1
|
Leone CM, Lenoir C, van den Broeke EN. Assessing signs of central sensitization: A critical review of physiological measures in experimentally induced secondary hyperalgesia. Eur J Pain 2025; 29:e4733. [PMID: 39315535 PMCID: PMC11754940 DOI: 10.1002/ejp.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Central sensitization (CS) is believed to play a role in many chronic pain conditions. Direct non-invasive recording from single nociceptive neurons is not feasible in humans, complicating CS establishment. This review discusses how secondary hyperalgesia (SHA), considered a manifestation of CS, affects physiological measures in healthy individuals and if these measures could indicate CS. It addresses controversies about heat sensitivity changes, the role of tactile afferents in mechanical hypersensitivity and detecting SHA through electrical stimuli. Additionally, it reviews the potential of neurophysiological measures to indicate CS presence. DATABASES AND DATA TREATMENT Four databases, PubMed, ScienceDirect, Scopus and Cochrane Library, were searched using terms linked to 'hyperalgesia'. The search was limited to research articles in English conducted in humans until 2023. RESULTS Evidence for heat hyperalgesia in the SHA area is sparse and seems to depend on the experimental method used. Minimal or no involvement of tactile afferents in SHA was found. At the spinal level, the threshold of the nociceptive withdrawal reflex (RIII) is consistently reduced during experimentally induced SHA. The RIII area and the spinal somatosensory potential (N13-SEP) amplitude are modulated only with long-lasting nociceptive input. At the brain level, pinprick-evoked potentials within the SHA area are increased. CONCLUSIONS Mechanical pinprick hyperalgesia is the most reliable behavioural readout for SHA, while the RIII threshold is the most sensitive neurophysiological readout. Due to scarce data on reliability, sensitivity and specificity, none of the revised neurophysiological methods is currently suitable for CS identification at the individual level. SIGNIFICANCE Gathering evidence for CS in humans is a crucial research focus, especially with the increasing interest in concepts such as 'central sensitization-like pain' or 'nociplastic pain'. This review clarifies which readouts, among the different behavioural and neurophysiological proxies tested in experimental settings, can be used to infer the presence of CS in humans.
Collapse
Affiliation(s)
- Caterina M. Leone
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | | | | |
Collapse
|
2
|
Lebrun L, Lenoir C, Leone C, van den Broeke EN, Caspani O, Schilder A, Pelz B, Truini A, Treede RD, Mouraux A. Strength, extent and duration of secondary hyperalgesia induced by high-frequency electrical stimulation of the foot compared to the volar forearm of healthy human volunteers. PLoS One 2025; 20:e0318934. [PMID: 39919153 PMCID: PMC11805354 DOI: 10.1371/journal.pone.0318934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
High-frequency electrical stimulation (HFS) of the skin using a multi-pin electrode activating epidermal nociceptors is used to explore spinal central sensitization in humans. Most previous studies applied HFS to the volar forearm. To prepare for clinical applications in which HFS could be applied to different body sites, this study compared the secondary hyperalgesia induced by stimulation of the foot dorsum vs. the forearm in 32 healthy volunteers. HFS consisted in five 1-s trains of 100 Hz pulses (inter-train interval: 10 s; intensity: 20x detection threshold) delivered via a novel electrode optimized for stimulation of different body sites (ten 0.25 mm pins in a 5-mm circle). Pinprick sensitivity was assessed before HFS and 30-240 minutes after HFS, at the treated site and the corresponding contralateral site. The area of hyperalgesia was quantified. HFS to the foot induced a significant increase in pinprick sensitivity of the surrounding skin, similar in magnitude to the increase at the forearm, and decaying similarly over time (half-lives 150 vs. 221 min). The radius of secondary hyperalgesia was smaller at the foot (22 mm) compared to the forearm (38 mm, p < 0.001), and decreased more rapidly over time (53 vs. 87 min, p < 0.01). Our results show that strength of HFS-induced secondary hyperalgesia can be used as indicator of spinal central sensitization across body sites, and thereby profile patients with localized or regional pain conditions. The size of the area of hyperalgesia may depend on innervation density and peripheral receptive field sizes.
Collapse
Affiliation(s)
- Louisien Lebrun
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Cédric Lenoir
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caterina Leone
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Ombretta Caspani
- Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Schilder
- Department of Orthopaedic and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andrea Truini
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Rolf-Detlef Treede
- Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute for Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - André Mouraux
- Institute of Neuroscience (IONS), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
3
|
Novaes IC, Ardestani SS, Nascimento AMS, Conti PCR, Bonjardim LR, Svensson P, Exposto FG, Costa YM. Capsaicin-induced secondary hyperalgesia differences between the trigeminal and spinal innervation. Sci Rep 2025; 15:308. [PMID: 39747887 PMCID: PMC11696148 DOI: 10.1038/s41598-024-83312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
This study compared the degree of secondary hyperalgesia and somatosensory threshold changes induced by topical capsaicin between spinal and trigeminal innervation. This crossover clinical trial included 40 healthy individuals in which 0.25 g of 1% capsaicin cream was randomly applied for 45 minutes to a circular area of 2 cm2 to the skin covering the masseter muscle and forearm in 2 different sessions, separated by at least 24 hours and no more than 72 hours (washout period). The main outcome variables were the area of allodynia and pinprick hyperalgesia, as well as electrical and mechanical pain thresholds within the area of pinprick hyperalgesia. Mixed ANOVA models and McNemar tests were applied to the data (p = 0.050). The occurrence of allodynia and pinprick hyperalgesia was higher in the forearm than in the masseter (p < 0.050). Additionally, the areas of pinprick hyperalgesia and allodynia were larger in the forearm compared to the masseter (p < 0.050). The electrical and mechanical pain thresholds demonstrated a loss of somatosensory function following capsaicin application to the masseter (p < 0.050). However, no significant somatosensory threshold changes were observed at the forearm after capsaicin (p > 0.050). In conclusion, these findings indicate potential differences compatible with central sensitization related to secondary hyperalgesia between trigeminal and spinal innervation.
Collapse
Affiliation(s)
- Isabela C Novaes
- Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil
| | - Soraya S Ardestani
- Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil
| | - Allen Matheus S Nascimento
- Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil
| | - Paulo C R Conti
- Department of Prosthetic Dentistry, Bauru School of Dentistry, University of Sao Paulo, Bauru, Sao Paulo, Brazil
| | - Leonardo R Bonjardim
- Section of Head and Face Physiology, Department of Biological Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru, São Paulo, Brazil
| | - Peter Svensson
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Fernando G Exposto
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus, Denmark.
- Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus University, Aarhus, Denmark.
| | - Yuri M Costa
- Department of Biosciences, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, Brazil
| |
Collapse
|
4
|
Amber DG, Lore D, Elien VDG, Jan S, Michel M, An DG, Mira M. From breast cancer diagnosis to survivorship: Analyzing perioperative biopsychosocial phenotypes and their relationship to pain on long term. THE JOURNAL OF PAIN 2025; 26:104709. [PMID: 39419367 DOI: 10.1016/j.jpain.2024.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Persistent breast cancer treatment-related pain affects up to 40% of patients, decreasing their quality of life (QoL). While current research typically utilizes correlation and regression analysis to identify biopsychosocial phenotypes contributing to this pain, this study employs cluster analysis to identify qualitatively different phenotypes based on somatosensory and psychosocial characteristics both before and one week post-breast cancer surgery. Further, it investigates how these phenotypes are related to pain intensity one year post-surgery and examines the evolution of phenotype membership from pre- to post-surgery. Somatosensory and psychosocial functioning was evaluated pre- and post-surgery in 184 women undergoing unilateral breast cancer surgery. Eight different quantitative sensory testing (QST) methods including mechanical detection and pain thresholds, pressure pain thresholds, thermal detection and pain thresholds, and conditioned pain modulation were performed at the surgical area (trunk, arm, major pectoral muscle) and a distant location (quadriceps muscle). Psychosocial functioning was assessed using the Central Sensitization Inventory, Pain Catastrophizing Scale, Depression Anxiety Stress Scale-21, and the McGill Quality of Life Questionnaire. Pain intensity was evaluated one year post-breast cancer surgery using the Visual Analogue Scale. Latent class analysis identified five distinct phenotypes before and post-surgery, characterized by differences in mechanical and pain thresholds alongside psychosocial factors. Moreover, higher psychosocial distress and lower QoL correlated with elevated pain intensity one year post-surgery. These findings underscore the importance of addressing breast cancer patients' mental health perioperatively. Therefore, future research should explore whether psychological interventions perioperatively can reduce long-term pain intensity. PERSPECTIVE: This secondary analysis, utilizing cluster analysis, reveals five distinct phenotype based on somatosensory and psychosocial characteristics both before and post-breast cancer surgery. Higher psychosocial distress and lower quality of life correlated with elevated pain intensity one year post-surgery, emphasizing the need to address patients' mental health perioperatively. TRIAL REGISTRATION: clinicaltrials.gov (NCT03351075).
Collapse
Affiliation(s)
- De Groote Amber
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Pain in Motion International Research Group, Belgium
| | - Dams Lore
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Pain in Motion International Research Group, Belgium; University Hospital Leuven, Department of Physical and Rehabilitation Medicine, Leuven, Belgium
| | - Van der Gucht Elien
- University Hospital Leuven, Department of Physical and Rehabilitation Medicine, Leuven, Belgium
| | - Schepers Jan
- Department of Methodology and Statistics, Maastricht University, Maastricht, the Netherlands
| | - Mertens Michel
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Pain in Motion International Research Group, Belgium; Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, the Netherlands
| | - De Groef An
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Pain in Motion International Research Group, Belgium; KU Leuven - University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Meeus Mira
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Pain in Motion International Research Group, Belgium.
| |
Collapse
|
5
|
Baka P, Segelcke D, Birklein F, Pogatzki-Zahn EM, Bigalke S, Süer A, Dugas M, Steenken L, Sommer C, Papagianni A. Phenotyping peripheral neuropathies with and without pruritus: a cross-sectional multicenter study. Pain 2024; 165:2840-2850. [PMID: 38968397 PMCID: PMC11562756 DOI: 10.1097/j.pain.0000000000003300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT Pruritus often escapes physicians' attention in patients with peripheral neuropathy (PNP). Here we aimed to characterize neuropathic pruritus in a cohort of 191 patients with PNP (large, mixed, or small fiber) and 57 control subjects with deep phenotyping in a multicenter cross-sectional observational study at 3 German sites. All participants underwent thorough neurological examination, nerve conduction studies, quantitative sensory testing, and skin biopsies to assess intraepidermal nerve fiber density. Patients filled in a set of questionnaires assessing the characteristics of pruritus and pain, the presence of depression and anxiety, and quality of life. Based on the severity of pruritus and pain, patients were grouped into 4 groups: "pruritus," "pain," "pruritus and pain," and "no pruritus/no pain." Although 11% (21/191) of patients reported pruritus as their only symptom, further 34.6% (66/191) reported pruritus and pain. Patients with pain (with or without pruritus) were more affected by anxiety, depression, and reduced quality of life than control subjects. Patients with pruritus (with and without pain) had increases in cold detection threshold, showing Aδ-fiber dysfunction. The pruritus group had lower intraepidermal nerve fiber density at the thigh, concomitant with a more proximal distribution of symptoms compared with the other PNP groups. Stratification of patients with PNP by using cross-sectional datasets and multinominal logistic regression analysis revealed distinct patterns for the patient groups. Together, our study sheds light on the presence of neuropathic pruritus in patients with PNP and its relationship with neuropathic pain, outlines the sensory and structural abnormalities associated with neuropathic pruritus, and highlights its impact on anxiety levels.
Collapse
Affiliation(s)
- Panoraia Baka
- Department of Neurology, University Hospital Mainz, Mainz, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, Germany
| | - Frank Birklein
- Department of Neurology, University Hospital Mainz, Mainz, Germany
| | - Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care, and Pain Medicine, University Hospital Münster, Germany
| | - Stephan Bigalke
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Ayşenur Süer
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Livia Steenken
- Department of Neurology, University Hospital Mainz, Mainz, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
6
|
Burgess J, Marshall A, Rapteas L, Riley D, Matsumoto K, Boon C, Alchawaf A, Ferdousi M, Malik RA, Marshall A, Kaye S, Gosal D, Frank B, Alam U. Idiopathic Distal Sensory Polyneuropathy and Fibromyalgia Syndrome: A Comparative Phenotyping Study. Pain Ther 2024; 13:1541-1558. [PMID: 39264538 PMCID: PMC11543958 DOI: 10.1007/s40122-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Painful idiopathic distal sensory polyneuropathy (IDSP) and fibromyalgia syndrome (FMS) are cryptogenic chronic pain syndromes. The contribution of small fibre pathology (SFP) in FMS remains controversial. This study aims to quantify small nerve pathology in participants with IDSP and FMS and identify relationships of SFP with sensory phenotypes. METHODS In this study, 73 individuals (FMS: 25, IDSP: 23, healthy volunteers: 25) underwent comprehensive assessment, including neurological exams, questionnaires, sensory tests, and corneal confocal microscopy. RESULTS IDSP participants displayed lower wind-up ratio (WUR) relative to FMS (p < 0.001), loss of function to thermal and mechanical stimuli and elevated neuropathy disability scores compared to FMS and healthy volunteers (all p < 0.001). FMS participants demonstrated gain of function to heat and blunt pressure pain responses relative to IDSP, and healthy volunteers (heat: p = 0.002 and p = 0.003; pressure: both p < 0.001) and WUR (both p < 0.001). FMS participants exhibited reduced corneal nerve fibre density (p = 0.02), while IDSP participants had lower global corneal nerve measures (density, branch density, and length) relative to healthy volunteers (all p < 0.001). Utilising corneal nerve fibre length, SFP was demonstrated in 66.6% of participants (FMS: 13/25; IDSP: 22/23). CONCLUSION Participants with SFP, in both FMS and IDSP, reported symptoms indicative of small nerve fibre disease. Although distinctions in pain distributions are evident between individuals with FMS and IDSP, over 50% of participants between the two conditions displayed both a loss and gain of thermal and mechanical function suggestive of shared mechanisms. However, sensory phenotypes were associated with the presence of SFP in IDSP but not in FMS.
