1
|
Ehlers VL, Sadler KE, Stucky CL. Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain 2023; 164:1874-1886. [PMID: 36897169 PMCID: PMC10363186 DOI: 10.1097/j.pain.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2023]
Abstract
ABSTRACT Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | |
Collapse
|
2
|
Pathophysiological characterization of the Townes mouse model for sickle cell disease. Transl Res 2023; 254:77-91. [PMID: 36323381 DOI: 10.1016/j.trsl.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
A deeper pathophysiologic understanding of available mouse models of sickle cell disease (SCD), such as the Townes model, will help improve preclinical studies. We evaluated groups of Townes mice expressing either normal adult human hemoglobin (HbA), sickle cell trait (HbAS), or SCD (HbS), comparing younger versus older adults, and females versus males. We obtained hematologic parameters in steady-state and hypoxic conditions and evaluated metabolic markers and cytokines from serum. Kidney function was evaluated by measuring the urine protein/creatinine ratio and urine osmolality. In vivo studies included von Frey assay, non-invasive plethysmography, and echocardiography. Histopathological evaluations were performed in lung, liver, spleen, and kidney tissues. HbS mice displayed elevated hemolysis markers and white blood cell counts, with some increases more pronounced in older adults. After extended in vivo hypoxia, hemoglobin, platelet counts, and white blood cell counts decreased significantly in HbS mice, whereas they remained stable in HbA mice. Cytokine analyses showed increased TNF-alpha in HbS mice. Kidney function assays revealed worsened kidney function in HbS mice. The von Frey assay showed a lower threshold to response in the HbS mice than controls, with more noticeable differences in males. Echocardiography in HbS mice suggested left ventricular hypertrophy and dilatation. Plethysmography suggested obstructive lung disease and inflammatory changes in HbS mice. Histopathological studies showed vascular congestion, increased iron deposition, and disruption of normal tissue architecture in HbS mice. These data correlate with clinical manifestations in SCD patients and highlight analyses and groups to be included in preclinical therapeutic studies.
Collapse
|
3
|
Vincenzi M, Milella MS, D’Ottavio G, Caprioli D, Reverte I, Maftei D. Targeting Chemokines and Chemokine GPCRs to Enhance Strong Opioid Efficacy in Neuropathic Pain. Life (Basel) 2022; 12:life12030398. [PMID: 35330149 PMCID: PMC8955776 DOI: 10.3390/life12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.
Collapse
Affiliation(s)
- Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.V.); (I.R.)
| | - Michele Stanislaw Milella
- Toxicology and Poison Control Center Unit, Department of Emergency, Anesthesia and Critical Care, Policlinico Umberto I Hospital-Sapienza University of Rome, 00161 Rome, Italy;
| | - Ginevra D’Ottavio
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ingrid Reverte
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Correspondence: (M.V.); (I.R.)
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
| |
Collapse
|
4
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Farrell AT, Panepinto J, Carroll CP, Darbari DS, Desai AA, King AA, Adams RJ, Barber TD, Brandow AM, DeBaun MR, Donahue MJ, Gupta K, Hankins JS, Kameka M, Kirkham FJ, Luksenburg H, Miller S, Oneal PA, Rees DC, Setse R, Sheehan VA, Strouse J, Stucky CL, Werner EM, Wood JC, Zempsky WT. End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain. Blood Adv 2019; 3:3982-4001. [PMID: 31809538 PMCID: PMC6963237 DOI: 10.1182/bloodadvances.2019000882] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
To address the global burden of sickle cell disease (SCD) and the need for novel therapies, the American Society of Hematology partnered with the US Food and Drug Administration to engage the work of 7 panels of clinicians, investigators, and patients to develop consensus recommendations for clinical trial end points. The panels conducted their work through literature reviews, assessment of available evidence, and expert judgment focusing on end points related to: patient-reported outcomes (PROs), pain (non-PROs), the brain, end-organ considerations, biomarkers, measurement of cure, and low-resource settings. This article presents the findings and recommendations of the PROs, pain, and brain panels, as well as relevant findings and recommendations from the biomarkers panel. The panels identify end points, where there were supporting data, to use in clinical trials of SCD. In addition, the panels discuss where further research is needed to support the development and validation of additional clinical trial end points.
