1
|
Turnbull J, Chapman V. Targeting the soluble epoxide hydrolase pathway as a novel therapeutic approach for the treatment of pain. Curr Opin Pharmacol 2024; 78:102477. [PMID: 39197248 DOI: 10.1016/j.coph.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
Chronic pain is a major burden and the complexities of chronic pain pathophysiology, including both peripheral and central sensitisation mechanisms, involves multiple cell types (neuronal, immune, neuroimmune, and vascular) which substantially complicates the development of new effective analgesic treatments. The epoxy fatty acids (EpFAs), including the epoxyeicosatrienoic acids (EETs), are derived from the metabolism of polyunsaturated fatty acids (PUFAs) via the cytochrome P450 enzymatic pathway and act to shut-down inflammatory signalling and provide analgesia. The EpFAs are rapidly metabolised by the enzyme soluble epoxide hydrolase (sEH) into their corresponding diol metabolites, which recent studies suggest are pro-inflammatory and pro-nociceptive. This review discusses clinical and mechanistic evidence for targeting the sEH pathway for the treatment of pain.
Collapse
Affiliation(s)
- James Turnbull
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Pain Centre Versus Arthritis & NIHR Nottingham Biomedical Research Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
4
|
Onodera T, Iwasaki K, Matsuoka M, Morioka Y, Matsubara S, Kondo E, Iwasaki N. The alterations in nerve growth factor concentration in plasma and synovial fluid before and after total knee arthroplasty. Sci Rep 2024; 14:8943. [PMID: 38637604 PMCID: PMC11026423 DOI: 10.1038/s41598-024-59685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024] Open
Abstract
Total knee arthroplasty (TKA) is an effective procedure for pain relief; however, the emergence of postsurgical pain remains a concern. In this study, we investigated the production of nerve growth factor (NGF) and mediators that affect NGF production and their function in the synovial fluid and plasma after TKA. This study included 19 patients (20 knees) who had rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and knee osteoarthritis (OA) who underwent TKA, categorized into OA and non-OA groups. The levels of NGF, inflammatory cytokines, and lipid mediators were analyzed before and after surgery. The intraoperative synovial fluid NGF concentration was more than seven times higher in the non-OA group than in the OA group. The intra-articular NGF levels increased significantly by more than threefold postoperatively in the OA group but not in the non-OA group. Moreover, the levels of inflammatory cytokines and lipid mediators were increased in the synovial fluid of both groups. The intra-articular cytokines or NGF concentrations positively correlated with postoperative pain. Targeted NGF control has the potential to alleviate postsurgical pain in TKA, especially in patients with OA, emphasizing the importance of understanding NGF dynamics under different knee conditions.
Collapse
Affiliation(s)
- Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo, Japan.
| | - Koji Iwasaki
- Department of Functional Reconstruction for the Knee Joint, Hokkaido University, N15W7, Sapporo, Japan
| | - Masatake Matsuoka
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo, Japan
| | - Yasuhide Morioka
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan
| | - Shinji Matsubara
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo, Japan
| | - Eiji Kondo
- Centre for Sports Medicine, Hokkaido University, N14W5, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Sapporo, Japan
| |
Collapse
|
5
|
Fialho MFP, Brum ES, Becker G, Oliveira SM. TRPV4 Activation and its Intracellular Modulation Mediated by Kinin Receptors Contribute to Painful Symptoms Induced by Anastrozole. Mol Neurobiol 2024; 61:1627-1642. [PMID: 37740866 DOI: 10.1007/s12035-023-03654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Anastrozole, an aromatase inhibitor, induces painful musculoskeletal symptoms, which affect patients' quality of life and lead to therapy discontinuation. Efforts have been made to understand the mechanisms involved in these painful symptoms to manage them better. In this context, we explored the role of the Transient Receptor Potential Vanilloid 4 (TRPV4), a potential transducer of several nociceptive mechanisms, in anastrozole-induced musculoskeletal pain in mice. Besides, we evaluated the possible sensibilization of TRPV4 by signalling pathways downstream, PLC, PKC and PKCε from kinin B2 (B2R) and B1 (B1R) receptors activation in anastrozole-induced pain. Anastrozole caused mechanical allodynia and muscle strength loss in mice. HC067047, TRPV4 antagonist, reduced the anastrozole-induced mechanical allodynia and muscle strength loss. In animals previously