Collapse
Affiliation(s)
- Jamie Burgess
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Anne Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Leandros Rapteas
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Riley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Kohei Matsumoto
- Liverpool University Hospitals NHS Foundation Trust, Aintree Hospital, Liverpool, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Division of Medicine, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Andrew Marshall
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Neurophysiology, The Walton Centre, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Bernhard Frank
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
| | - Uazman Alam
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Pain Research Institute, Faculty of Health and Life Science, University of Liverpool, Liverpool, UK
- Department of Diabetes and Endocrinology, Liverpool University Hospital NHS Foundation Trust, Liverpool, UK
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, UK
| |
Collapse
|
7
|
Hughes S, Vollert J, Freeman R, Forstenpointner J. Quantitative Sensory Testing - From bench to bedside. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:67-90. [PMID: 39580222 DOI: 10.1016/bs.irn.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The methodology of Quantitative Sensory Testing (QST) comprises standardized testing procedures, which provide information of the integrity of the somatosensory nervous system. Over the years, different protocols have been established, which utilize similar but distinct testing procedures. They pursue the same overall objective to identify loss or gain of function of the respective sensory parameter to better understand the degree of abnormal nervous function and thereby improve patient care in the long-term. Laboratory-based QST protocols, which apply highly standardized testing procedures in pre-defined order and body regions, are considered as the gold standard in sensory testing. However, those protocols often require specifically trained personal, high equipment investment, and are time consuming. Thus, in recent years several attempts have been made to simplify testing protocols as well as reduce high costs of testing equipment such as thermal probe systems. These attempts have culminated in an array of sensory bedside testing protocols subserving the need for protocols that are easy to implement in and provide a standardized assessment within clinical trials. While laboratory and bedside QST that focus on static responses of single stimuli, protocols for testing dynamic QST focus on the functional response to pain also exist. Conditioned pain modulation (CPM) is often applied, which offers the ability to study endogenous inhibition of pain. All of these mentioned methodologies are considered as psychophysical measures and thus rely heavily on the cooperation of the patient or participant. In this chapter we provide an overview of QST along three main lines: (i) laboratory QST, (ii) bedside QST and (iii) dynamic QST. In addition, we discuss advantages and pitfalls of each modality. While we discuss along these lines, it should be noted that methodologies are overlapping: some bedside tests are similar or identical to lab-QST, many lab-QST protocols include a dynamic component, and assessment of dynamic QST requires to start with static assessments.
Collapse
Affiliation(s)
- Sam Hughes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
8
|
Soliman N, Kersebaum D, Lawn T, Sachau J, Sendel M, Vollert J. Improving neuropathic pain treatment - by rigorous stratification from bench to bedside. J Neurochem 2024; 168:3699-3714. [PMID: 36852505 DOI: 10.1111/jnc.15798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Chronic pain is a constantly recurring and persistent illness, presenting a formidable healthcare challenge for patients and physicians alike. Current first-line analgesics offer only low-modest efficacy when averaged across populations, further contributing to this debilitating disease burden. Moreover, many recent trials for novel analgesics have not met primary efficacy endpoints, which is particularly striking considering the pharmacological advances have provided a range of highly relevant new drug targets. Heterogeneity within chronic pain cohorts is increasingly understood to play a critical role in these failures of treatment and drug discovery, with some patients deriving substantial benefits from a given intervention while it has little-to-no effect on others. As such, current treatment failures may not result from a true lack of efficacy, but rather a failure to target individuals whose pain is driven by mechanisms which it therapeutically modulates. This necessitates a move towards phenotypical stratification of patients to delineate responders and non-responders in a mechanistically driven manner. In this article, we outline a bench-to-bedside roadmap for this transition to mechanistically informed personalised pain medicine. We emphasise how the successful identification of novel analgesics is dependent on rigorous experimental design as well as the validity of models and translatability of outcome measures between the animal model and patients. Subsequently, we discuss general and specific aspects of human trial design to address heterogeneity in patient populations to increase the chance of identifying effective analgesics. Finally, we show how stratification approaches can be brought into clinical routine to the benefit of patients.
Collapse
Affiliation(s)
- Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Tutelman PR, MacKenzie NE, Chambers CT, Coffman S, Cornelissen L, Cormier B, Higgins KS, Phinney J, Blankenburg M, Walker S. Quantitative sensory testing for assessment of somatosensory function in children and adolescents: a scoping review. Pain Rep 2024; 9:e1151. [PMID: 38586595 PMCID: PMC10994437 DOI: 10.1097/pr9.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/14/2024] [Accepted: 02/02/2024] [Indexed: 04/09/2024] Open
Abstract
Quantitative sensory testing (QST) refers to a group of noninvasive psychophysical tests that examine responses to a range of calibrated mechanical and thermal stimuli. Quantitative sensory testing has been used extensively in adult pain research and has more recently been applied to pediatric pain research. The aims of this scoping review were to map the current state of the field, to identify gaps in the literature, and to inform directions for future research. Comprehensive searches were run in 5 databases. Titles, abstracts, and full texts were screened by 2 reviewers. Data related to the study aims were extracted and analyzed descriptively. A total of 16,894 unique studies were identified, of which 505 were screened for eligibility. After a full-text review, 301 studies were retained for analysis. Date of publication ranged from 1966 to 2023. However, the majority of studies (61%) were published within the last decade. Studies included participants across the developmental trajectory (ie, early childhood to adolescence) and most often included a combination of school-age children and adolescents (49%). Approximately 23% of studies were conducted in healthy samples. Most studies (71%) used only one QST modality. Only 14% of studies reported using a standardized QST protocol. Quantitative sensory testing in pediatric populations is an emerging and rapidly growing area of pain research. Future work is needed using comprehensive, standardized QST protocols to harness the full potential that this procedure can offer to our understanding of pediatric pain.
Collapse
Affiliation(s)
- Perri R. Tutelman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Centre for Pediatric Pain Research, IWK Health, Halifax, Canada
| | - Nicole E. MacKenzie
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Centre for Pediatric Pain Research, IWK Health, Halifax, Canada
| | - Christine T. Chambers
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Centre for Pediatric Pain Research, IWK Health, Halifax, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Canada
| | - Siobhan Coffman
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Laura Cornelissen
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA. Cornelissen is now with the Alzheimer's Disease and Brain Health, Eisai Inc, Nutley, NJ, USA
| | | | - Kristen S. Higgins
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
- Centre for Pediatric Pain Research, IWK Health, Halifax, Canada
| | - Jackie Phinney
- Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, Canada
| | - Markus Blankenburg
- Pediatric Neurology, Psychosomatics and Pain Therapy, Children's Pain Center Baden-Württemberg, Klinikum Stuttgart, Germany
| | - Suellen Walker
- Department of Paediatric Anaesthesia, Great Ormond St Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Dinnendahl R, Tschimmel D, Löw V, Cornely M, Hucho T. Non-obese lipedema patients show a distinctly altered quantitative sensory testing profile with high diagnostic potential. Pain Rep 2024; 9:e1155. [PMID: 38617100 PMCID: PMC11013692 DOI: 10.1097/pr9.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction and Objectives Lipedema is a widespread severe chronic disease affecting mostly women. Characterized by painful bilateral fat accumulation in extremities sparing hands and feet, objective measurement-based diagnosis is currently missing. We tested for characteristic psychometric and/or sensory alterations including pain and for their potential for medical routine diagnosis. Methods Pain psychometry was assessed using the German Pain Questionnaire. Sensory sensitivity toward painful and nonpainful stimuli was characterized in non-obese lipedema patients and matched controls using the validated quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain. Results Lipedema patients showed no overt psychometric abnormalities. Pain was reported as somatic rather than psychosomatic aversive. All QST measurements were normal, but the z-score of pressure pain thresholds (PPT) was twofold reduced and the z-score of vibration detection thresholds (VDT) was two and a half times increased. Both thresholds were selectively altered at the affected thigh but not the unaffected hand. Receiver operating characteristic analysis of the combination of PPT and VDT of thigh vs hand into a PVTH score (PPT, VDT, thigh, hand-score) shows high sensitivity and specificity, categorizing correctly 95.8% of the participants as lipedema patients or healthy controls. Bayesian inference analysis corroborated the diagnostic potential of such a combined PVTH score. Conclusion We propose to assess PPT and VDT at the painful thigh and the pain-free hand. Combination in a PVTH score may allow a convenient lipedema diagnosis early during disease development.
Collapse
Affiliation(s)
- Rebecca Dinnendahl
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Dominik Tschimmel
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Löw
- Pain Center, Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manuel Cornely
- CG Lympha GmbH, Cologne, Germany
- Ly.Search GmbH, Cologne, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Pain Center, Department of Anesthesiology and Intensive Care Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Lang-Illievich K, Lang J, Rumpold-Seitlinger G, Dorn C, Brenna CTA, Klivinyi C, Bornemann-Cimenti H. The Dose-Response Relationship between Opioid Agonist Therapy and Alterations in Pain Pathways in Patients with Opioid Use Disorders: A Cross-Sectional Study. CNS Drugs 2024; 38:281-290. [PMID: 38421579 PMCID: PMC10980620 DOI: 10.1007/s40263-024-01069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The administration of opioids can be followed by enduring neuroplastic changes in the peripheral and central nervous systems. This remodeling can lead to opioid-induced hyperalgesia, causing an increased sensitivity to painful stimuli. The description of opioid-induced changes in the somatosensory system has seldom been described in the setting of opioid agonist therapy in the treatment of opioid use disorders, and the few existing reports provide no guidance with respect to the effect of varied doses or substances. OBJECTIVE The aim of the present study was to assess alterations of pain pathways among patients receiving opioid agonist therapy and to elucidate the dose-response relationship. METHODS This study was planned as cross-sectional in an outpatient clinic in Graz, Austria. Patients receiving opioid agonist therapy for opioid use disorders (including methadone, levomethadone, buprenorphine, and extended-release morphine) were asked to fill out a questionnaire, including the central sensitization inventory. A battery of somatosensory system assessments was then performed. RESULTS A total of 120 patients participated (85 men/35 women). The mean oral morphine milligram equivalent (MME) was 694 ± 249 mg/day. Our study found significant alterations in pain perception, conditioned pain modulation, and wind-up. We demonstrated a moderate dose-response relationship between high-dose opioids and markers of central sensitization. CONCLUSION The present trial demonstrates the clear effects of opioid agonist therapy on the somatosensory system. Both central sensitization and descending pain modulation are negatively affected by high doses of opioids and our data elucidate a moderate dose-response relationship for these phenomena.
Collapse
Affiliation(s)
- Kordula Lang-Illievich
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5/5, 8036, Graz, Austria
- Department of Anesthesia and Intensive Care Medicine, Klinik Güssing, Güssing, Austria
| | - Johanna Lang
- Comenius University Bratislava, Bratislava, Slovakia
| | - Gudrun Rumpold-Seitlinger
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5/5, 8036, Graz, Austria
| | - Christian Dorn
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5/5, 8036, Graz, Austria
| | - Connor T A Brenna
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Christoph Klivinyi
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5/5, 8036, Graz, Austria
| | - Helmar Bornemann-Cimenti
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5/5, 8036, Graz, Austria.
| |
Collapse
|
12
|
Fawsitt-Jones H, Vollert J, O'Daly O, Williams SCR, McMahon SB, Howard MA, Hughes SW. Reliability of quantitative sensory testing in the assessment of somatosensory function after high-frequency stimulation-induced sensitisation of central nociceptive pathways. Pain 2024; 165:941-950. [PMID: 37878469 DOI: 10.1097/j.pain.0000000000003093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 10/27/2023]
Abstract
ABSTRACT The high frequency stimulation (HFS) model can be used alongside quantitative sensory testing (QST) to assess the sensitisation of central nociceptive pathways. However, the validity and between-session reliability of using QST z -score profiles to measure changes in mechanical and thermal afferent pathways in the HFS model are poorly understood. In this study, 32 healthy participants underwent QST before and after HFS (5× 100 Hz trains; 10× electrical detection threshold) in the same heterotopic skin area across 2 repeated sessions. The only mechanical QST z -score profiles that demonstrated a consistent gain of function across repeated test sessions were mechanical pain threshold (MPT) and mechanical pain sensitivity (MPS), which were associated with moderate and good reliability, respectively. There was no relationship between HFS intensity and MPT and MPS z -score profiles. There was no change in low intensity, but a consistent facilitation of high-intensity pin prick stimuli in the mechanical stimulus response function across repeated test sessions. There was no change in cold pain threshold (CPT) and heat pain threshold (HPT) z -score profiles across session 1 and 2, which were associated with moderate and good reliability, respectively. There were inconsistent changes in the sensitivity to innocuous thermal QST parameters, with cool detection threshold (CDT), warm detection threshold (WDT), and thermal sensory limen (TSL) all producing poor reliability. These data suggest that HFS-induced changes in MPS z -score profiles is a reliable way to assess experimentally induced central sensitisation and associated secondary mechanical hyperalgesia in healthy participants.
