spinal cord after CFA. This study reveals a novel mechanism for downregulated spinal cord METTL3 coordinating with YTHDF2 contributes to the modulation of inflammatory pain through stabilizing upregulation of TET1 in spinal neurons.
Collapse
|
17
|
Novel late-stage radiosynthesis of 5-[18F]-trifluoromethyl-1,2,4-oxadiazole (TFMO) containing molecules for PET imaging. Sci Rep 2021; 11:10668. [PMID: 34021207 PMCID: PMC8139947 DOI: 10.1038/s41598-021-90069-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Small molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.
Collapse
|
18
|
Histone deacetylase 3 in hippocampus contributes to memory impairment after chronic constriction injury of sciatic nerve in mice. Pain 2021; 162:382-395. [PMID: 32868749 DOI: 10.1097/j.pain.0000000000002056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic neuropathic pain is frequently accompanied by memory impairment, yet the underlying mechanisms remain unclear. Here, we showed that mice displayed memory impairment starting at 14 days and lasting for at least 21 days after chronic constriction injury (CCI) of unilateral sciatic nerve in mice. Systemic administration of the pan histone deacetylase (HDAC) inhibitor sodium butyrate attenuated this memory impairment. More specifically, we found that hippocampus HDAC3 was involved in this process because the levels of its mRNA and protein increased significantly in the hippocampus at 14 and 21 days after CCI, but not sham surgery. Systemic administration of the selective HDAC3 antagonist RGFP966 attenuated CCI-induced memory impairment, improved hippocampal long-term potentiation impairment, and rescued reductions of dendritic spine density and synaptic plasticity-associated protein in the hippocampus. In addition, HDAC3 overexpression in the hippocampus led to memory impairment without affecting basal nociceptive responses in naive mice. Our findings suggest that HDAC3 contributes to memory impairment after CCI by impairing synaptic plasticity in hippocampus. Histone deacetylase 3 might serve as a potential molecular target for therapeutic treatment of memory impairment under neuropathic pain conditions.
Collapse
|
19
|
Ma L, Huang Y, Zhang F, Gao DS, Sun N, Ren J, Xia S, Li J, Peng X, Yu L, Jiang BC, Yan M. MMP24 Contributes to Neuropathic Pain in an FTO-Dependent Manner in the Spinal Cord Neurons. Front Pharmacol 2021; 12:673831. [PMID: 33995105 PMCID: PMC8118694 DOI: 10.3389/fphar.2021.673831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Nerve injury-induced gene expression change in the spinal cord is critical for neuropathic pain genesis. RNA N6-methyladenosine (m6A) modification represents an additional layer of gene regulation. We showed that spinal nerve ligation (SNL) upregulated the expression of matrix metallopeptidase 24 (MMP24) protein, but not Mmp24 mRNA, in the spinal cord neurons. Blocking the SNL-induced upregulation of spinal MMP24 attenuated local neuron sensitization, neuropathic pain development and maintenance. Conversely, mimicking MMP24 increase promoted the spinal ERK activation and produced evoked nociceptive hypersensitivity. Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA Immunoprecipitation (RIP) assay indicated the decreased m6A enrichment in the Mmp24 mRNA under neuropathic pain condition. Moreover, fat-mass and obesity-associated protein (FTO) was colocalized with MMP24 in spinal neurons and shown increased binding to the Mmp24 mRNA in the spinal cord after SNL. Overexpression or suppression of FTO correlates with promotion or inhibition of MMP24 expression in cultured spinal cord neurons. In conclusion, SNL promoted the m6A eraser FTO binding to the Mmp24 mRNA, which subsequently facilitated the translation of MMP24 in the spinal cord, and ultimately contributed to neuropathic pain genesis.