treated with anastrozole, the local administration of sub-nociceptive doses of the TRPV4 (4α-PDD or hypotonic solution), B2R (Bradykinin) or B1R (DABk) agonists enhanced the anastrozole-induced pain behaviours. The sensitizing effects induced by local injection of the TRPV4, B2R and B1R agonists in animals previously treated with anastrozole were reduced by pre-treatment with TRPV4 antagonist. Furthermore, inhibition of PLC, PKC or PKCε attenuated the mechanical allodynia and muscle strength loss induced by TRPV4, B2R and B1R agonists. The generation of painful conditions caused by anastrozole depends on direct TRPV4 activation or indirect, e.g., PLC, PKC and PKCε pathways downstream from B2R and B1R activation. Thus, the TRPV4 channels act as sensors of extracellular and intracellular changes, making them potential therapeutic targets for alleviating pain related to aromatase inhibitors use, such as anastrozole.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
6
|
Fu Y, Cui S, Zhou Y, Qiu L. Dental Pulp Stem Cell-Derived Exosomes Alleviate Mice Knee Osteoarthritis by Inhibiting TRPV4-Mediated Osteoclast Activation. Int J Mol Sci 2023; 24:4926. [PMID: 36902356 PMCID: PMC10003468 DOI: 10.3390/ijms24054926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes chronic pain and joint swelling and even disables millions of patients. However, current non-surgical treatment for OA can only relieve pain without obvious cartilage and subchondral bone repair. Mesenchymal stem cell (MSC)-secreted exosomes have promising therapeutic effects on knee OA, but the efficacy of MSC-exosome therapy is not well determined, and the mechanisms involved are still unclear. In this study, we isolated dental pulp stem cell (DPSC)-derived exosomes by ultracentrifugation and determined the therapeutic effects of a single intra-articular injection of DPSC-derived exosomes in a mice knee OA model. The results showed that the DPSC-derived exosomes effectively improved abnormal subchondral bone remodeling, inhibited the occurrence of bone sclerosis and osteophytes, and alleviated cartilage degradation and synovial inflammation in vivo. Moreover, transient receptor potential vanilloid 4 (TRPV4) was activated during the progression of OA. Enhanced TRPV4 activation facilitated osteoclast differentiation, and TRPV4 inhibition blocked this process in vitro. DPSC-derived exosomes repressed osteoclast activation in vivo by inhibiting TRPV4 activation. Our findings demonstrated that a topical, single injection of DPSC-derived exosomes is a potential strategy for knee OA treatment, and that the exosomes regulated osteoclast activation by TRPV4 inhibition, which may act as a promising target for clinical OA treatment.
Collapse
Affiliation(s)
- Yu Fu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Lixin Qiu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
7
|
Dravid AA, Dhanabalan KM, Naskar S, Vashistha A, Agarwal S, Padhan B, Dewani M, Agarwal R. Sustained release resolvin D1 liposomes are effective in the treatment of osteoarthritis in obese mice. J Biomed Mater Res A 2023; 111:765-777. [PMID: 36773024 DOI: 10.1002/jbm.a.37512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Osteoarthritis (OA) is the most common joint disorder and currently affects >500 million patients worldwide, with ~60% of them also suffering from obesity. There is no drug approved for human use that changes the course of OA progression. OA is one of the most common comorbidities of obesity, and obesity-related OA (ObOA) is a serious health concern because it shows heightened severity of tissue damage and also predominantly affects the working population. Unresolved inflammation is a major driver of ObOA, thus, resolving disease-associated inflammation is a viable strategy to treat ObOA. Resolvins are highly potent molecules that play a role in the resolution of inflammation and promote tissue healing. However, small molecules (like Resolvin D1; RvD1) have to be administered frequently or prior to injury because they lose their in vivo activity rapidly either by lymphatic clearance, or oxidation-mediated deactivation. In this study, we have encapsulated RvD1 in liposomes and established its efficacy in the mouse model of ObOA at much lower dosages than freely administered RvD1. Liposomal RvD1 (lipo-RvD1) acted as a source of the RvD1 molecules for ~11 days in vitro in synovial fluid derived from patients. When administered prophylactically or therapeutically, lipo-RvD1 suppressed cartilage damage in male C57BL/6 mice compared to untreated and free RvD1 treatments. This efficacy was achieved by increasing the proportion of the proresolution M2 macrophages over proinflammatory M1 macrophages in the synovial membrane. These results show the potential of lipo-RvD1 as an anti-OA agent.