Collapse
Affiliation(s)
- Harriet Fawsitt-Jones
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Stephen B McMahon
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew A Howard
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam W Hughes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Bordeleau M, Vincenot M, Bačkonja M, Cruz-Almeida Y, Forstenpointner J, Gauthier L, Marchand S, Mercier C, Ocay DD, PrudHomme M, Ruel H, Vollert J, Léonard G. Beyond numbers: integrating qualitative analysis into quantitative sensory testing for neuropathic pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1351602. [PMID: 38486872 PMCID: PMC10938582 DOI: 10.3389/fpain.2024.1351602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
This article investigates the benefits of adopting qualitative and quantitative sensory testing (QQST) in sensory assessment, with a focus on understanding neuropathic pain. The innovative QQST method combines participant qualitative experiences with quantitative psychophysical measurements, offering a more varied interpretation of sensory abnormalities and normal sensory function. This article also explores the steps for the optimization of the method by identifying qualitative signs of sensory abnormalities and standardizing data collection. By leveraging the inherent subjectivity in the test design and participant responses, the QQST method contributes to a more holistic exploration of both normal and abnormal sensory experiences. This article positions the QQST approach as a foundational element within the Sensory Evaluation Network, uniting international experts to harmonize qualitative and quantitative sensory evaluation methods.
Collapse
Affiliation(s)
- Martine Bordeleau
- Research Center on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Matthieu Vincenot
- Research Center on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Miroslav Bačkonja
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida Colleges of Dentistry & Medicine, Gainesville, FL, United States
- Department of Community Dentistry & Behavioral Science, University of Florida College of Dentistry, Gainesville, FL, United States
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lynn Gauthier
- Department of Family and Emergency Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Équipe de Recherche Michel-Sarrazin en Oncologie Psychosociale et Soins Palliatifs, Quebec City, QC, Canada
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Serge Marchand
- Département de chirurgie, Faculté de médecine et des sciences de la santé de l’université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Catherine Mercier
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration sociale, CIUSSS de la Capitale-Nationale, Quebec City, QC, Canada
- École des Sciences de la Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Don Daniel Ocay
- Critical Care, and Pain Medicine, Department of Anesthesiology, Boston Children’s Hospital, Boston, MA, United States
- Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Michel PrudHomme
- Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
- Centre de Recherche du CHU-Université Laval, Quebec City, QC, Canada
| | - Hélène Ruel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Guillaume Léonard
- Research Center on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Vollert J, Fardo F, Attal N, Baron R, Bouhassira D, Enax-Krumova EK, Freynhagen R, Hansson P, Jensen TS, Kersebaum D, Maier C, Pogatzki-Zahn E, Rice AS, Sachau J, Schaldemose EL, Segerdahl M, Sendel M, Tölle TR, Finnerup NB, Treede RD. Paradoxical heat sensation as a manifestation of thermal hypesthesia: a study of 1090 patients with lesions of the somatosensory system. Pain 2024; 165:216-224. [PMID: 37578447 PMCID: PMC10723641 DOI: 10.1097/j.pain.0000000000003014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Paradoxical heat sensation (PHS) is the perception of warmth when the skin is cooled. Paradoxical heat sensation rarely occurs in healthy individuals but more frequently in patients suffering from lesions or disease of the peripheral or central nervous system. To further understand mechanisms and epidemiology of PHS, we evaluated the occurrence of PHS in relation to disease aetiology, pain levels, quantitative sensory testing parameters, and Neuropathic Pain Symptom Inventory (NPSI) items in patients with nervous system lesions. Data of 1090 patients, including NPSI scores from 404 patients, were included in the analysis. We tested 11 quantitative sensory testing parameters for thermal and mechanical detection and pain thresholds, and 10 NPSI items in a multivariate generalised linear model with PHS, aetiology, and pain (yes or no) as fixed effects. In total, 30% of the neuropathic patients reported PHS in contrast to 2% of healthy individuals. The frequency of PHS was not linked to the presence or intensity of pain. Paradoxical heat sensation was more frequent in patients living with polyneuropathy compared with central or unilateral peripheral nerve lesions. Patients who reported PHS demonstrated significantly lower sensitivity to thermal perception, with lower sensitivity to normally painful heat and cold stimuli. Neuropathic Pain Symptom Inventory scores were lower for burning and electric shock-like pain quality for patients with PHS. Our findings suggest that PHS is associated with loss of small thermosensory fibre function normally involved in cold and warm perception. Clinically, presence of PHS could help screening for loss of small fibre function as it is straightforward to measure or self-reported by patients.
Collapse
Affiliation(s)
- Jan Vollert
- Pain Research, MSk Lab, Department of Surgery and Cancer, Imperial College, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| | - Francesca Fardo
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nadine Attal
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France, Université Versailles-Saint-Quentin, Versailles, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Didier Bouhassira
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France, Université Versailles-Saint-Quentin, Versailles, France
| | - Elena K. Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Rainer Freynhagen
- Department of Anaesthesiology, Critical Care Medicine, Pain Therapy and Palliative Care, Pain Center Lake Starnberg, Benedictus Hospital, Tutzing, Germany
- Department of Anaesthesiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Per Hansson
- Department of Pain Management and Research, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Troels S. Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christoph Maier
- University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
| | - Andrew S.C. Rice
- Pain Research, MSk Lab, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ellen L. Schaldemose
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Märta Segerdahl
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- MS Medical Consulting, Stockholm, Sweden
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Thomas R. Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Nanna B. Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| |
Collapse
|
15
|
Tsilingiris D, Schimpfle L, von Rauchhaupt E, Sulaj A, Seebauer L, Herzig S, Szendroedi J, Kopf S, Κender Ζ. Sensory Phenotypes Provide Insight Into the Natural Course of Diabetic Polyneuropathy. Diabetes 2024; 73:135-146. [PMID: 37862374 DOI: 10.2337/db23-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
We aimed to investigate the characteristics and longitudinal course of sensory phenotypes identified through quantitative sensory testing (QST) in the frame of diabetic sensorimotor polyneuropathy (DSPN). A total of 316 individuals with diabetes were examined (type 2 diabetes 78.8%), 250 of whom were undergoing follow-up visits at 1, 2, and/or 4 (2.88 ± 1.27) years. Allocation into four sensory phenotypes (healthy, thermal hyperalgesia [TH], mechanical hyperalgesia [MH], and sensory loss [SL]) at every time point was based on QST profiles of the right foot. Cross-sectional analysis demonstrated a gradual worsening of clinical and electrophysiological sensory findings and increased DSPN prevalence across the groups, culminating in SL. Motor nerve impairment was observed solely in the SL group. Longitudinal analysis revealed a distinct pattern in the developmental course of the phenotype (from healthy to TH, MH, and finally SL). Those with baseline MH exhibited the highest risk of transition to SL. Reversion to healthy status was uncommon and mostly observed in the TH group. Among those without DSPN initially, presence or future occurrence of SL was associated with a three- to fivefold higher likelihood of DSPN development. Our comprehensive longitudinal study of phenotyped patients with diabetes elucidates the natural course of DSPN. QST-based sensory examination together with other tools for phenotyping may be useful in determining the natural course of diabetic neuropathy to identify patients at high risk of DSPN and guide preventive and therapeutic interventions. ARTICLE HIGHLIGHTS The course of diabetic sensorimotor polyneuropathy (DSPN) development, from healthy status to overt DSPN, is poorly understood. We studied the characteristics and longitudinal appearance of lower-extremity sensory phenotypes (healthy, thermal hyperalgesia [TH], mechanical hyperalgesia [MH], and sensory loss [SL]) identified through quantitative sensory testing in individuals with diabetes. There was an increasing severity and patterned order of longitudinal appearance across healthy, TH, MH, and SL phenotypes. SL was most strongly associated with formal DSPN. Our findings provide insight into the natural history of DSPN. Sensory phenotyping can be implemented to identify high-risk individuals and those most likely to benefit from therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Lukas Schimpfle
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Ekaterina von Rauchhaupt
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Alba Sulaj
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Lukas Seebauer
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich-Neuherberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Stefan Kopf
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Ζoltan Κender
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
| |
Collapse
|
16
|
Coxon L, Vollert J, Perro D, Lunde CE, Ferreira-Gomes J, Charrua A, Abreu-Mendes P, Krassowski M, Birch J, Meijlink J, Hummelshoj L, Hoffmann A, Aziz Q, Arendt-Nielsen L, Pogatzki-Zahn E, Evans E, Demetriou L, McMahon SB, Missmer SA, Becker CM, Zondervan KT, Horne AW, Cruz F, Sieberg CB, Treede RD, Nagel J, Vincent K. Comprehensive quantitative sensory testing shows altered sensory function in women with chronic pelvic pain: results from the Translational Research in Pelvic Pain (TRiPP) Study. Pain 2023; 164:2528-2539. [PMID: 37289573 PMCID: PMC10578421 DOI: 10.1097/j.pain.0000000000002955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
ABSTRACT Chronic pelvic pain (CPP), despite its high prevalence, is still relatively poorly understood mechanistically. This study, as part of the Translational Research in Pelvic Pain (TRiPP) project, has used a full quantitative sensory testing (QST) paradigm to profile n = 85 women with and without CPP (endometriosis or bladder pain specifically). We used the foot as a control site and abdomen as the test site. Across 5 diagnostically determined subgroups, we found features which are common across different aetiologies, eg, gain of function in pressure pain threshold (PPT) when assessing responses from the lower abdomen or pelvis (referred pain site). However, disease-specific phenotypes were also identified, eg, greater mechanical allodynia in endometriosis, despite there being large heterogeneities within diagnostic groups. The most common QST sensory phenotype was mechanical hyperalgesia (>50% across all the groups). A "healthy' sensory phenotype was seen in <7% of CPP participants. Specific QST measures correlated with sensory symptoms assessed by the painDETECT questionnaire (pressure-evoked pain [painDETECT] and PPT [QST] [ r = 0.47, P < 0.001]; mechanical hyperalgesia (painDETECT) and mechanical pain sensitivity [MPS from QST] [ r = 0.38, P = 0.009]). The data suggest that participants with CPP are sensitive to both deep tissue and cutaneous inputs, suggesting that central mechanisms may be important in this cohort. We also see phenotypes such as thermal hyperalgesia, which may be the result of peripheral mechanisms, such as irritable nociceptors. This highlights the importance of stratifying patients into clinically meaningful phenotypes, which may have implications for the development of better therapeutic strategies for CPP.
Collapse
Affiliation(s)
- Lydia Coxon
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Jan Vollert
- University Hospital Muenster, Muenster, Germany
- Heidelberg University, Mannheim, Germany
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Danielle Perro
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Claire E. Lunde
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Biobehavioral Pain Innovations Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | | | - Ana Charrua
- IBMC/I3S, Faculty of Medicine of Porto & Hospital São João, Porto, Portugal
| | - Pedro Abreu-Mendes
- IBMC/I3S, Faculty of Medicine of Porto & Hospital São João, Porto, Portugal
| | - Michal Krassowski
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Judy Birch
- Pelvic Pain Support Network, Poole, United Kingdom
| | - Jane Meijlink
- International Painful Bladder Foundation, Naarden, the Netherlands
| | | | - Anja Hoffmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | - Qasim Aziz
- Queen Mary University of London, London, United Kingdom
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Medical Gastroenterology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
| | | | - Emma Evans
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Lysia Demetriou
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Stephen B. McMahon
- Formerly of Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Stacey A. Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Christian M. Becker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Krina T. Zondervan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | | | - Francisco Cruz
- IBMC/I3S, Faculty of Medicine of Porto & Hospital São João, Porto, Portugal
| | - Christine B. Sieberg
- Biobehavioral Pain Innovations Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | | | - Jens Nagel
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Alsouhibani A, Speck P, Cole EF, Mustin DE, Li Y, Barron JR, Orenstein LAV, Harper DE. Quantitative Sensory Testing to Characterize Sensory Changes in Hidradenitis Suppurativa Skin Lesions. JAMA Dermatol 2023; 159:1102-1111. [PMID: 37702999 PMCID: PMC10500434 DOI: 10.1001/jamadermatol.2023.3243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/25/2023] [Indexed: 09/14/2023]
Abstract
Importance Pain is the most impactful symptom in patients with hidradenitis suppurativa (HS). Characterization of sensory profiles may improve understanding of pain mechanisms in HS and facilitate identification of effective pain management strategies. Objective To characterize somatosensory profiles in patients with HS at clinically affected and nonaffected sites compared with pain-free reference data. Design, Setting, and Participants This cross-sectional study was conducted at the Emory University Dermatology Clinic. It was hypothesized (1) that patients with HS would demonstrate hypersensitivity to pain in HS lesions and (2) that some patients would have sensory profiles consistent with complex pain mechanisms. Therefore, adults with dermatologist-diagnosed HS and at least 1 painful HS lesion at the time of testing were enrolled between September 10, 2020, and March 21, 2022. Patients with other diagnoses contributing to pain or neuropathy were excluded. Data analysis was conducted between March and April 2022. Exposure Quantitative sensory testing was performed on HS lesions and control skin according to a standardized protocol. Main Outcomes and Measures Quantitative sensory testing outcomes included innocuous thermal and mechanical sensitivity (cold, warmth, and light touch detection thresholds), noxious thermal and mechanical sensitivity (cold, heat, pinprick, and deep pressure pain thresholds and suprathreshold pinprick sensitivity), temporal summation of pinprick, paradoxical thermal sensations, and dynamic mechanical allodynia (pain upon light stroking of the skin). Sensitivity in HS lesions was compared with sensitivity in a control location (the hand) and in pain-free controls using t tests. Results This study included 20 participants with a median age of 35.5 (IQR, 30.0-46.5) years, the majority of whom were women (15 [75%]). In terms of race and ethnicity, 2 participants (10%) self-identified as Asian, 11 (55%) as Black, 6 (30%) as White, and 1 (5%) as more than 1 race or ethnicity. Compared with site-specific reference values from healthy, pain-free control participants, HS lesions were insensitive to innocuous cold and warmth, noxious heat, and light touch (t = -5.69, -10.20, -3.84, and 4.46, respectively; all P < .001). In contrast, HS lesions also demonstrated significant hypersensitivity to deep pressure pain (t = 8.36; P < .001) and cutaneous pinprick (t = 2.07; P = .046). Hypersensitivity to deep pressure pain was also observed in the control site (t = 5.85; P < .001). A subset of patients with HS displayed changes in pain processing that are often seen in neuropathic and nociplastic pain conditions, including hypersensitivity to repetitive pinprick (5 [26%]), paradoxical thermal sensations (3 [15%]), and pain upon light stroking of the skin (10 [50%]). Conclusions and Relevance The findings of this cross-sectional study suggest that HS involves local changes in the skin or its free nerve endings, possibly leading to peripheral neuropathy and alterations in the transduction of innocuous and noxious thermal and mechanical stimuli. For some patients, central nervous system changes in somatosensory processing may also occur, but confirmatory evidence is needed. Better understanding of neuropathic and nociplastic mechanisms in HS pain could lead to individually tailored treatments.