Collapse
Affiliation(s)
- Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengjiang Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suyun Xia
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Peng
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Gu P, Fan T, Wong SSC, Pan Z, Tai WL, Chung SK, Cheung CW. Central Endothelin-1 Confers Analgesia by Triggering Spinal Neuronal Histone Deacetylase 5 (HDAC5) Nuclear Exclusion in Peripheral Neuropathic Pain in Mice. THE JOURNAL OF PAIN 2021; 22:454-471. [PMID: 33421591 DOI: 10.1016/j.jpain.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
The rationale of spinal administration of endothelin-1(ET-1) mediated anti-nociceptive effect has not been elucidated. ET-1 is reported to promote nuclear effluxion of histone deacetylase 5 (HDAC5) in myocytes, and spinal HDAC5 is implicated in modulation of pain processing. In this study, we aimed to investigate whether central ET-1 plays an anti-nociceptive role by facilitating spinal HDAC5 nuclear shuttling under neuropathic pain. Here, we demonstrate that upregulating spinal ET-1 attenuated the nociception induced by partial sciatic nerve ligation surgery and this analgesic effect mediated by ET-1 was attenuated by intrathecal injection of endothelin A receptor selective inhibitor (BQ123) or by blocking the exportation of nuclear HDAC5 by adeno-associated viruses targeting neuronal HDAC5 (AVV-HDAC5 S259/498A Mutant). Notably, ET-1 administration increased spinal glutamate acid decarboxylases (GAD65/67) expression via initiating HDAC5 nuclear exportation and increased the acetylation of histone 3 at lysine 9 (Acetyl-H3K9) in the promotor regions of spinal Gad1 and Gad2 genes. This was reversed by blocking endothelin A receptor function or by inhibiting the spinal neuronal nuclear exportation of HDAC5. Therefore, inducing spinal GABAergic neuronal HDAC5 nuclear exportation may be a novel therapeutic approach for managing neuropathic pain. PERSPECTIVE: Neuropathic pain is intractable in a clinical setting, and epigenetic regulation is considered to contribute to this processing. Characterizing the anti-nociceptive effect of ET-1 and investigating the associated epigenetic mechanisms in animal models may lead to the development of new therapeutic strategies and targets for treating neuropathic pain.
Collapse
Affiliation(s)
- Pan Gu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China; Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Guangdong province, China
| | - Tingting Fan
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Stanley Sau Ching Wong
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anaesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wai Lydia Tai
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sookja Kim Chung
- Macau University of Science and Technology, Taipa, Macau; School of Biomedical Sciences, The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China; Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong, HKSAR, China; Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Guangdong province, China.
| |
Collapse
|
21
|
Yeh TY, Luo IW, Hsieh YL, Tseng TJ, Chiang H, Hsieh ST. Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 2020; 9:cells9122725. [PMID: 33371371 PMCID: PMC7767346 DOI: 10.3390/cells9122725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain exerts a global burden caused by the lesions in the somatosensory nerve system, including the central and peripheral nervous systems. The mechanisms of nerve injury-induced neuropathic pain involve multiple mechanisms, various signaling pathways, and molecules. Currently, poor efficacy is the major limitation of medications for treating neuropathic pain. Thus, understanding the detailed molecular mechanisms should shed light on the development of new therapeutic strategies for neuropathic pain. Several well-established in vivo pain models were used to investigate the detail mechanisms of peripheral neuropathic pain. Molecular mediators of pain are regulated differentially in various forms of neuropathic pain models; these regulators include purinergic receptors, transient receptor potential receptor channels, and voltage-gated sodium and calcium channels. Meanwhile, post-translational modification and transcriptional regulation are also altered in these pain models and have been reported to mediate several pain related molecules. In this review, we focus on molecular mechanisms and mediators of neuropathic pain with their corresponding transcriptional regulation and post-translational modification underlying peripheral sensitization in the dorsal root ganglia. Taken together, these molecular mediators and their modification and regulations provide excellent targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - I-Wei Luo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hostpital, Kaohsiung 80708, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Brian and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88182); Fax: +886-223915292
| |
Collapse
|
22
|