Collapse
|
8
|
Riewruja K, Makarczyk M, Alexander PG, Gao Q, Goodman SB, Bunnell BA, Gold MS, Lin H. Experimental models to study osteoarthritis pain and develop therapeutics. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100306. [PMID: 36474784 PMCID: PMC9718172 DOI: 10.1016/j.ocarto.2022.100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Pain is the predominant symptom of osteoarthritis (OA) that drives patients to seek medical care. Currently, there are no pharmacological treatments that can reverse or halt the progression of OA. Safe and efficacious medications for long-term management of OA pain are also unavailable. Understanding the mechanisms behind OA pain generation at onset and over time is critical for developing effective treatments. In this narrative review, we first summarize our current knowledge on the innervation of the knee joint, and then discuss the molecular mechanism(s) currently thought to underlie OA pain. In particular, we focus on the contribution of each joint component to the generation of pain. Next, the current experimental models for studying OA pain are summarized, and the methods to assess pain in rodents are presented. The potential application of emerging microphysiological systems in OA pain research is especially highlighted. Lastly, we discuss the current challenge in standardizing models and the selection of appropriate systems to address specific questions.
Collapse
Affiliation(s)
- Kanyakorn Riewruja
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Meagan Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Peter G. Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford, CA, USA
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Dravid AA, M. Dhanabalan K, Agarwal S, Agarwal R. Resolvin D1-loaded nanoliposomes promote M2 macrophage polarization and are effective in the treatment of osteoarthritis. Bioeng Transl Med 2022; 7:e10281. [PMID: 35600665 PMCID: PMC9115708 DOI: 10.1002/btm2.10281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Current treatments for osteoarthritis (OA) offer symptomatic relief but do not prevent or halt the disease progression. Chronic low-grade inflammation is considered a significant driver of OA. Specialized proresolution mediators are powerful agents of resolution but have a short in vivo half-life. In this study, we have engineered a Resolvin D1 (RvD1)-loaded nanoliposomal formulation (Lipo-RvD1) that targets and resolves the OA-associated inflammation. This formulation creates a depot of the RvD1 molecules that allows the controlled release of the molecule for up to 11 days in vitro. In surgically induced mice model of OA, only controlled-release formulation of Lipo-RvD1 was able to treat the progressing cartilage damage when administered a month after the surgery, while the free drug was unable to prevent cartilage damage. We found that Lipo-RvD1 functions by damping the proinflammatory activity of synovial macrophages and recruiting a higher number of M2 macrophages at the site of inflammation. Our Lipo-RvD1 formulation was able to target and suppress the formation of the osteophytes and showed analgesic effect, thus emphasizing its ability to treat clinical symptoms of OA. Such controlled-release formulation of RvD1 could represent a patient-compliant treatment for OA.
Collapse
Affiliation(s)
- Ameya A. Dravid
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Kaamini M. Dhanabalan
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Smriti Agarwal
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Rachit Agarwal
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| |
Collapse
|
10
|
The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. Rev Physiol Biochem Pharmacol 2022; 186:57-93. [PMID: 36378366 DOI: 10.1007/112_2022_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.