Collapse
Affiliation(s)
- Ali Alsouhibani
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah, Saudi Arabia
| | - Patrick Speck
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Emily F. Cole
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Danielle E. Mustin
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Yiwen Li
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Jason R. Barron
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | | | - Daniel E. Harper
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Guan W, Qi W. Ginsenoside Rh2: A shining and potential natural product in the treatment of human nonmalignant and malignant diseases in the near future. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154938. [PMID: 37406390 DOI: 10.1016/j.phymed.2023.154938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ginseng is well-known as one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide including East, Russia, Southeast Asia, North America and some Western European countries. Ginsenosides, as one of the main high active components of Ginseng, have various pharmacological activities, such as anti-inflammatory, antianaphylaxis, anti-depression, and anticancer activities. Ginsenoside Rh2 (Rh2), one of the major bioactive ginsenosides in Panax ginseng, also exhibits versatile pharmacological activities, such as increasing non-specific resistance and specific immune response, improving cardiac function and fibrosis, anti-inflammatory effects and antitumor effects, which may serve as an excellent medicinal potential. PURPOSE As one of hundreds of ginsenosides being identified from ginseng, Rh2 exerts a markedly pharmacological effect on various diseases without severe toxicity, it has attracted many researchers 'attention. Although Rh2 plays important roles in some animal models and cell lines to simulate human diseases, its underlying molecular mechanisms have yet to be determined. During the past ten years, nearly 450 studies on Rh2 in the treatment of complex disease have been reported, however, up to now, no comprehensive reviews about the roles of Rh2 in animal models and cellular lines of human nonmalignant and malignant diseases have been conducted. METHOD We searched articles on ginsenoside-related diseases from December 2010 to February 2023 in peer-reviewed and nonclinical databases, which include Web of Science, Scopus, PubMed, China national knowledge internet and Medline, and using the following keywords: Ginsenoside Rh2, Human diseases, Cancer, Mechanisms, Chinese herbal medicine, Natural products and Signaling pathway. RESULTS Therefore, in this review, we make a comprehensive summary on the roles of Rh2 and support the potential mechanisms of Rh2 according to the disease classification, including nonmalignant disease such as ulcerative colitis, neuropathic pain, Asthma, myocardial injury, depression and malignant disease such as breast cancer, colorectal cancer, hepatocellular carcinoma and gastric cancer. Finally, the combination therapy of Rh2 and other medications in human diseases are summarized, apart from that, there are other problems such as the bioavailability of oral administration Rh2 to be overcome in following research. CONCLUSION These findings provide strong evidence that Ginsenoside Rh2 plays important roles in the treatment of nonmalignant and malignant diseases.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China; School of Medicine, Nantong University, Nantong, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
19
|
Edwards RR, Schreiber KL, Dworkin RH, Turk DC, Baron R, Freeman R, Jensen TS, Latremoliere A, Markman JD, Rice ASC, Rowbotham M, Staud R, Tate S, Woolf CJ, Andrews NA, Carr DB, Colloca L, Cosma-Roman D, Cowan P, Diatchenko L, Farrar J, Gewandter JS, Gilron I, Kerns RD, Marchand S, Niebler G, Patel KV, Simon LS, Tockarshewsky T, Vanhove GF, Vardeh D, Walco GA, Wasan AD, Wesselmann U. Optimizing and Accelerating the Development of Precision Pain Treatments for Chronic Pain: IMMPACT Review and Recommendations. THE JOURNAL OF PAIN 2023; 24:204-225. [PMID: 36198371 PMCID: PMC10868532 DOI: 10.1016/j.jpain.2022.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Large variability in the individual response to even the most-efficacious pain treatments is observed clinically, which has led to calls for a more personalized, tailored approach to treating patients with pain (ie, "precision pain medicine"). Precision pain medicine, currently an aspirational goal, would consist of empirically based algorithms that determine the optimal treatments, or treatment combinations, for specific patients (ie, targeting the right treatment, in the right dose, to the right patient, at the right time). Answering this question of "what works for whom" will certainly improve the clinical care of patients with pain. It may also support the success of novel drug development in pain, making it easier to identify novel treatments that work for certain patients and more accurately identify the magnitude of the treatment effect for those subgroups. Significant preliminary work has been done in this area, and analgesic trials are beginning to utilize precision pain medicine approaches such as stratified allocation on the basis of prespecified patient phenotypes using assessment methodologies such as quantitative sensory testing. Current major challenges within the field include: 1) identifying optimal measurement approaches to assessing patient characteristics that are most robustly and consistently predictive of inter-patient variation in specific analgesic treatment outcomes, 2) designing clinical trials that can identify treatment-by-phenotype interactions, and 3) selecting the most promising therapeutics to be tested in this way. This review surveys the current state of precision pain medicine, with a focus on drug treatments (which have been most-studied in a precision pain medicine context). It further presents a set of evidence-based recommendations for accelerating the application of precision pain methods in chronic pain research. PERSPECTIVE: Given the considerable variability in treatment outcomes for chronic pain, progress in precision pain treatment is critical for the field. An array of phenotypes and mechanisms contribute to chronic pain; this review summarizes current knowledge regarding which treatments are most effective for patients with specific biopsychosocial characteristics.
Collapse
Affiliation(s)
| | | | | | - Dennis C Turk
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, House D, 24105 Kiel, Germany
| | - Roy Freeman
- Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | - Nick A Andrews
- Salk Institute for Biological Studies, San Diego, California
| | | | | | | | - Penney Cowan
- American Chronic Pain Association, Rocklin, California
| | - Luda Diatchenko
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, California
| | - John Farrar
- University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Robert D Kerns
- Yale University, Departments of Psychiatry, Neurology, and Psychology, New Haven, Connecticut
| | | | | | - Kushang V Patel
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | | | | | | | | | - Gary A Walco
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Ajay D Wasan
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ursula Wesselmann
- Department of Anesthesiology/Division of Pain Medicine, Neurology and Psychology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Kemp HI, Vollert J, Davies NWS, Moyle GJ, Rice ASC. A Comparison of Self-reported Pain Measures Between Sensory Phenotypes in HIV-associated Sensory Neuropathy. THE JOURNAL OF PAIN 2023; 24:112-127. [PMID: 36116766 DOI: 10.1016/j.jpain.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 02/08/2023]
Abstract
Painful HIV-associated neuropathy (HIV-SN) is a prevalent co-morbidity of HIV infection. Sensory phenotyping, using quantitative sensory testing (QST) could allow for improved stratification to guide personalized treatment. However, previous methods of QST interpretation have demonstrated limited association with self-reported pain measures. This study sought to identify differences in self-reported pain measures between composite QST-derived sensory phenotypes, and to examine any differences in participants reporting multi-site, multi-etiology chronic pain. In this cross-sectional observational study of participants with HIV (n = 133), individuals were allocated to neuropathy and neuropathic pain groups through clinical assessment and nerve conduction testing. They completed symptom-based questionnaires and underwent standardized QST. Participants were assigned, by pre-determined algorithm, to a QST-derived sensory phenotype. Symptoms were compared between sensory phenotypes. Symptom characteristics and Neuropathic Pain Symptom Inventory scores differed between QST-derived sensory phenotypes: 'sensory loss' was associated with more paroxysmal and paraesthetic symptoms compared to 'thermal hyperalgesia' and 'healthy' phenotypes (P = .023-0.001). Those with painful HIV-SN and additional chronic pain diagnoses were more frequently allocated to the 'mechanical hyperalgesia' phenotype compared to those with painful HIV-SN alone (P = .006). This study describes heterogeneous sensory phenotypes in people living with HIV. Differences in self-reported pain outcomes between sensory phenotypes has the potential to guide future stratified trials and eventually more targeted therapy. PERSPECTIVE: This article presents quantitative sensory testing derived phenotypes, thought to reflect differing pathophysiological pain mechanisms and relates them to self-reported pain measures in people with HIV infection. This could help clinicians stratify patients to individualize analgesic interventions more effectively.
Collapse
Affiliation(s)
- Harriet I Kemp
- Pain Research Group, Imperial College London, London, UK.
| | - Jan Vollert
- Pain Research Group, Imperial College London, London, UK; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany; Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany; Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Germany
| | - Nicholas W S Davies
- Department of Neurology, Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Graeme J Moyle
- Department of HIV Medicine, Chelsea & Westminster NHS Foundation Trust, London, UK
| | | |
Collapse
|
21
|
Scheuren PS, De Schoenmacker I, Rosner J, Brunner F, Curt A, Hubli M. Pain-autonomic measures reveal nociceptive sensitization in complex regional pain syndrome. Eur J Pain 2023; 27:72-85. [PMID: 36130736 PMCID: PMC10092513 DOI: 10.1002/ejp.2040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allodynia and hyperalgesia are common signs in individuals with complex regional pain syndrome (CRPS), mainly attributed to sensitization of the nociceptive system. Appropriate diagnostic tools for the objective assessment of such hypersensitivities are still lacking, which are essential for the development of mechanism-based treatment strategies. OBJECTIVES This study investigated the use of pain-autonomic readouts to objectively detect sensitization processes in CRPS. METHODS Twenty individuals with chronic CRPS were recruited for the study alongside 16 age- and sex-matched healthy controls (HC). All individuals underwent quantitative sensory testing and neurophysiological assessments. Sympathetic skin responses (SSRs) were recorded in response to 15 pinprick and 15 noxious heat stimuli of the affected (CRPS hand/foot) and a control area (contralateral shoulder/hand). RESULTS Individuals with CRPS showed increased mechanical pain sensitivity and increased SSR amplitudes compared with HC in response to pinprick and heat stimulation of the affected (p < 0.001), but not in the control area (p > 0.05). Habituation of pinprick-induced SSRs was reduced in CRPS compared to HC in both the affected (p = 0.018) and slightly in the control area (p = 0.048). Habituation of heat-induced SSR was reduced in CRPS in the affected (p = 0.008), but not the control area (p = 0.053). CONCLUSIONS This is the first study demonstrating clinical evidence that pain-related autonomic responses may represent objective tools to quantify sensitization processes along the nociceptive neuraxis in CRPS (e.g. widespread hyperexcitability). Pain-autonomic readouts could help scrutinize mechanisms underlying the development and maintenance of chronic pain in CRPS and provide valuable metrics to detect mechanism-based treatment responses in clinical trials. SIGNIFICANCE This study provides clinical evidence that autonomic measures to noxious stimuli can objectively detect sensitization processes along the nociceptive neuraxis in complex regional pain syndrome (CRPS) (e.g. widespread hyperexcitability). Pain-autonomic readouts may represent valuable tools to explore pathophysiological mechanisms in a variety of pain patients and offer novel avenues to help guide mechanism-based therapeutic strategies.
Collapse
Affiliation(s)
- Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Florian Brunner
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Leone C, Galosi E, Esposito N, Falco P, Fasolino A, Di Pietro G, Di Stefano G, Camerota F, Vollert J, Truini A. Small-fibre damage is associated with distinct sensory phenotypes in patients with fibromyalgia and small-fibre neuropathy. Eur J Pain 2023; 27:163-173. [PMID: 36314856 DOI: 10.1002/ejp.2049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND In this clinical and psychophysical study, we aimed to verify whether patients with fibromyalgia with and without small-fibre pathology and patients with pure small-fibre neuropathy share common sensory phenotypes. METHODS Using an algorithm based on quantitative sensory testing variables, we grouped 64 consecutive patients with fibromyalgia (20 with small-fibre pathology, 44 without) and 30 patients with pure small-fibre neuropathy into different sensory phenotypes: sensory loss, thermal hyperalgesia, mechanical hyperalgesia and healthy phenotypes. RESULTS We found that the frequency of the different sensory phenotypes differed markedly between patients with fibromyalgia and patients with small-fibre neuropathy. In patients with fibromyalgia, with and without small-fibre pathology, healthy and hyperalgesia phenotypes (both thermal and mechanical) were similarly represented, whilst sensory loss and mechanical hyperalgesia phenotypes were the most frequent phenotypes in patients with small-fibre neuropathy. CONCLUSIONS Our findings indicate that small-fibre damage is associated with distinct sensory phenotypes in patients with fibromyalgia and in patients with small-fibre neuropathy. The lack of phenotype differences between patients with fibromyalgia with and without small-fibre pathology and the relatively high frequency of the healthy phenotype in these patients highlight a complex relationship between small-fibre pathology and pain in patients with fibromyalgia.