Wang XM, Gu P, Saligan L, Iadarola M, Wong SSC, Ti LK, Cheung CW. Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy. Mol Cancer Ther 2020; 19:2196-2209. [PMID: 32847971 DOI: 10.1158/1535-7163.mct-20-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
Effective treatments for chemotherapy-induced peripheral neuropathy (CIPN) remain unavailable. Given the significance of spinal cord glutamate transporters in neuronal plasticity and central sensitization, this study investigated the role of excitatory amino acid transporter 2 (EAAT2) and vesicular-glutamate transporter 2 (VGLUT2) in the development of paclitaxel-induced painful neuropathy. Paclitaxel (2 mg/kg, i.p., cumulative dose 8 mg/kg) induced long-lasting mechanical allodynia (>28 days) with increased glutamate concentration and decreased EAAT2 expression with no changes in GABA/glycine or VGAT (vesicular GABA transporter) in rat spinal dorsal horn. VGLUT2 expression was upregulated and coexpressed with enhanced synaptophysin, characterizing nociceptive afferent sprouting and new synapse formation of glutamatergic neurons in the spinal cord dorsal horn. HDAC2 and transcription factor YY1 were also upregulated, and their interaction and colocalization were confirmed following paclitaxel treatment using co-immunoprecipitation. Inhibition or knockdown of HDAC2 expression by valproic acid, BRD6688, or HDAC2 siRNA not only attenuated paclitaxel-induced mechanical allodynia but also suppressed HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction. These findings indicate that loss of the balance between glutamate release and reuptake due to dysregulation EAAT2/VGLUT2/synaptophysin cascade in the spinal dorsal horn plays an important role in the development of paclitaxel-induced neuropathic pain. HDAC2/YY1 interaction as a complex appears essential in regulating this pathway, which can potentially be a therapeutic target to relieve CIPN by reversing central sensitization of spinal nociceptive neurons.
Collapse
Affiliation(s)
- Xiao-Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Leorey Saligan
- National Institute of Nursing Research, Division of Intramural Research, NIH, Bethesda, Maryland
| | - Michael Iadarola
- Anesthesiology Research Laboratories, Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, Maryland
| | - Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Lian Kah Ti
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China. .,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
23
|
Deng J, Ding HH, Long JL, Lin SY, Liu M, Zhang XQ, Xin WJ, Ruan X. Oxaliplatin-induced neuropathic pain involves HOXA6 via a TET1-dependent demethylation of the SOX10 promoter. Int J Cancer 2020; 147:2503-2514. [PMID: 32428246 DOI: 10.1002/ijc.33106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Chemotherapy-induced neuropathic pain is a common dose-limiting side effect of cancer treatment but the underlying mechanisms are largely unknown. Here, we used a whole-genome expression microarray and gene ontology analysis to identify the upregulation of a sequence-specific DNA-binding protein, HOXA6, in the spinal dorsal horn on Day 10 after injection of rats with oxaliplatin. Genetic disruption of HOXA6 with siRNAs alleviated mechanical allodynia after oxaliplatin administration. Reduced representation bisulfite sequencing assays indicated that oxaliplatin decreased the methylation levels of the SOX10 promoter but not of HOXA6. TET1 was also upregulated by oxaliplatin. Genetic disruption of TET1 with siRNA blocked the promoter demethylation of SOX10 and the upregulation of HOXA6 and SOX10. Importantly, inhibition of SOX10 by intrathecal application of SOX10 siRNA ameliorated the mechanical allodynia induced by oxaliplatin and downregulated the expression of HOXA6. Consistently, overexpression of SOX10 through intraspinal injection of AAV-SOX10-EGFP produced mechanical allodynia and upregulated the expression of spinal dorsal horn HOXA6. Moreover, chromatin immunoprecipitation assays demonstrated that oxaliplatin increased the binding of SOX10 to the promoter region of HOXA6. Taken together, our data suggest that HOXA6 upregulation through the TET1-mediated promoter demethylation of SOX10 may contribute to oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Jie Deng
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huan-Huan Ding
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Li Long
- Department of Pathology, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Su-Yan Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Meng Liu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xue-Qin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiangcai Ruan
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Anesthesia and Pain Medicine, Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Wong SSC, Lee UM, Wang XM, Chung SK, Cheung CW. Role of DLC2 and RhoA/ROCK pathway in formalin induced inflammatory pain in mice. Neurosci Lett 2019; 709:134379. [DOI: 10.1016/j.neulet.2019.134379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
|