Collapse
|
11
|
SUSAI N, KUROITA T, KURONUMA K, YOSHIOKA T. Analysis of the gut microbiome to validate a mouse model of pellagra. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:73-82. [PMID: 35433165 PMCID: PMC8970653 DOI: 10.12938/bmfh.2021-059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Natsumi SUSAI
- Translational Research Unit, Infectious Disease Marker, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiro KUROITA
- Translational Research Unit, Infectious Disease Marker, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Koji KURONUMA
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Takeshi YOSHIOKA
- Translational Research Unit, Infectious Disease Marker, Biomarker R&D Department, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
12
|
Soga M, Izumi T, Nanchi I, Horita N, Yamamoto M, Kawasaki S, Ogawa K, Fujita M, Morioka Y. Suppression of joint pain in transient receptor potential vanilloid 4 knockout rats with monoiodoacetate-induced osteoarthritis. Pain Rep 2021; 6:e951. [PMID: 34396019 PMCID: PMC8357256 DOI: 10.1097/pr9.0000000000000951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Knee joint pain in osteoarthritis model rats is caused by the sensitization of transient receptor potential vanilloid 4 in the dorsal root ganglion neurons Introduction: Transient receptor potential vanilloid 4 (TRPV4) modulates osteoarthritic (OA) pain in animal models. However, the pathophysiological function of TRPV4 in regulating OA pain remains poorly understood. Methods: We developed TRPV4-knockout (TRPV4-KO) rats and assessed the effects of Trpv4 gene deficiency in a monoiodoacetate (MIA)-induced OA pain model (MIA rats) by examining pain-related behavior, pathological changes, and electrophysiological changes in dorsal root ganglion (DRG) neurons. The changes detected in TRPV4-KO rats were confirmed in wild-type rats using a TRPV4 antagonist. Results: Transient receptor potential vanilloid 4–KO rats showed the same pain threshold as wild-type rats for thermal or pressure stimuli under normal conditions. Trpv4 gene deletion did not suppress the development of osteoarthritis pathologically in MIA rats. However, the OA-related mechanical pain behaviors observed in MIA rats, including decreased grip strength, increased mechanical allodynia, and reduced weight-bearing on the ipsilateral side, were completely suppressed in TRPV4-KO rats. The DRG neurons in wild-type but not TRPV4-KO MIA rats were depolarized with increased action potentials. Transient receptor potential vanilloid 4 antagonist treatments recapitulated the effects of genetic Trpv4 deletion. Conclusion: Transient receptor potential vanilloid 4 was sensitized in the DRG neurons of MIA rats and played a critical role in the development of OA pain. These results suggest that the inhibition of TRPV4 might be a novel potent analgesic strategy for treating OA pain.
Collapse
Affiliation(s)
- Masahiko Soga
- Department of Pharmacological Efficacy Evaluation, Shionogi TechnoAdvance Research Co. Ltd., Toyonaka, Japan
| | - Takaya Izumi
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| | - Isamu Nanchi
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| | - Narumi Horita
- Department of Pharmacological Efficacy Evaluation, Shionogi TechnoAdvance Research Co. Ltd., Toyonaka, Japan
| | - Miyuki Yamamoto
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| | - Shiori Kawasaki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| | - Masahide Fujita
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| | - Yasuhide Morioka
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Japan
| |
Collapse
|
13
|
Kawasaki S, Soga M, Sakurai Y, Nanchi I, Yamamoto M, Imai S, Takahashi T, Tsuno N, Asaki T, Morioka Y, Fujita M. Selective blockade of transient receptor potential vanilloid 4 reduces cyclophosphamide-induced bladder pain in mice. Eur J Pharmacol 2021; 899:174040. [PMID: 33737012 DOI: 10.1016/j.ejphar.2021.174040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel activated by various physical stimuli such as cell swelling and shear stress. TRPV4 is expressed in bladder sensory nerves and epithelium, and its activation produces urinary dysfunction in rodents. However, there have been few reports regarding its involvement in bladder pain. Therefore, we investigated whether TRPV4 is involved in bladder pain in mouse cystitis model. Intraperitoneal injection of cyclophosphamide (CYP; 300 mg/kg) produced mechanical hypersensitivity in the lower abdomen associated with a severe inflammatory bladder in mice. The mechanical threshold was reversed significantly in Trpv4-knockout (KO) mice. Repeated injections of CYP (150 mg/kg) daily for 4 days provoked mild bladder inflammation and persistent mechanical hypersensitivity in mice. Trpv4-KO mice prevented a reduction of the mechanical threshold without an alteration in bladder inflammation. A selective TRPV4 antagonist also reversed the mechanical threshold in chronic cystitis mice. Although expression of Trpv4 was unchanged in the bladders of chronic cystitis mice, the level of phosphorylated TRPV4 was increased significantly. These results suggest involvement of TRPV4 in bladder pain of cystitis mice. A TRPV4 antagonist might be useful for patients with irritable bladder pain such as those with interstitial cystitis/painful bladder syndrome.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Behavior, Animal/drug effects
- Cells, Cultured
- Cyclophosphamide
- Cystitis, Interstitial/chemically induced
- Cystitis, Interstitial/metabolism
- Cystitis, Interstitial/physiopathology
- Cystitis, Interstitial/prevention & control
- Disease Models, Animal
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nociceptive Pain/chemically induced
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Nociceptive Pain/prevention & control
- Pain Threshold/drug effects
- Phosphorylation
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/physiopathology
- Mice
Collapse
Affiliation(s)
- Shiori Kawasaki
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Masahiko Soga
- Animal Production Technology for Animal Models, Shionogi Techno Advance Research Co. Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Yusuke Sakurai
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Isamu Nanchi
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Miyuki Yamamoto
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Sunao Imai
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Tatsuya Takahashi
- Laboratory for Advanced Medicine Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Naoki Tsuno
- API R&D Laboratory, CMC R&D Division, Shionogi & Co., Ltd., 1-3, Kuise terajima 2-chome, Amagasaki, Hyogo, 660-0813, Japan
| | - Toshiyuki Asaki
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Yasuhide Morioka
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan
| | - Masahide Fujita
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., 1-1 Futaba-cho 3-chome, Toyonaka, Osaka, 561-0825, Japan.
| |
Collapse
|
14
|
Southan J, McHugh E, Walker H, Ismail HM. Metabolic Signature of Articular Cartilage Following Mechanical Injury: An Integrated Transcriptomics and Metabolomics Analysis. Front Mol Biosci 2020; 7:592905. [PMID: 33392255 PMCID: PMC7773849 DOI: 10.3389/fmolb.2020.592905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical injury to the articular cartilage is a key risk factor in joint damage and predisposition to osteoarthritis. Integrative multi-omics approaches provide a valuable tool to understand tissue behavior in response to mechanical injury insult and help to identify key pathways linking injury to tissue damage. Global or untargeted metabolomics provides a comprehensive characterization of the metabolite content of biological samples. In this study, we aimed to identify the metabolic signature of cartilage tissue post injury. We employed an integrative analysis of transcriptomics and global metabolomics of murine epiphyseal hip cartilage before and after injury. Transcriptomics analysis showed a significant enrichment of gene sets involved in regulation of metabolic processes including carbon metabolism, biosynthesis of amino acids, and steroid biosynthesis. Integrative analysis of enriched genes with putatively identified metabolite features post injury showed a significant enrichment for carbohydrate metabolism (glycolysis, galactose, and glycosylate metabolism and pentose phosphate pathway) and amino acid metabolism (arginine biosynthesis and tyrosine, glycine, serine, threonine, and arginine and proline metabolism). We then performed a cross analysis of global metabolomics profiles of murine and porcine ex vivo cartilage injury models. The top commonly modulated metabolic pathways post injury included arginine and proline metabolism, arginine biosynthesis, glycolysis/gluconeogenesis, and vitamin B6 metabolic pathways. These results highlight the significant modulation of metabolic responses following mechanical injury to articular cartilage. Further investigation of these pathways would provide new insights into the role of the early metabolic state of articular cartilage post injury in promoting tissue damage and its link to disease progression of osteoarthritis.