Collapse
Affiliation(s)
- Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | - Pietro Falco
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | | | | | | | - Filippo Camerota
- Physical Medicine and Rehabilitation, Sapienza University, Rome, Italy
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer (MSK), Imperial College London, London, UK
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
23
|
Sachau J, Baron R. Precision Medicine in Neuropathic Pain. Handb Exp Pharmacol 2023; 280:187-210. [PMID: 37439846 DOI: 10.1007/164_2023_662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neuropathic pain is a common chronic pain condition that is caused by a lesion or disease of the somatosensory nervous system. The multitude of sensory negative and positive sensations and associated comorbidities have a major impact on quality of life of affected patients. Current treatment options often only lead to a partial pain relief or are even completely ineffective. In addition, many clinical trials for the development of new drugs have not met the primary endpoint. Therefore, there is still an unmet clinical need in neuropathic pain syndromes. One reason for this therapeutic dilemma could be the heterogeneity of neuropathic pain with a variety of pathophysiological pain mechanisms that are expressed differently in each patient regardless of the underlying disease etiology. Reclassification of neuropathic pain syndromes therefore focuses on the underlying mechanisms of pain development rather than the disease etiology. A priori stratification of patients based on these individual mechanisms could allow the identification of potential treatment responders and thus realize the concept of a mechanism-based treatment. As no biomarkers for pain mechanisms have been discovered yet, one has to rely on surrogate markers that are thought to be closely related to these mechanisms. In this chapter, we present promising predictive biomarkers, focusing in particular on sensory symptoms and signs assessed by patient-reported outcome measures and sensory testing, and discuss how these tools might be used in clinical trials in the future.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
24
|
Vollert J. Sensory testing might not be perfect - but it is the best biomarker for pain phenotypes we have right now. Scand J Pain 2022; 22:673-675. [PMID: 36129126 DOI: 10.1515/sjpain-2022-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Currently available treatments for neuropathic pain fail in roughly half of the patients - and it is impossible to predict which treatments will help patients. Stratification of neuropathic pain patients is needed, and sensory profiling has so far been the most promising approach: it has been shown to be responsive to treatment, linked to potential mechanisms, and, most importantly, predictive of treatment success. Despite a number of limitations, it is the currently most promising stratification tool and should be refined rather than disregarded.
Collapse
Affiliation(s)
- Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
25
|
Eitner L, Maier C, Brinkmann F, Schlegtendal A, Knoke L, Enax-Krumova E, Lücke T. Somatosensory abnormalities after infection with SARS-CoV-2 - A prospective case-control study in children and adolescents. Front Pediatr 2022; 10:977827. [PMID: 36263148 PMCID: PMC9574195 DOI: 10.3389/fped.2022.977827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Long-term neurological complaints after SARS-CoV-2 infection occur in 4-66% of children and adolescents. Controlled studies on the integrity of the peripheral nerve system are scarce. Therefore, we examined the somatosensory function in children and adolescents after SARS-CoV-2 infection in a case-control study compared with age-matched individuals. Materials and Methods Eighty-one subjects after SARS-CoV-2 infection (n = 44 female, 11.4 ± 3.5 years, n = 75 SARS-CoV-2 seropositive, n = 6 PCR positive during infection and SARS-CoV-2 seronegative at the time point of study inclusion, n = 47 asymptomatic infection) were compared to 38 controls without SARS-CoV-2 infection (26 female, 10.3 ± 3.4 years, n = 15 with other infection within last 6 months). After standardised interviews and neurological examinations, large fibre (tactile and vibration detection thresholds) and small fibre (cold and warm detection thresholds, paradoxical heat sensation) functions were assessed on both feet following a validated protocol. After z-transformation of all values, all participants were compared to published reference values regarding the number of abnormal results. Additionally, the mean for all sensory parameters values of both study groups were compared to an ideal healthy population (with z-value 0 ± 1), as well as with each other, as previously described. Statistical analyses: t-test, Chi-squared test, and binominal test. Findings None of the controls, but 27 of the 81 patients (33%, p < 0.001) reported persistent complaints 2.7 ± 1.9 (0.8-8.5) months after SARS-CoV-2 infection, most often reduced exercise capacity (16%), fatigue (13%), pain (9%), or paraesthesia (6%). Reflex deficits or paresis were missing, but somatosensory profiles showed significantly increased detection thresholds for thermal (especially warm) and vibration stimuli compared to controls. Approximately 36% of the patients after SARS-CoV-2, but none of the controls revealed an abnormal sensory loss in at least one parameter (p < 0.01). Sensory loss was characterised in 26% by large and 12% by small fibre dysfunction, the latter appearing more frequently in children with prior symptomatic SARS-CoV-2 infection. Myalgia/paraesthesia was indicative of somatosensory dysfunction. In all eight re-examined children, the nerve function recovered after 2-4 months. Interpretation This study provides evidence that in a subgroup of children and adolescents previously infected with SARS-CoV-2, regardless of their complaints, the function of large or small nerve fibres is presumably reversibly impaired.
Collapse
Affiliation(s)
- Lynn Eitner
- Department of Neuropediatrics, University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Anne Schlegtendal
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Leona Knoke
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Lücke
- Department of Neuropediatrics, University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
- University Children’s Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Lang-Illievich K, Klivinyi C, Rumpold-Seitlinger G, Dorn C, Bornemann-Cimenti H. The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers-A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients 2022; 14:4084. [PMID: 36235736 PMCID: PMC9570726 DOI: 10.3390/nu14194084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Palmitoylethanolamide (PEA) is marketed as a "dietary food for special medical purposes". Its broad-spectrum analgesic, anti-inflammatory, and neuroprotective effects make PEA an interesting substance in pain management. However, the underlying analgetic mechanisms have not yet been investigated in humans. The aim of our study is to provide a deeper understanding of the involved mechanisms, which is essential for differentiating therapeutic approaches and the establishment of mechanism-based therapeutic approaches. In this randomized, placebo-controlled, double-blinded crossover trial, 14 healthy volunteers were included. PEA (3 × 400 mg per day) or placebo were taken for 4 weeks. Our study investigated the mode of action of PEA using an established pain model, "Repetitive phasic heat application", which is well-suited to investigate analgesic and anti-hyperalgesic effects in healthy volunteers. Parameters for peripheral and central sensitization as well as for pain modulation were assessed. Repetitive heat pain was significantly decreased, and the cold pain tolerance was significantly prolonged after the PEA treatment. The pressure pain tolerance and the conditioned pain modulation were increased after the PEA treatment. The wind-up ratio and the average distance of allodynia were significantly decreased after the PEA treatment. The heat pain tolerance was significantly higher after the PEA treatment. The present study has demonstrated that PEA has clinically relevant analgesic properties, acting on both peripheral and central mechanisms as well as in pain modulation.
Collapse
Affiliation(s)
| | | | | | | | - Helmar Bornemann-Cimenti
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
27
|
Dohrn MF, Dumke C, Hornemann T, Nikolin S, Lampert A, Espenkott V, Vollert J, Ouwenbroek A, Zanella M, Schulz JB, Gess B, Rolke R. Deoxy-sphingolipids, oxidative stress, and vitamin C correlate with qualitative and quantitative patterns of small fiber dysfunction and degeneration. Pain 2022; 163:1800-1811. [PMID: 35239546 PMCID: PMC9393801 DOI: 10.1097/j.pain.0000000000002580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/05/2022]
Abstract
ABSTRACT Defined by dysfunction or degeneration of Aδ and C fibers, small fiber neuropathies (SFNs) entail a relevant health burden. In 50% of cases, the underlying cause cannot be identified or treated. In 100 individuals (70% female individuals; mean age: 44.8 years) with an idiopathic, skin biopsy-confirmed SFN, we characterized the symptomatic spectrum and measured markers of oxidative stress (vitamin C, selenium, and glutathione) and inflammation (transforming growth factor beta, tumor necrosis factor alpha), as well as neurotoxic 1-deoxy-sphingolipids. Neuropathic pain was the most abundant symptom (95%) and cause of daily life impairment (72%). Despite the common use of pain killers (64%), the painDETECT questionnaire revealed scores above 13 points in 80% of patients. In the quantitative sensory testing (QST), a dysfunction of Aδ fibers was observed in 70% and of C fibers in 44%, affecting the face, hands, or feet. Despite normal nerve conduction studies, QST revealed Aβ fiber involvement in 46% of patients' test areas. Despite absence of diabetes mellitus or mutations in SPTLC1 or SPTLC2 , plasma 1-deoxy-sphingolipids were significantly higher in the sensory loss patient cluster when compared with those in patients with thermal hyperalgesia ( P < 0.01) or those in the healthy category ( P < 0.1), correlating inversely with the intraepidermal nerve fiber density (1-deoxy-SA: P < 0.05, 1-deoxy-SO: P < 0.01). Patients with arterial hypertension, overweight (body mass index > 25 kg/m 2 ), or hyperlipidemia showed significantly lower L-serine (arterial hypertension: P < 0.01) and higher 1-deoxy-sphingolipid levels (arterial hypertension: P < 0.001, overweight: P < 0.001, hyperlipidemia: P < 0.01). Lower vitamin C levels correlated with functional Aβ involvement ( P < 0.05). Reduced glutathione was lower in patients with Aδ dysfunction ( P < 0.05). Idiopathic SFNs are heterogeneous. As a new pathomechanism, plasma 1-deoxy-sphingolipids might link the metabolic syndrome with small fiber degeneration.
Collapse
Affiliation(s)
- Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Christina Dumke
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zürich, Zurich, Switzerland
| | - Stefan Nikolin
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Volker Espenkott
- Department of Palliative Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer (MSK), Imperial College London, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Annabelle Ouwenbroek
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martina Zanella
- Institute of Clinical Chemistry, University Hospital Zürich, Zurich, Switzerland
| | - Jörg B. Schulz
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Burkhard Gess
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Central sensitization: clinical utility of a physiological concept for the International Statistical Classification of Diseases and Related Health Problems and for nociplastic pain. Pain 2022; 163:S99-S107. [PMID: 36099342 DOI: 10.1097/j.pain.0000000000002740] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
|
29
|
Dams L, Van der Gucht E, Haenen V, Devoogdt N, Smeets A, Morlion B, Bernar K, De Vrieze T, Moloney N, De Groef A, Meeus M. Questionnaire-based somatosensory profiling in breast cancer survivors: are we there yet? Associations between questionnaires and quantitative sensory testing. Disabil Rehabil 2022; 45:1865-1876. [PMID: 35617510 DOI: 10.1080/09638288.2022.2076931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Pain and sensory disturbances are common side effects of breast cancer treatment. Differential somatosensory functioning may reflect distinct pathophysiological backgrounds and therapeutic needs. Aim was to examine whether questionnaires evaluating signs and symptoms related to somatosensory functioning correlate sufficiently with quantitative sensory testing (QST) in breast cancer survivors to warrant consideration for somatosensory profiling in clinical practice. METHODS One year after breast cancer surgery, 147 women underwent QST and completed following questionnaires: Douleur Neuropathique en 4 questions (DN4), Central Sensitization Inventory, Margolis Pain Diagram and Visual Analog Scales (VAS). Associations between the questionnaires and QST were evaluated using Spearman correlation coefficients (rs). RESULTS Significant but weak (rs < 0.30) correlations were found between total DN4 score and QST results at the inner upper arm for detection of sharp stimuli (rs = 0.227), cold stimuli (rs = -0.186), and painful heat stimuli (rs = 0.179), as well as between QST evaluating conditioned pain modulation and the Margolis Pain Diagram on one hand (rs = 0.176) and minimum-maximum pain intensity differences (VAS) on the other (rs = -0.170). CONCLUSION Questionnaires evaluating signs and symptoms related to somatosensory functioning are insufficient for somatosensory profiling. Although somatosensory profiling may be valuable in a mechanism-based management, more research on the most appropriate clinical tools is needed.IMPLICATIONS FOR REHABILITATIONClinicians should be able to recognize that patients with persistent pain or sensory disturbances following breast cancer surgery may have a component of altered somatosensory processing as a significant contributor to their complaint in order to address it appropriately.Somatosensory profiling has yet to be implemented into clinical practice.No evidence-based recommendations can be made on the use of self-reported questionnaires to assess somatosensory processing in a breast cancer population based on the findings of this study.It is suggested to combine information on how individuals process and experience somatosensory stimulation with information from the patient interview or questionnaires to consider which biological, psychological and/or social factors may drive or sustain these neurophysiological processes.
Collapse
Affiliation(s)
- Lore Dams
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT, University of Antwerp, Antwerp, Belgium.,Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Pain In Motion International Research Group, Brussels, Belgium
| | - Elien Van der Gucht
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT, University of Antwerp, Antwerp, Belgium.,Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Pain In Motion International Research Group, Brussels, Belgium
| | - Vincent Haenen
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT, University of Antwerp, Antwerp, Belgium.,Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Pain In Motion International Research Group, Brussels, Belgium
| | - Nele Devoogdt
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Vascular Surgery and Department of Physical Medicine and Rehabilitation, Center for Lymphedema, UZ Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Department of Surgical Oncology, UZ Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Bart Morlion
- The Leuven Centre for Algology and Pain Management, UZ-Leuven - University Hospitals Leuven, Leuven, Belgium.,Section Anesthesiology and Algology, Department of Cardiovascular Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Koen Bernar
- The Leuven Centre for Algology and Pain Management, UZ-Leuven - University Hospitals Leuven, Leuven, Belgium
| | - Tessa De Vrieze
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Niamh Moloney
- Department of Health Professions, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,THRIVE Physiotherapy, Guernsey, Guernsey
| | - An De Groef
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT, University of Antwerp, Antwerp, Belgium.,Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Pain In Motion International Research Group, Brussels, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT, University of Antwerp, Antwerp, Belgium.,Pain In Motion International Research Group, Brussels, Belgium.,Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Cold evoked potentials elicited by rapid cooling of the skin in young and elderly healthy individuals. Sci Rep 2022; 12:4137. [PMID: 35264694 PMCID: PMC8907280 DOI: 10.1038/s41598-022-07967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Cold-evoked potentials (CEPs) constitute a novel electrophysiological tool to assess cold-specific alterations in somatosensory function. As an important step towards the clinical implementation of CEPs as a diagnostic tool, we evaluated the feasibility and reliability of CEPs in response to rapid cooling of the skin (-300 °C/s) and different stimulation sites in young and elderly healthy individuals. Time-locked electroencephalographic responses were recorded from at vertex in fifteen young (20-40 years) and sixteen elderly (50-70 years), individuals in response to 15 rapid cold stimuli (-300 °C/s) applied to the skin of the hand dorsum, palm, and foot dorsum. High CEP proportions were shown for young individuals at all sites (hand dorsum/palm: 100% and foot: 79%) and elderly individuals after stimulation of the hand dorsum (81%) and palm (63%), but not the foot (44%). Depending on the age group and stimulation site, test-retest reliability was "poor" to "substantial" for N2P2 amplitudes and N2 latencies. Rapid cooling of the skin enables the recording of reliable CEPs in young individuals. In elderly individuals, CEP recordings were only robust after stimulation of the hand, but particularly challenging after stimulation of the foot. Further improvements in stimulation paradigms are warranted to introduce CEPs for clinical diagnostics.