Collapse
Affiliation(s)
| | - Julie Panepinto
- Pediatric Hematology, Medical College of Wisconsin/Children's Wisconsin, Milwaukee, WI
| | - C Patrick Carroll
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Ankit A Desai
- Krannert Institute of Cardiology, Indiana University, Bloomington, IN
| | - Allison A King
- Division of Hematology and Oncology in Pediatrics and Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert J Adams
- Department of Neurology, Medical University of South Carolina, Charleston, SC
| | | | - Amanda M Brandow
- Pediatric Hematology, Medical College of Wisconsin/Children's Wisconsin, Milwaukee, WI
| | - Michael R DeBaun
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences
- Department of Neurology, and
- Department of Psychiatry, School of Medicine, Vanderbilt University, Nashville, TN
| | - Kalpna Gupta
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN
| | - Jane S Hankins
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Michelle Kameka
- Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL
| | - Fenella J Kirkham
- Developmental Neurosciences Unit and
- Biomedical Research Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Harvey Luksenburg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - David C Rees
- Department of Haematological Medicine, King's College Hospital, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John Strouse
- Division of Hematology, Department of Medicine, and
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Ellen M Werner
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John C Wood
- Children's Hospital Los Angeles, Los Angeles, CA; and
| | - William T Zempsky
- Department of Pediatrics, Connecticut Children's/School of Medicine, University of Connecticut, Hartford, CT
| |
Collapse
|
6
|
Children and adolescents with sickle cell disease have worse cold and mechanical hypersensitivity during acute painful events. Pain 2019; 160:407-416. [PMID: 30247266 DOI: 10.1097/j.pain.0000000000001407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sickle cell disease (SCD) pain associates with cold temperature and touch. Patients and murine models with SCD have baseline thermal and mechanical pain. In SCD mice, the baseline hypersensitivity is exacerbated by experimental vaso-occlusive crises. We hypothesized that patients with SCD will similarly experience increased hypersensitivity to thermal and mechanical stimuli during acute painful events compared with baseline health. We conducted a prospective study of 24 patients with SCD aged 7 to 19 years. Patients underwent quantitative sensory testing to thermal (cold/heat) and mechanical stimuli on the thenar eminence of the nondominant hand (glabrous skin) and the lateral dorsum of the foot (hairy skin) during baseline health and within 48 hours of hospitalization for acute pain. Primary outcomes were changes in: (1) cold pain threshold (°C), (2) heat pain threshold (°C), and (3) mechanical pain threshold (g). Median age was 10.5 (interquartile range [IQR] 9-14.8) years, 67% were females, and 92% were on hydroxyurea. Patients with SCD had increased cold pain sensitivity in the hand during hospitalization compared with baseline (25.2°C [IQR 18.4-27.5°C] vs 21.3°C [IQR 4.9-26.2°C]; P = 0.011) and increased mechanical pain sensitivity in the foot during hospitalization (0.32 g [IQR 0.09-1.1 g] vs 1.7 g [IQR 0.4-8.3 g]; P = 0.003). There were no differences in heat pain sensitivity. The increased cold (P = 0.02) and mechanical (P = 0.0016) pain sensitivity during hospitalization persisted after adjusting for age, sex, hydroxyurea use, opioid consumption, and numeric pain score. Thus, cold and mechanical pain is significantly worse during an acute SCD painful event as compared to baseline health in patients with SCD.