Collapse
Affiliation(s)
- Jennifer Southan
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Emily McHugh
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Heather Walker
- biOMICS Mass Spectrometry Facility, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Heba M Ismail
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Hu W, Ding Y, Li Q, shi R, He Y. Transient receptor potential vanilloid 4 channels as therapeutic targets in diabetes and diabetes-related complications. J Diabetes Investig 2020; 11:757-769. [PMID: 32129549 PMCID: PMC7378409 DOI: 10.1111/jdi.13244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
With an estimated 425 million diabetes patients worldwide in 2019, type 2 diabetes has reached a pandemic proportion and represents a major unmet medical need. A key determinant of the development and progression of type 2 diabetes is pancreatic -cell dysfunction, including the loss of cell mass, the impairment of insulin biosynthesis and inadequate exocytosis. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), a Ca2+ -permeable non-selective cation channel, is involved in -cell replication, insulin production and secretion. TRPV4 agonists have insulinotropic activity in pancreatic -cell lines, but the prolonged activation of TRPV4 leads to -cell dysfunction and death. In addition, TRPV4 is involved in a wide variety of pathophysiological activities, and has been reported to play an important role in diabetes-related complications, such as obesity, cardiovascular diseases, diabetic retinopathy, nephropathy and neuropathy. In a rodent type 2 diabetes model, Trpv4 agonists promote vasodilation and improve cardiovascular function, whereas Trpv4 antagonists reduce high-fat diet-induced obesity, insulin resistance, diabetic nephropathy, retinopathy and neuropathy. These findings raise interest in using TRPV4 as a therapeutic target for type 2 diabetes. In this review, we intend to summarize the latest findings regarding the role of TRPV4 in diabetes as well as diabetes-related conditions, and to evaluate its potential as a therapeutic target for diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Wei Hu
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Yuanlin Ding
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Qingqing Li
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Rou shi
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Yuqing He
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
- Liaobu HospitalGuangdong Medical UniversityDongguanChina
| |
Collapse
|
16
|
Expression and functional characterization of transient receptor potential vanilloid 4 in the dorsal root ganglion and spinal cord of diabetic rats with mechanical allodynia. Brain Res Bull 2020; 162:30-39. [PMID: 32479780 DOI: 10.1016/j.brainresbull.2020.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Diabetic mechanical allodynia (DMA) is a common manifestation in patients with diabetes mellitus, and currently, no effective treatment is available. Transient receptor potential vanilloid 4 (TRPV4) is involved in mechanical hypersensitivity resulting from varying aetiologies in animal, but its expression pattern during DMA and whether it contributes to this condition are still unclear. We investigated the spatial and temporal expression patterns of TRPV4 in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) by qRT-PCR, Western blotting and immunofluorescence assays. The pathophysiological role of TRPV4 in DMA was also investigated by intrathecal application of the TRPV4 selective antagonist HC-067047 or the agonist GSK1016790A. The results showed that both the mRNA and protein levels of TRPV4 were strikingly upregulated on day 14 in the rats with DMA. The increase in TRPV4 was mainly observed in the soma and central processes of calcitonin gene-related peptide (CGRP)- or neurofilament 200 kDa (NF200)-containing DRG neurons. Both single and repetitive intrathecal applications of HC-067047 (400 ng/kg) significantly alleviated mechanical allodynia in the rats with DMA, whereas a single application of GSK1016790A (200 ng/kg) aggravated mechanical allodynia. The present data suggest that TRPV4 undergoes expression changes that are associated with mechanical hypersensitivity in diabetic rats. TRPV4 may be a new molecular target for developing a clinical strategy to treat this intractable neuropathic pain.
Collapse
|
17
|
Luo XQ, Duan JX, Yang HH, Zhang CY, Sun CC, Guan XX, Xiong JB, Zu C, Tao JH, Zhou Y, Guan CX. Epoxyeicosatrienoic acids inhibit the activation of NLRP3 inflammasome in murine macrophages. J Cell Physiol 2020; 235:9910-9921. [PMID: 32452554 DOI: 10.1002/jcp.29806] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1β), and IL-1β p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.
Collapse
Affiliation(s)
- Xiao-Qin Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Basic Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China.,Department of Medical Technology, Changsha Health Vocational College, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Zu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jia-Hao Tao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
19
|
Atobe M. Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis. Curr Top Med Chem 2019; 19:2254-2267. [DOI: 10.2174/1568026619666191010162850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 4 belongs to the TRPV subfamily of TRP ion
channels. TRPV4 channels play a critical role in chondrocytes and thus TRPV4 is an attractive target of
Disease-Modifying Osteoarthritis Drugs (DMOADs). Initial investigations of small molecules by Glaxo
Smith Klein (GSK) as both agonists and antagonists via oral/intravenous administration have led to the
use of existing agonists as lead compounds for biological studies. Our recent results suggest that local
injection of a TRPV4 agonist is a potential treatment for osteoarthritis (OA). This review briefly summarizes
updates regarding TRPV4 agonists based on recent advances in drug discovery, and particularly
the local administration of TRPV4 agonists.