Collapse
|
31
|
Fu B, Zhu R. Analgesia effect of lentivirus-siSCN9A infected neurons in vincristine induced neuropathic pain rats. Bioengineered 2021; 12:12498-12508. [PMID: 34927536 PMCID: PMC8810170 DOI: 10.1080/21655979.2021.2008696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 10/26/2022] Open
Abstract
At present, the mechanism of siSCN9A in Vincristine (VCR)-induced neuropathic pain (NP) is still unclear. This study aimed to explore the analgesic mechanism of lentivirus-siSCN9A (LV-siSCN9A) infected neurons against NP. 40 male Sprague-Dawley (SD) rats were divided into a control group (injected with normal saline), a model group (VCR-induced NP model), a LV-SC group (NP model mice were injected with LV-SC-infected dorsal root ganglia (DRG) neuron cells under the microscope), and a LV-siSCN9A group (NP model mice were injected with LV-siSCN9A-infected DRG neuron cells under the microscope, with 10 rats in each group. The changes of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats in different groups were detected by behavior testing, the Nav1.7 changes in each group were detected by immunofluorescence double standard and Western-blot method. It was found that compared with the control group, the MWT and TWL of the rats in model group were significantly decreased (P < 0.05), and the expression levels of Nav1.7 messenger ribonucleic acid (mRNA) and proteins were significantly increased (P < 0.05). Compared with LV-SC group, the MWT and TWL of rats in LV-siSCN9A group were significantly increased (P < 0.05), the expression levels of Nav1.7 mRNA and proteins were significantly decreased (P < 0.05), and the CGRP expression of spinal dorsal horn was significantly decreased. It was concluded that the LV-siSCN9A infected neurons could play an analgesic role by down-regulating Nav1.7 expression induced by VCR in NP model.
Collapse
Affiliation(s)
- Baojun Fu
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People Hospital, Qingyuan, Guangdong, China
| | - Rong Zhu
- Department of Anesthesiology, The Second Xiangya Hospital,Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Chao L, Gonçalves AS, Campos ACP, Assis DV, Jerônimo R, Kuroki MA, Sant'Anna FM, Meas Y, Rouxeville Y, Hsing W, Pagano RL. Comparative effect of dense-and-disperse versus non-repetitive and non-sequential frequencies in electroacupuncture-induced analgesia in a rodent model of peripheral neuropathic pain. Acupunct Med 2021; 40:169-177. [PMID: 34758667 DOI: 10.1177/09645284211055751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neuropathic pain (NP) is a complex disease that remains challenging to treat. Low-frequency dense-and-disperse (DD) electroacupuncture (EA) has been used as adjuvant therapy for neuropathic pain; however, its analgesic effect decreases as stimulation time increases, or when it is repeatedly used. We hypothesized that a new frequency parameter could improve the effectiveness of EA, and aimed to compare the efficacy and duration of the analgesic effect between classic DD-EA and non-repetitive and non-sequential frequency (random frequency (RF)-EA) in neuropathic rats. Furthermore, the effect of RF-EA at local traditional acupuncture point locations versus auricular vagus nerve stimulation (aVNS) was evaluated. METHODS Male Wistar rats with peripheral neuropathy were subjected to a single session of DD-EA or RF-EA for 20 or 40 min at ST36 + GB34. An additional group of rats was treated with RF-EA for 20 min using aVNS at the appropriate ear point locations. Paw pressure test, von Frey filaments and spontaneous pain scores were evaluated. Sham-operated rats were used as controls. RESULTS In all, 20 min of RF-EA reversed hyperalgesia (for 24 h) and allodynia (for 8 h), showing a longer analgesic effect than DD-EA. Both RF-EA and DD-EA induced partial inhibition of spontaneous pain for 8 h. Forty minutes of DD-EA did not interfere with the NP phenomena; however, RF-EA induced significant long-term analgesia. aVNS induced an analgesic effect similar to local stimulation. CONCLUSION This pilot study shows that RF-EA at both local traditional acupuncture point and auriculotherapy point locations induces long-lasting analgesia in neuropathic rats, and more effectively so than classical DD-EA.
Collapse
Affiliation(s)
- Liaw Chao
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil.,Acupuncture Center, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Daniele V Assis
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Rodrigo Jerônimo
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Mayra A Kuroki
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Yunsan Meas
- Centre d'évaluation et de traitement de la douleur (CETD) and Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Yves Rouxeville
- International College of Auriculomedicine and Auriculotherapy Review
| | - Wu Hsing
- Acupuncture Center, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
33
|
Gossrau G, Sabatowski R. [Diagnostics and therapy of neuropathic pain]. Anaesthesist 2021; 70:993-1002. [PMID: 34676422 DOI: 10.1007/s00101-021-01039-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
Neuropathic pain is pain caused by a lesion or disease of the somatosensory nervous system. Scientific studies have shown that neuropathic pain is the result of complex altered signalling processes in the peripheral and central nervous system. Current forms of treatment of neuropathic pain are causally oriented but also aim at symptomatic analgesia by pharmacological and nonpharmacological methods. Furthermore, psychological pain management techniques are used in a supportive role. This review summarizes the contemporary diagnostics of neuropathic pain using frequent diseases as examples and presents the evidence from randomized controlled trials on the treatment of neuropathic pain. Treatment guidelines for pharmacological management of neuropathic pain include evidence-based use of antidepressants, anticonvulsants, opioids, capsaicin and lidocaine.
Collapse
Affiliation(s)
- G Gossrau
- Interdisziplinäres UniversitätsSchmerzCentrum, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - R Sabatowski
- Interdisziplinäres UniversitätsSchmerzCentrum, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.,Klinik und Poliklinik für Anästhesiologie und Intensivmedizin, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
34
|
Bordeleau M, Léonard G, Gauthier L, Ferland CE, Backonja M, Vollert J, Marchand S, Jackson P, Cantin L, Prud’Homme M. Classification of Qualitative Fieldnotes Collected During Quantitative Sensory Testing: A Step Towards the Development of a New Mixed Methods Approach in Pain Research. J Pain Res 2021; 14:2501-2511. [PMID: 34434059 PMCID: PMC8380625 DOI: 10.2147/jpr.s301655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Quantitative sensory testing (QST) is a standardized method to assess somatosensory function. The collection of qualitative information, during the QST procedure, could be an interesting way to facilitate the characterization of altered sensory perception and the identification of different pain phenotypes. The aims of this study were 1) to classify qualitative fieldnotes of sensory abnormalities collected during an independent QST study, and 2) to generate a qualitative interview guide that could be included in the traditional QST procedure as a step towards the implementation of a mixed methods approach. PATIENTS AND METHODS QST data were collected from 48 chronic neuropathic pain patients treated with spinal cord stimulation (SCS). Three body areas, with or without SCS, were tested: the painful limb targeted by SCS, the contralateral area, and the ipsilateral upper limb. After each trial of each QST modality, patients were encouraged to report any sensory abnormalities they could identify with a pain quality scale or using their own words. RESULTS Qualitative self-reported sensory abnormalities were dichotomized into two groups: altered sensory intensities and altered sensory perceptions. Altered sensory intensities were classified as sensory loss or sensory gain subgroups. Altered sensory perceptions were classified as paresthesia and dysesthesia subgroups Overall, 630 qualitative fieldnotes of altered sensations were collected: 385 on the painful limb, 173 at the contralateral area, and 72 at the ipsilateral upper limb. Based on these qualitative data, we propose a standardized method to collect qualitative data involving 9 open- and close-ended questions and 21 codes. CONCLUSION Our findings have highlighted the value of qualitative sensory evaluation during QST and constitute an important milestone in the development of a mixed methods protocol in phenotyping research.
Collapse
Affiliation(s)
- Martine Bordeleau
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Center on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
| | - Guillaume Léonard
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Center on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
| | - Lynn Gauthier
- Department of Family and Emergency Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Équipe de recherche Michel-Sarrazin en oncologie psychosociale et soins palliatifs, Quebec City, QC, Canada
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
- Université Laval Cancer Research Center, Quebec City, QC, Canada
| | - Catherine Estelle Ferland
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Shriners Hospitals for Children-Canada, Montreal, QC, Canada
| | - Miroslav Backonja
- Department of Neurology, University of Wisconsin, Madison, WI, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Jan Vollert
- Pain Research, MSK lab, Department of Surgery and Cancer, Imperial College London, London, UK
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Serge Marchand
- Research Center on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
- Sherbrooke University Hospital Research Center (CRCHUS), Sherbrooke, QC, Canada
| | - Philip Jackson
- CIRRIS, Quebec City, QC, Canada
- CERVO Brain Research Center, Quebec City, QC, Canada
- School of Psychology, Laval University, Quebec City, QC, Canada
| | - Léo Cantin
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Quebec City, QC, Canada
- Department of Surgery, Division of neurosurgery, CHU de Québec – Université Laval, Quebec City, QC, Canada
| | - Michel Prud’Homme
- Centre de recherche du CHU de Québec – Université Laval, Axe neurosciences, Quebec City, QC, Canada
- Department of Surgery, Division of neurosurgery, CHU de Québec – Université Laval, Quebec City, QC, Canada
| |
Collapse
|
35
|
Dams L, Van der Gucht E, Meeus M, Devoogdt N, Smeets A, Penen F, De Baerdemaecker T, Haenen V, Bernar K, De Vrieze T, De Groef A. Quantitative Sensory Testing in Women After Surgery for Breast Cancer: A Systematic Review and Narrative Synthesis. Clin J Pain 2021; 37:538-564. [PMID: 33883413 DOI: 10.1097/ajp.0000000000000940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Quantitative sensory testing (QST) is a noninvasive technique to evaluate functioning of the somatosensory system. In many women surgically treated for breast cancer (BC), somatosensory functioning is disturbed with high prevalence of sensory loss and/or pain. The aims of this systematic review were (1) to summarize literature about QST methods; (2) to summarize the results within women surgically treated for BC (patients and survivors); (3) to compare QST results between women surgically treated for BC with and without pain; and (4) to compare the results between women surgically treated for BC and women without history of BC. METHODS A systematic literature search was conducted up to February 2020. Included studies had to report on QST methods (mechanical or thermal detection-pain thresholds, pressure pain thresholds [PPT], temporal summation [TS], or conditioned pain modulation [CPM]) in women over 18 years with-without pain, who had undergone unilateral surgery for BC. RESULTS Twenty-eight studies were included. Discrepancies in QST methods were greatest for TS and CPM. A local disturbance in thermal detection and an increased pain facilitation were found in BC survivors with pain in the surgical area. BC survivors with upper limb pain had significantly lower PPT at the surgical area and PPT were also significantly lower compared with women without history of BC, at affected and nonaffected sides for both local and remote body regions. DISCUSSION Standardized QST incorporating assessments of CPM is warranted in order to draw conclusions about neurobiological mechanisms of pain and somatosensory disturbances after surgical treatment for BC and to enhance mechanism-based management of these sequelae.
Collapse
Affiliation(s)
- Lore Dams
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Pain in Motion International Research Group, Belgium
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven
| | - Elien Van der Gucht
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Pain in Motion International Research Group, Belgium
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Pain in Motion International Research Group, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent
| | - Nele Devoogdt
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Department of Vascular Surgery and Department of Physical Medicine and Rehabilitation, Center for Lymphedema, UZ Leuven-University Hospitals Leuven
| | | | - Frauke Penen
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven
| | | | - Vincent Haenen
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven
| | - Koen Bernar
- The Leuven Centre for Algology and Pain Management, University Hospitals Leuven, Leuven, Belgium
| | - Tessa De Vrieze
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven
| | - An De Groef
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, MOVANT, Antwerp
- Pain in Motion International Research Group, Belgium
- Department of Rehabilitation Sciences, KU Leuven-University of Leuven
| |
Collapse
|
36
|
Mehesz E, Karoui H, Strutton PH, Hughes SW. Exposure to an Immersive Virtual Reality Environment can Modulate Perceptual Correlates of Endogenous Analgesia and Central Sensitization in Healthy Volunteers. THE JOURNAL OF PAIN 2021; 22:707-714. [PMID: 33465506 DOI: 10.1016/j.jpain.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. CPM and acute heat pain thresholds were assessed before and during VR/sham exposure in the absence of any sensitization. In a follow-on study, we used the cutaneous high frequency stimulation model of central sensitization and measured changes in mechanical pain sensitivity in an area of heterotopic sensitization before and during VR/sham exposure. There was an increase in CPM efficiency during the VR condition compared to baseline (P < .01). In the sham condition, there was a decrease in CPM efficiency compared to baseline (P < .01) and the real VR condition (P < .001). Neither real nor sham VR had any effect on pain ratings reported during the conditioning period or on heat pain threshold. There was also an attenuation of mechanical pain sensitivity during the VR condition indicating a lower sensitivity compared to sham (P < .05). We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. PERSPECTIVE: This study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
Collapse
Affiliation(s)
- Erzsebet Mehesz
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hajer Karoui
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Paul H Strutton
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sam W Hughes
- The Pain Neuroplasticity and Modulation Laboratory, Brain Research and Imaging Centre (BRIC), School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
37
|
No pain, still gain (of function): the relation between sensory profiles and the presence or absence of self-reported pain in a large multicenter cohort of patients with neuropathy. Pain 2021; 162:718-727. [PMID: 32868752 DOI: 10.1097/j.pain.0000000000002058] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT The pathophysiology of pain in neuropathy is complex and may be linked to sensory phenotypes. Quantitative sensory testing, a standardized method to evaluate sensory profiles in response to defined stimuli, assesses functional integrity of small and large nerve fiber afferents and central somatosensory pathways. It has revealed detailed insights into mechanisms of neuropathy, yet it remains unclear if pain directly affects sensory profiles. The main objective of this study was to investigate sensory profiles in patients with various neuropathic conditions, including polyneuropathy, mononeuropathy, and lesions to the central nervous system, in relation to self-reported presence or absence of pain and pain sensitivity using the Pain Sensitivity Questionnaire. A total of 443 patients (332 painful and 111 painless) and 112 healthy participants were investigated. Overall, loss of sensation was equally prevalent in patients with and without spontaneous pain. Pain thresholds were equally lowered in both patient groups, demonstrating that hyperalgesia and allodynia are just as present in patients not reporting any pain. Remarkably, this was similar for dynamic mechanical allodynia. Hypoalgesia was more pronounced in painful polyneuropathy, whereas hyperalgesia was more frequent in painful mononeuropathy (compared with painless conditions). Self-reported pain sensitivity was significantly higher in painful than in painless neuropathic conditions. Our results reveal the presence of hyperalgesia and allodynia in patients with central and peripheral lesions of the somatosensory system not reporting spontaneous pain. This shows that symptoms and signs of hypersensitivity may not necessarily coincide and that painful and painless neuropathic conditions may mechanistically blend into one another.