Collapse
|
7
|
Akgün E, Lunzer MM, Portoghese PS. Combined Glia Inhibition and Opioid Receptor Agonism Afford Highly Potent Analgesics without Tolerance. ACS Chem Neurosci 2019; 10:2004-2011. [PMID: 30110531 DOI: 10.1021/acschemneuro.8b00323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Commonly prescribed opioid analgesics produce tolerance upon chronic use due in part to induction of hyperalgesia. Given that two reported bivalent ligands (MMG22 and MCC22) produce potent antinociception without tolerance only in inflamed mice, we have investigated the possible cellular and receptor targets of these ligands. The selective microglia inhibitors, minocycline and SB290157, antagonized intrathecal (i.t.) MCC22 antinociception orders of magnitude more potently than MMG22, suggesting that MCC22 selectively targets activated microglia. The astrocyte toxin, l-α-aminoadipic acid antagonized MMG22 antinociception 126-fold without reducing the potency of MCC22, indicating that activated astrocytes are targets of MMG22. MK-801 and Ro25-6981 antagonism of MMG22 antinociception, but not MCC22, is consistent with selective inhibition of activated NMDAR in astrocytes. The antinociception produced by i.t. MMG22 or MCC22 were both antagonized by the selective mu opioid receptor antagonist, β-FNA, implicating interaction of these ligands with MOR in spinal afferent neurons. MCC22 antinociception was potently blocked by kainate or AMPA ion channel antagonists (LY382884; NBQX), in contrast to MMG22. It is concluded that i.t. MMG22 and MCC22 produce exceptional antinociception via potent inhibition of activated spinal glia, thereby leading to desensitization of spinal neurons and enhanced activation of neuronal MOR. Thus, the present study suggests a new approach to treatment of chronic inflammatory pain without tolerance through a single molecular entity that simultaneously inhibits activated glia and stimulates MOR in spinal neurons.
Collapse
Affiliation(s)
- Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Cataldo G, Erb SJ, Lunzer MM, Luong N, Akgün E, Portoghese PS, Olson JK, Simone DA. The bivalent ligand MCC22 potently attenuates hyperalgesia in a mouse model of cisplatin-evoked neuropathic pain without tolerance or reward. Neuropharmacology 2019; 158:107598. [PMID: 30970233 DOI: 10.1016/j.neuropharm.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Cisplatin and other widely employed platinum-based anticancer agents produce chemotherapy-induced peripheral neuropathy (CIPN) that often results in pain and hyperalgesia that are difficult to manage. We investigated the efficacy of a novel bivalent ligand, MCC22, for the treatment of pain arising from CIPN. MCC22 consists of mu opioid receptor (MOR) agonist and chemokine receptor 5 (CCR5) antagonist pharmacophores connected through a 22-atom spacer and was designed to target a putative MOR-CCR5 heteromer localized in pain processing areas. Mice received once daily intraperitoneal (i.p.) injections of cisplatin (1 mg/kg) for seven days and behavior testing began 7 days later. Cisplatin produced mechanical hyperalgesia that was decreased dose-dependently by MCC22 given by intrathecal (ED50 = 0.004 pmol) or i.p. (3.07 mg/kg) routes. The decrease in hyperalgesia was associated with decreased inflammatory response by microglia in the spinal cord. Unlike morphine, MCC22 given daily for nine days did not exhibit tolerance to its analgesic effect and its characteristic antihyperalgesic activity was fully retained in morphine-tolerant mice. Furthermore, MCC22 did not alter motor function and did not exhibit rewarding properties. Given the exceptional potency of MCC22 without tolerance or reward, MCC22 has the potential to vastly improve management of chronic pain due to CIPN. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Samuel J Erb
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy University of Minnesota, Minneapolis, MN, USA
| | - Nhungoc Luong
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy University of Minnesota, Minneapolis, MN, USA
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy University of Minnesota, Minneapolis, MN, USA
| | - Julie K Olson
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Machelska H, Celik MÖ. Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 2018; 9:1388. [PMID: 30555325 PMCID: PMC6282113 DOI: 10.3389/fphar.2018.01388] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|