Collapse
Affiliation(s)
- Masakazu Atobe
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
20
|
Sanaki T, Wakabayashi M, Yoshioka T, Yoshida R, Shishido T, Hall WW, Sawa H, Sato A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro. FASEB J 2019; 33:13866-13881. [PMID: 31638831 DOI: 10.1096/fj.201901095rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dengue fever is an acute febrile infectious disease caused by dengue virus (DENV). Despite the significant public health concerns posed by DENV, there are currently no effective anti-DENV therapeutic agents. To develop such drugs, a better understanding of the detailed mechanisms of DENV infection is needed. Both lipid metabolism and lipid synthesis are activated in DENV-infected cells, so we used lipid screening to identify potential antiviral lipid molecules. We identified 1-stearoyl-2-arachidonoyl-phosphatidylinositol (SAPI), which is the most abundant endogenous phosphatidylinositol (PI) molecular species, as an anti-DENV lipid molecule. SAPI suppressed the cytopathic effects induced by DENV2 infection as well as the replication of all DENV serotypes without inhibiting the entry of DENV2 into host cells. However, no other PI molecular species or PI metabolites, including lysophosphatidylinositols and phosphoinositides, displayed anti-DENV2 activity. Furthermore, SAPI suppressed the production of DENV2 infection-induced cytokines and chemokines, including C-C motif chemokine ligand (CCL)5, CCL20, C-X-C chemokine ligand 8, IL-6, and IFN-β. SAPI also suppressed the TNF-α production induced by LPS stimulation in macrophage cells differentiated from THP-1 cells. Our results demonstrated that SAPI is an endogenous inhibitor of DENV and modulated inflammatory responses in DENV2-infected cells, at least in part via TLR 4.-Sanaki, T., Wakabayashi, M., Yoshioka, T., Yoshida, R., Shishido, T., Hall, W. W., Sawa, H., Sato, A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro.
Collapse
Affiliation(s)
- Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| | - Masato Wakabayashi
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Takeshi Yoshioka
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - Takao Shishido
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Center for Research in Infectious Diseases, University College of Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Sami Y, Morita M, Kubota H, Hirabayashi R, Seo R, Nakagawa N. Discovery of a novel orally active TRPV4 inhibitor: Part 1. Optimization from an HTS hit. Bioorg Med Chem 2019; 27:3775-3787. [DOI: 10.1016/j.bmc.2019.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
|
22
|
Transient Receptor Potential vanilloid 4 ion channel in C-fibres is involved in mechanonociception of the normal and inflamed joint. Sci Rep 2019; 9:10928. [PMID: 31358810 PMCID: PMC6662841 DOI: 10.1038/s41598-019-47342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
The Transient Receptor Potential vanilloid 4 ion channel (TRPV4) is an important sensor for osmotic and mechanical stimuli in the musculoskeletal system, and it is also involved in processes of nociception. In this study we investigated the putative role of TRPV4 ion channels in joint pain. In anesthetized rats we recorded from mechanosensitive nociceptive A∂- and C-fibres supplying the medial aspect of the knee joint. The intraarticular injection of the TRPV4 antagonist RN-1734 into the knee joint reduced the responses of C-fibres of the normal joint to noxious mechanical stimulation and the responses of the sensitized C-fibres of the acutely inflamed joint to innocuous and noxious mechanical stimulation. The responses of nociceptive A∂-fibres were not significantly altered by RN-1734. The intraarticular application of the TRPV4 agonists 4αPDD, GSK 1016790 A, and RN-1747 did not consistently alter the responses of A∂- and C-fibres to mechanical stimulation of the joint nor did they induce ongoing activity. We conclude that TRPV4 ion channels are involved in the responses of C-fibres to noxious mechanical stimulation of the normal joint, and in the enhanced sensitivity of C-fibres to mechanical stimulation of the joint during inflammation of the joint.