Collapse
|
38
|
Modality-specific facilitation of noninjurious sharp mechanical pain by topical capsaicin. Pain 2021; 162:275-286. [PMID: 32701656 DOI: 10.1097/j.pain.0000000000002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We had previously shown that a "blunt blade" stimulator can mimic the noninjurious strain phase of incisional pain, but not its sustained duration. Here, we tested whether acute sensitization of the skin with topical capsaicin can add the sustained phase to this noninvasive surrogate model of intraoperative pain. Altogether, 110 healthy volunteers (55 male and 55 female; 26 ± 5 years) participated in several experiments using the "blunt blade" (0.25 × 4 mm) on normal skin (n = 36) and on skin pretreated by a high-concentration capsaicin patch (8%, Qutenza; n = 36). These data were compared with an experimental incision (n = 40) using quantitative and qualitative pain ratings by numerical rating scale and SES Pain Perception Scale descriptors. Capsaicin sensitization increased blade-induced pain magnitude and duration significantly (both P < 0.05), but it failed to fully match the sustained duration of incisional pain. In normal skin, the SES pattern of pain qualities elicited by the blade matched incision in pain magnitude and pattern of pain descriptors. In capsaicin-treated skin, the blade acquired a significant facilitation only of the perceived heat pain component (P < 0.001), but not of mechanical pain components. Thus, capsaicin morphed the descriptor pattern of the blade to become more capsaicin-like, which is probably explained best by peripheral sensitization of the TRPV1 receptor. Quantitative sensory testing in capsaicin-sensitized skin revealed hyperalgesia to heat and pressure stimuli, and loss of cold and cold pain sensitivity. These findings support our hypothesis that the blade models the early tissue-strain-related mechanical pain phase of surgical incisions.
Collapse
|
39
|
Quesada C, Kostenko A, Ho I, Leone C, Nochi Z, Stouffs A, Wittayer M, Caspani O, Brix Finnerup N, Mouraux A, Pickering G, Tracey I, Truini A, Treede RD, Garcia-Larrea L. Human surrogate models of central sensitization: A critical review and practical guide. Eur J Pain 2021; 25:1389-1428. [PMID: 33759294 PMCID: PMC8360051 DOI: 10.1002/ejp.1768] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Background As in other fields of medicine, development of new medications for management of neuropathic pain has been difficult since preclinical rodent models do not necessarily translate to the clinics. Aside from ongoing pain with burning or shock‐like qualities, neuropathic pain is often characterized by pain hypersensitivity (hyperalgesia and allodynia), most often towards mechanical stimuli, reflecting sensitization of neural transmission. Data treatment We therefore performed a systematic literature review (PubMed‐Medline, Cochrane, WoS, ClinicalTrials) and semi‐quantitative meta‐analysis of human pain models that aim to induce central sensitization, and generate hyperalgesia surrounding a real or simulated injury. Results From an initial set of 1569 reports, we identified and analysed 269 studies using more than a dozen human models of sensitization. Five of these models (intradermal or topical capsaicin, low‐ or high‐frequency electrical stimulation, thermode‐induced heat‐injury) were found to reliably induce secondary hyperalgesia to pinprick and have been implemented in multiple laboratories. The ability of these models to induce dynamic mechanical allodynia was however substantially lower. The proportion of subjects who developed hypersensitivity was rarely provided, giving rise to significant reporting bias. In four of these models pharmacological profiles allowed to verify similarity to some clinical conditions, and therefore may inform basic research for new drug development. Conclusions While there is no single “optimal” model of central sensitization, the range of validated and easy‐to‐use procedures in humans should be able to inform preclinical researchers on helpful potential biomarkers, thereby narrowing the translation gap between basic and clinical data. Significance Being able to mimic aspects of pathological pain directly in humans has a huge potential to understand pathophysiology and provide animal research with translatable biomarkers for drug development. One group of human surrogate models has proven to have excellent predictive validity: they respond to clinically active medications and do not respond to clinically inactive medications, including some that worked in animals but failed in the clinics. They should therefore inform basic research for new drug development.
Collapse
Affiliation(s)
- Charles Quesada
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.,Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| | - Anna Kostenko
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Idy Ho
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Zahra Nochi
- Danish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandre Stouffs
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | - Matthias Wittayer
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Ottignies-Louvain-la-Neuve, Belgium
| | | | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim center for Translational Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Luis Garcia-Larrea
- NeuroPain lab, Lyon Centre for Neuroscience Inserm U1028, Lyon, France.,Pain Center Neurological Hospital (CETD), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
40
|
Magerl W, Thalacker E, Vogel S, Schleip R, Klein T, Treede RD, Schilder A. Tenderness of the Skin after Chemical Stimulation of Underlying Temporal and Thoracolumbar Fasciae Reveals Somatosensory Crosstalk between Superficial and Deep Tissues. Life (Basel) 2021; 11:life11050370. [PMID: 33919303 PMCID: PMC8143345 DOI: 10.3390/life11050370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 01/14/2023] Open
Abstract
Musculoskeletal pain is often associated with pain referred to adjacent areas or skin. So far, no study has analyzed the somatosensory changes of the skin after the stimulation of different underlying fasciae. The current study aimed to investigate heterotopic somatosensory crosstalk between deep tissue (muscle or fascia) and superficial tissue (skin) using two established models of deep tissue pain (namely focal high frequency electrical stimulation (HFS) (100 pulses of constant current electrical stimulation at 10× detection threshold) or the injection of hypertonic saline in stimulus locations as verified using ultrasound). In a methodological pilot experiment in the TLF, different injection volumes of hypertonic saline (50–800 µL) revealed that small injection volumes were most suitable, as they elicited sufficient pain but avoided the complication of the numbing pinprick sensitivity encountered after the injection of a very large volume (800 µL), particularly following muscle injections. The testing of fascia at different body sites revealed that 100 µL of hypertonic saline in the temporal fascia and TLF elicited significant pinprick hyperalgesia in the overlying skin (–26.2% and –23.5% adjusted threshold reduction, p < 0.001 and p < 0.05, respectively), but not the trapezius fascia or iliotibial band. Notably, both estimates of hyperalgesia were significantly correlated (r = 0.61, p < 0.005). Comprehensive somatosensory testing (DFNS standard) revealed that no test parameter was changed significantly following electrical HFS. The experiments demonstrated that fascia stimulation at a sufficient stimulus intensity elicited significant across-tissue facilitation to pinprick stimulation (referred hyperalgesia), a hallmark sign of nociceptive central sensitization.
Collapse
Affiliation(s)
- Walter Magerl
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (W.M.); (E.T.); (S.V.); (T.K.); (R.-D.T.)
| | - Emanuela Thalacker
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (W.M.); (E.T.); (S.V.); (T.K.); (R.-D.T.)
| | - Simon Vogel
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (W.M.); (E.T.); (S.V.); (T.K.); (R.-D.T.)
| | - Robert Schleip
- Conservative and Rehabilitative Orthopedics, Department of Sport and Health Sciences, Health Sciences, Technical University of Munich, 80333 Munich, Germany;
- DIPLOMA Hochschule, 37242 Bad Sooden-Allendorf, Germany
| | - Thomas Klein
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (W.M.); (E.T.); (S.V.); (T.K.); (R.-D.T.)
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (W.M.); (E.T.); (S.V.); (T.K.); (R.-D.T.)
| | - Andreas Schilder
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (W.M.); (E.T.); (S.V.); (T.K.); (R.-D.T.)
- Correspondence: ; Tel.: +49-621-383-71400; Fax: +49-621-383-71401
| |
Collapse
|
41
|
Mouraux A, Bannister K, Becker S, Finn DP, Pickering G, Pogatzki-Zahn E, Graven-Nielsen T. Challenges and opportunities in translational pain research - An opinion paper of the working group on translational pain research of the European pain federation (EFIC). Eur J Pain 2021; 25:731-756. [PMID: 33625769 PMCID: PMC9290702 DOI: 10.1002/ejp.1730] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For decades, basic research on the underlying mechanisms of nociception has held promise to translate into efficacious treatments for patients with pain. Despite great improvement in the understanding of pain physiology and pathophysiology, translation to novel, effective treatments for acute and chronic pain has however been limited, and they remain an unmet medical need. In this opinion paper bringing together pain researchers from very different disciplines, the opportunities and challenges of translational pain research are discussed. The many factors that may prevent the successful translation of bench observations into useful and effective clinical applications are reviewed, including interspecies differences, limited validity of currently available preclinical disease models of pain, and limitations of currently used methods to assess nociception and pain in non-human and human models of pain. Many paths are explored to address these issues, including the backward translation of observations made in patients and human volunteers into new disease models that are more clinically relevant, improved generalization by taking into account age and sex differences, and the integration of psychobiology into translational pain research. Finally, it is argued that preclinical and clinical stages of developing new treatments for pain can be improved by better preclinical models of pathological pain conditions alongside revised methods to assess treatment-induced effects on nociception in human and non-human animals. Significance: For decades, basic research of the underlying mechanisms of nociception has held promise to translate into efficacious treatments for patients with pain. Despite great improvement in the understanding of pain physiology and pathophysiology, translation to novel, effective treatments for acute and chronic pain has however been limited, and they remain an unmet medical need.
Collapse
Affiliation(s)
- André Mouraux
- Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - David P Finn
- Pharmacology and Therapeutics, Centre for Pain Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Gisèle Pickering
- Department of Clinical Pharmacology, Inserm CIC 1405, University Hospital, CHU Clermont-Ferrand, France.,Fundamental and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Critical Care Medicine and Pain Therapy, University Hospital Muenster, Muenster, Germany
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
42
|
Odriozola A, Ortega L, Martinez L, Odriozola S, Torrens A, Corroleu D, Martínez S, Ponce M, Meije Y, Presas M, Duarte A, Belén Odriozola M, Malik RA. Widespread sensory neuropathy in diabetic patients hospitalized with severe COVID-19 infection. Diabetes Res Clin Pract 2021; 172:108631. [PMID: 33346072 PMCID: PMC7746125 DOI: 10.1016/j.diabres.2020.108631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
AIMS To characterize the distribution and severity of sensory neuropathy using a portable quantitative sensory testing (QST) device in diabetic patients (DM) hospitalized with severe COVID-19 infection. METHODS Four patients with diabetes and severe SARS-CoV-2 requiring non-invasive ventilation for a protracted duration underwent clinical, laboratory and radiologic assessment and detailed evaluation of neuropathic symptoms, neurological assessment, QST on the dorsum of the foot and face using NerveCheck Master with assessment of taste and smell. RESULTS All four subjects developed neuropathic symptoms characterized by numbness in the feet with preserved reflexes. QST confirmed symmetrical abnormality of vibration and thermal thresholds in both lower limbs in all patients and an abnormal heat pain threshold on the face of two patients and altered taste and smell. CONCLUSIONS Severe COVID-19 infection with hypoxemia is associated with neuropathic symptoms and widespread sensory dysfunction in patients with DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
43
|
Sachau J, Bruckmueller H, Gierthmühlen J, Magerl W, May D, Binder A, Forstenpointner J, Koetting J, Maier C, Tölle TR, Treede RD, Berthele A, Caliebe A, Diesch C, Flor H, Huge V, Maihöfner C, Rehm S, Kersebaum D, Fabig SC, Vollert J, Rolke R, Stemmler S, Sommer C, Westermann A, Cascorbi I, Baron R. The serotonin receptor 2A (HTR2A) rs6313 variant is associated with higher ongoing pain and signs of central sensitization in neuropathic pain patients. Eur J Pain 2020; 25:595-611. [PMID: 33171011 DOI: 10.1002/ejp.1696] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/08/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The serotonin receptor 2A (HTR2A) has been described as an important facilitation mediator of spinal nociceptive processing leading to central sensitization (CS) in animal models of chronic pain. However, whether HTR2A single nucleotide variants (SNVs) modulate neuropathic pain states in patients has not been investigated so far. The aim of this study was to elucidate the potential association of HTR2A variants with sensory abnormalities or ongoing pain in neuropathic pain patients. METHODS At total of 240 neuropathic pain patients and 253 healthy volunteers were included. Patients were phenotypically characterized using standardized quantitative sensory testing (QST). Patients and controls were genotyped for HTR2A g.-1438G > A (rs6311) and c.102C > T (rs6313). Genotype-related differences in QST parameters were assessed considering QST profile clusters, principal somatosensory components and sex. RESULTS There was an equal distribution of rs6313 and linked rs6311 between patients and controls. However, the rs6313 variant was significantly associated with a principal component of pinprick hyperalgesia and dynamic mechanical allodynia, indicating enhanced CS in patients with sensory loss (-0.34 ± 0.15 vs. +0.31 ± 0.11 vs., p < .001). In this cluster, the variant allele was also associated with single QST parameters of pinprick hyperalgesia (MPT, +0.64 ± 0.18 vs. -0.34 ± 0.23 p = .002; MPS, +0.66 ± 0.17 vs. -0.09 ± 0.23, p = .009) and ongoing pain was increased by 30%. CONCLUSIONS The specific association of the rs6313 variant with pinprick hyperalgesia and increased levels of ongoing pain suggests that the HTR2A receptor might be an important modulator in the development of CS in neuropathic pain. SIGNIFICANCE This article presents new insights into serotonin receptor 2A-mediating mechanisms of central sensitization in neuropathic pain patients. The rs6313 variant allele was associated with increased mechanical pinprick sensitivity and increased levels of ongoing pain supporting a contribution of central sensitization in the genesis of ongoing pain providing a possible route for mechanism-based therapies.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Denisa May
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Judith Koetting
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christoph Maier
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Thomas R Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, München, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carolin Diesch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herta Flor
- Department of Clinical and Cognitive Neuroscience, Central Institute for Mental Health, Medical Faculty Mannheim, Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University Munich, München, Germany
| | - Christian Maihöfner
- Department of Neurology, General Hospital Fürth, University of Erlangen-Nuremberg, Nuremberg, Germany
| | - Stefanie Rehm
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Vollert
- Chair of Neurophysiology, Mannheim Center for Translational Neuroscience, Ruprecht Karls University Heidelberg, Mannheim, Germany.,Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Susanne Stemmler
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Andrea Westermann
- Department of Pain Management, BG Kliniken Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
44
|
Mechanical detection and pain thresholds: comparability of devices using stepped and ramped stimuli. Pain Rep 2020; 5:e865. [PMID: 33294759 PMCID: PMC7717770 DOI: 10.1097/pr9.0000000000000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Nylon monofilaments may substitute for German Research Network on Neuropathic Pain standards in tactile but not pinprick testing. Ramped stimuli are faster but underestimate thresholds due to reaction time artefacts. Quantitative sensory testing is used to assess somatosensory function in humans. The protocol of the German Research Network on Neuropathic Pain (DFNS) provides comprehensive normative values using defined tools; however, some of these may not be feasible in low-resource settings.