Collapse
|
23
|
Rice Porridge Containing Welsh Onion Root Water Extract Alleviates Osteoarthritis-Related Pain Behaviors, Glucose Levels, and Bone Metabolism in Osteoarthritis-Induced Ovariectomized Rats. Nutrients 2019; 11:nu11071503. [PMID: 31262076 PMCID: PMC6683264 DOI: 10.3390/nu11071503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 01/24/2023] Open
Abstract
Rice porridge containing Allium fistulosum (Welsh onion) root water extract (RAFR) has anti-inflammatory bioactive compounds. We examined whether the long-term administration of rice porridge with RAFR would prevent or delay the progression of osteoarthritis and menopausal symptoms in estrogen-deficient animals by ovariectomy. The rats consumed 40% fat energy diets containing 250 mg RAFR (rice: Allium fistulosum root = 13:1)/kg body weight (bw) (OVX-OA-RAFR-Low), 750 mg RAFR/kg bw (OVX-OA-RAFR-High) and 750 mg starch and protein/kg bw(OVX), respectively. After consuming the assigned diets for eight weeks, monoiodoacetate (OVX-OA) or saline (OVX) were injected into the knee joints of the rats for an additional three weeks. Sham rats were administered saline injections (normal-control). OVX-OA-RAFR improved oral glucose tolerance and also protected against decreases in bone mineral density and lean body mass in the legs and increases in fat mass in the abdomen, compared to the OVX and OVX-OA. OVX-OA-RAFR improved swelling and limping scores, normalized weight distribution between the osteoarthritic and normal limbs, and increased maximum running speeds compared to the OVX-OA. The OVX-OA deteriorated the articular cartilage by reducing the articular matrix and bone loss in the knee joint and it prevented knee joint deterioration when compared to the OVX. The improvement in osteoarthritis symptoms in OVX-OA-RAFR decreased the mRNA expression of matrix metallo-proteinase-1 and matrix metalloproteinase-13, tumor necrosis factor-α, and interleukin-1β and interleukin-6 in the articular cartilage compared to OVX-OA rats. In conclusions, RAFR is effective in treating osteoarthritis symptoms and it may be used for a therapeutic agent in osteoarthritis-induced menopausal women.
Collapse
|
24
|
Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain 2019; 160:895-907. [PMID: 30585984 DOI: 10.1097/j.pain.0000000000001466] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most advanced knee osteoarthritis (OA) patients experience chronic pain resistant to cyclooxygenase (COX) inhibitors. However, the cells and molecules involved in this advanced OA pain remain poorly understood. In this study, we developed a rat model of advanced knee OA by modification of the monoiodoacetate-induced OA pain model and examined involvement of synovial macrophages in advanced OA pain. Cyclooxygenase inhibitors, such as celecoxib and naproxen, and a steroid were ineffective, but an opioid and anti-nerve growth factor (NGF) antibody was effective for pain management in the advanced OA model. Similar to advanced OA patients, histological analysis indicated severe bone marrow damages, synovitis, and cartilage damage and an increase of macrophages with high expression of interleukin-1β, NGF, nitric oxide synthase (NOS) 1, NOS2, and COX-2 in the knee joint of the advanced OA model. Intravenous injection of clodronate liposomes depleted synovial macrophages, which decreased the level of not only proinflammatory mediator interleukin-1β but also NGF in the knee joint, leading to pain suppression in the advanced OA model. These data suggest the involvement of synovial macrophages in advanced knee OA pain resistant to COX inhibitors by increasing proinflammatory mediators, and that drugs targeting synovial macrophages might have potent analgesic effects.
Collapse
|
25
|
Rockel JS, Kapoor M. The Metabolome and Osteoarthritis: Possible Contributions to Symptoms and Pathology. Metabolites 2018; 8:metabo8040092. [PMID: 30551581 PMCID: PMC6315757 DOI: 10.3390/metabo8040092] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a progressive, deteriorative disease of articular joints. Although traditionally viewed as a local pathology, biomarker exploration has shown that systemic changes can be observed. These include changes to cytokines, microRNAs, and more recently, metabolites. The metabolome is the set of metabolites within a biological sample and includes circulating amino acids, lipids, and sugar moieties. Recent studies suggest that metabolites in the synovial fluid and blood could be used as biomarkers for OA incidence, prognosis, and response to therapy. However, based on clinical, demographic, and anthropometric factors, the local synovial joint and circulating metabolomes may be patient specific, with select subsets of metabolites contributing to OA disease. This review explores the contribution of the local and systemic metabolite changes to OA, and their potential impact on OA symptoms and disease pathogenesis.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON M5T 2S8, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, ON M5T 2S8, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M1C 1A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|