Collapse
|
45
|
Abstract
Neuropathic pain (NeP) can result from sources as varied as nerve compression, channelopathies, autoimmune disease, and incision. By identifying the neurobiological changes that underlie the pain state, it will be clinically possible to exploit mechanism-based therapeutics for maximum analgesic effect as diagnostic accuracy is optimized. Obtaining sufficient knowledge regarding the neuroadaptive alterations that occur in a particular NeP state will result in improved patient analgesia and a mechanism-based, as opposed to a disease-based, therapeutic approach to facilitate target identification. This will rely on comprehensive disease pathology insight; our knowledge is vastly improving due to continued forward and back translational preclinical and clinical research efforts. Here we discuss the clinical aspects of neuropathy and currently used drugs whose mechanisms of action are outlined alongside their clinical use. Finally, we consider sensory phenotypes, patient clusters, and predicting the efficacy of an analgesic for neuropathy.
Collapse
Affiliation(s)
- Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom;
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
46
|
Srotova I, Kocica J, Vollert J, Kolcava J, Hulova M, Jarkovsky J, Dusek L, Bednarik J, Vlckova E. Sensory and pain modulation profiles of ongoing central neuropathic extremity pain in multiple sclerosis. Eur J Pain 2020; 25:573-594. [PMID: 33170994 DOI: 10.1002/ejp.1695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/24/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Central neuropathic extremity pain (CNEP) is the most frequent type of pain in multiple sclerosis (MS). The aim of the present study was to evaluate sensory and pain modulation profiles in MS patients with CNEP. METHODS In a single-centre observational study, a group of 56 CNEP MS patients was compared with 63 pain-free MS patients and with a sex- and age-adjusted control group. Standardized quantitative sensory testing (QST) and dynamic QST (dQST) protocols comprising temporal summation and conditioned pain modulation tests were used to compare sensory profiles. RESULTS Loss-type QST abnormalities in both thermal and mechanical QST modalities prevailed in both MS subgroups and correlated significantly with higher degree of disability expressed as Expanded Disability Status Scale (EDSS). Comparison of sensory phenotypes disclosed a higher frequency of the 'sensory loss' prototypic sensory phenotype in the CNEP subgroup (30%) compared with pain-free MS patients (6%; p = .003). CONCLUSION The role of aging process and higher lesion load in the spinothalamocortical pathway might be possible explanation for pain development in this particular 'deafferentation' subtype of central neuropathic pain in MS. We were unable to support the role of central sensitization or endogenous facilitatory and inhibitory mechanisms in the development of CNEP in MS. SIGNIFICANCE This article presents higher prevalence of the 'sensory loss' prototypic sensory phenotype in multiple sclerosis patients with central extremity neuropathic pain compared to pain-free patients. Higher degree of disability underlines the possible role of higher lesion load in the somatosensory pathways in this particular 'deafferentation' type of central neuropathic pain.
Collapse
Affiliation(s)
- Iva Srotova
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Jan Kocica
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Vollert
- Pain Research, Faculty of Medicine, Department of Surgery & Cancer, Chelsea and Westminster Campus, Imperial College London, London, UK.,Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht-Karls-University, Heidelberg, Germany
| | - Jan Kolcava
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Monika Hulova
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Jarkovsky
- Institute for Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Ladislav Dusek
- Institute for Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Eva Vlckova
- Department of Neurology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
47
|
Naranjo C, Dueñas M, Barrera C, Moratalla G, Failde I. Sleep Characteristics in Diabetic Patients Depending on the Occurrence of Neuropathic Pain and Related Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8125. [PMID: 33153196 PMCID: PMC7663768 DOI: 10.3390/ijerph17218125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
This study aims to compare the sleep characteristics (structure and quality) in patients with type-2 diabetes mellitus with and without diabetic neuropathic pain (DNP), and to investigate the relationship of sensory phenotypes, anxiety, and depression with sleep quality in DNP patients. A cross-sectional study was performed in patients with type-2 diabetes mellitus and neuropathy. Patients were classified into two groups-with or without neuropathic pain-according to the "Douleur Neuropathique-4 (DN4)" scale. Sleep characteristics and quality (Medical Outcomes Study-MOS-sleep), pain phenotype (Neuropathic Pain Symptom Inventory-NPSI), mood status (Hospital Anxiety and Depression scale-HADS), pain intensity (Visual Analogue Scale-VAS), and quality of life (SF-12v2) were measured. The sample included 130 patients (65 with DNP). The mean scores in all the dimensions of the MOS-sleep scale were higher (more disturbances) in the DNP patients. Higher scores in anxiety or depression, greater intensity of pain or a higher score in the paroxysmal pain phenotype were associated with lower sleep quality in DNP patients. A shorter duration of the diabetes and lower levels of glycated hemoglobin were also associated with lower sleep quality. The results show the relationship between DNP and sleep quality, and the importance of assessing sensory phenotypes and mental comorbidities in these patients. Taking these factors into consideration, to adopt a multimodal approach is necessary to achieve better clinical results.
Collapse
Affiliation(s)
- Cristina Naranjo
- University Hospital Puerta del Mar, Avda. Ana de Viya 21, 1009 Cádiz, Spain; (C.N.); (C.B.)
| | - María Dueñas
- Department of Statistics and Operational Research, University of Cadiz, Calle Enrique Villegas Vélez, 2, 11002 Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Avda. Ana de Viya 21, 11009 Cádiz, Spain;
- The Observatory of Pain (External Chair of Pain), Grünenthal Foundation, University of Cádiz, Avda. Ana de Viya 52, 11009 Cádiz, Spain
| | - Carlos Barrera
- University Hospital Puerta del Mar, Avda. Ana de Viya 21, 1009 Cádiz, Spain; (C.N.); (C.B.)
| | - Guillermo Moratalla
- Primary Care Center Loreto-Puntales, Health district Bahía de Cádiz-La Janda, C/ Hidroavión Numancia 0, 11011 Cádiz, Spain;
| | - Inmaculada Failde
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Avda. Ana de Viya 21, 11009 Cádiz, Spain;
- The Observatory of Pain (External Chair of Pain), Grünenthal Foundation, University of Cádiz, Avda. Ana de Viya 52, 11009 Cádiz, Spain
- Preventive Medicine and Public Health Area, University of Cádiz, Avda. Ana de Viya 52, 11009 Cádiz, Spain
| |
Collapse
|
48
|
Lang-Illievich K, Winter R, Rumpold-Seitlinger G, Schicho K, Dorn C, Klivinyi C, Bornemann-Cimenti H. The Effect of Low-Level Light Therapy on Capsaicin-Induced Peripheral and Central Sensitization in Healthy Volunteers: A Double-Blinded, Randomized, Sham-Controlled Trial. Pain Ther 2020; 9:717-726. [PMID: 33040311 PMCID: PMC7547817 DOI: 10.1007/s40122-020-00205-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/30/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Several clinical trials have demonstrated that low-level light therapy (LLLT), a method of photobiomodulation, is an effective analgetic treatment. However, the mechanism of action has not yet been finally clarified. In particular, unanswered questions include whether it only affects peripheral or whether it also affects the spinal or supraspinal level. This study aimed to evaluate the effect of low-level light therapy on primary and secondary hyperalgesia in a human pain model. Methods This study was planned as a randomized, sham-controlled, and double-blinded trial with repeated measures within subject design. Capsaicin was applied on both forearms of ten healthy volunteers to induce peripheral and central sensitization. One forearm was treated with low-level light therapy; the other served as sham control. Results Low-level light therapy significantly increased the mechanical pain threshold, heat pain threshold, and decreased pain intensity. Conclusions Our data indicate that low-level light therapy is effective at reducing the heat and mechanical pain threshold in a human pain model, pointing to a significant modulating effect on peripheral and central sensitization. These effects—especially in the absence of reported side effects—make low-level light therapy a promising tool in pain management. The application of low-level light therapy to treat chronic pain should be considered for further clinical trials.
Collapse
Affiliation(s)
- Kordula Lang-Illievich
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Raimund Winter
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Kurt Schicho
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Dorn
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Klivinyi
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Helmar Bornemann-Cimenti
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
49
|
Scheuren PS, Rosner J, Curt A, Hubli M. Pain-autonomic interaction: A surrogate marker of central sensitization. Eur J Pain 2020; 24:2015-2026. [PMID: 32794307 DOI: 10.1002/ejp.1645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Central sensitization represents a key pathophysiological mechanism underlying the development of neuropathic pain, often manifested clinically as mechanical allodynia and hyperalgesia. Adopting a mechanism-based treatment approach relies highly on the ability to assess the presence of central sensitization. The aim of the study was to investigate potential pain-autonomic readouts to operationalize experimentally induced central sensitization in the area of secondary hyperalgesia. METHODS Pinprick evoked potentials (PEPs) and sympathetic skin responses (SSRs) were recorded in 20 healthy individuals. Three blocks of PEP and SSR recordings were performed before and after heat-induced secondary hyperalgesia. All measurements were also performed before and after a control condition. Multivariate analyses were performed using linear mixed-effect regression models to examine the effect of experimentally induced central sensitization on PEP and SSR parameters (i.e. amplitudes, latencies and habituation) and on pinprick pain ratings. RESULTS The noxious heat stimulation induced robust mechanical hyperalgesia with a significant increase in PEP and SSR amplitudes (p < 0.001) in the area of secondary hyperalgesia. Furthermore, PEP and SSR habituation were reduced (p < 0.001) after experimentally induced central sensitization. CONCLUSIONS The findings demonstrate that combined recordings of PEPs and SSRs are sensitive to objectify experimentally induced central sensitization and may have a great potential to reveal its presence in clinical pain conditions. Corroborating current pain phenotyping with pain-autonomic markers has the potential to unravel central sensitization along the nociceptive neuraxis and might provide a framework for mechanistically founded therapies. SIGNIFICANCE Our findings provide evidence that combined recordings of sympathetic skin responses (SSRs) and pinprick evoked potentials (PEPs) might be able to unmask central sensitization induced through a well-established experimental pain model in healthy individuals. As such, these novel readouts of central sensitization might attain new insights towards complementing clinical pain phenotyping.
Collapse
Affiliation(s)
- Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Neuropathic pain in spinal cord injury: topical analgesics as a possible treatment. Spinal Cord Ser Cases 2020; 6:73. [PMID: 32792476 DOI: 10.1038/s41394-020-00321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY DESIGN Review of the literature and semi-structured interviews. OBJECTIVE To explore the possible use of topical analgesics for the treatment of neuropathic pain (NP) in spinal cord injury (SCI). SETTING Institute for Neuropathic Pain, Soest, The Netherlands. METHODS A review was performed of studies on topical analgesics for SCI-related NP published up to May 2019. In addition, eight persons with SCI-related NP who were treated with topical analgesics were interviewed in a semi-structured interview on their experience with topical analgesics. RESULTS Seven studies (five case reports and two case series) were found that evaluated the use of topical analgesics for SCI-related NP. None of the studies used a control treatment. Topical analgesics included baclofen, ketamine, lidocaine, capsaicin, and isosorbide dinitrate. All studies reported a decrease in NP over time. Persons interviewed were 49-72 years of age and all but one had an incomplete SCI. They used topical agents containing phenytoin, amitriptyline, baclofen, ketamine or loperamide. All showed a decrease in pain of at least 3 points on the 11-point numeric rating scale during this treatment. DISCUSSION/CONCLUSIONS Evidence on the use of topical analgesics in SCI is scarce. Case reports, case series and interviews suggest that the use of topical analgesics can be beneficial in treating SCI-related NP. Placebo-controlled studies are required to investigate the effect of topical analgesics on SCI-related NP.
Collapse
|