1
|
Chang YS, Kan YY, Chao TN, Chen YH, Hsieh YL. Reversing Neuronal Klotho Dysfunction-Mediated Diabetic Neuropathy Through 16:8 Intermittent Fasting. Mol Neurobiol 2025:10.1007/s12035-025-04849-x. [PMID: 40120043 DOI: 10.1007/s12035-025-04849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Insulin supply is the golden standard for type 1 diabetes mellitus (T1DM) therapy. Is there a drug-reduction application for reversing glucose metabolism disabled and diabetic neuropathy (DN), and is it suitable for the young and elderly populations? Reducing T1DM-associated DN, and maintaining glucose metabolism require using the anti-aging gene Klotho to regulate specific signaling cascades. This study applied five 16:8 intermittent fasting (16-h fasting, 8-h eating; 168if) protocols by different executing times to young and elderly diabetic mice to evaluate whether 168if is age-dependent and how it alters Klotho-related signaling molecules. Blood glucose levels were efficiently reduced when 168if was implemented in the early stage of T1DM onset (DNf group) of young and elderly mice. Another four groups failed to reduce blood sugar. However, the DNf protocol was unsuitable for diabetic elderly mice because it posed a higher mortality risk for this population. Young DNf mice exhibited reduced thermal hyperalgesia and mechanical allodynia and reversed Klotho downregulation and protein kinase C epsilon (PKCε) upregulation compared with DN mice. Furthermore, young DNf mice exhibited normalization of fibroblast growth factor receptor 1 (FGFR1) and nuclear factor κB (NF-κB) expression, which is involved in Klotho-related glucose metabolism and anti-inflammation. The expression densities of PKCε, Klotho, FGFR1, and NF-κB were linear to neuropathic manifestations. This study demonstrated the effectiveness of 168if application in the early stage of T1DM onset, a straightforward and convenient dietary control method, as a blood glucose control for achieving pharmaceutical reduction and relieving neuropathic pain in young T1DM patients.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Ning Chao
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Hsuan Chen
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
2
|
Gao N, Li M, Wang W, Liu Z, Guo Y. The dual role of TRPV1 in peripheral neuropathic pain: pain switches caused by its sensitization or desensitization. Front Mol Neurosci 2024; 17:1400118. [PMID: 39315294 PMCID: PMC11417043 DOI: 10.3389/fnmol.2024.1400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role in peripheral neuropathic pain (NeuP) by acting as a "pain switch" through its sensitization and desensitization. Hyperalgesia, commonly resulting from tissue injury or inflammation, involves the sensitization of TRPV1 channels, which modulates sensory transmission from primary afferent nociceptors to spinal dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved in pain modulation through pathways including reactive oxygen species and cytokine production. TRPV1's interaction with TRPA1 channels further influences chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, can induce analgesia through receptor desensitization, while TRPV1 antagonists and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid modulation of TRPV1 provides another potential pathway for alleviating neuropathic pain. This review summarizes recent preclinical research on TRPV1 in association with peripheral NeuP.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kan YY, Chang YS, Liao WC, Chao TN, Hsieh YL. Roles of Neuronal Protein Kinase Cε on Endoplasmic Reticulum Stress and Autophagic Formation in Diabetic Neuropathy. Mol Neurobiol 2024; 61:2481-2495. [PMID: 37906389 PMCID: PMC11043183 DOI: 10.1007/s12035-023-03716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
In chronic diabetic neuropathy (DN), the cellular mechanisms of neuropathic pain remain unclear. Protein kinase C epsilon (PKCε) is an intracellular signaling molecule that mediates chronic pain. This paper addresses the long-term upregulated PKCε in DN associated with endoplasmic reticulum (ER) stress and autophagic formation and correlates to chronic neuropathic pain. We found that thermal hyperalgesia and mechanical allodynia course development were associated with PKCε upregulation after DN but not skin denervation. Pathologically, PKCε upregulation was associated with the expression of inositol-requiring enzyme 1α (IRE1α; ER stress-related molecule) and ubiquitin D (UBD), which are involved in the ubiquitin-proteasome system (UPS)-mediated degradation of misfolded proteins under ER stress. Manders coefficient analyses revealed an approximately 50% colocalized ratio for IRE1α(+):PKCε(+) neurons (0.34-0.48 for M1 and 0.40-0.58 for M2 Manders coefficients). The colocalized coefficients of UBD/PKCε increased (M1: 0.33 ± 0.03 vs. 0.77 ± 0.04, p < 0.001; M2: 0.29 ± 0.05 vs. 0.78 ± 0.04; p < 0.001) in the acute DN stage. In addition, the regulatory subunit p85 of phosphoinositide 3-kinase, which is involved in regulating insulin signaling, exhibited similar expression patterns to those of IRE1α and UBD; for example, it had highly colocalized ratios to PKCε. The ultrastructural examination further confirmed that autophagic formation was associated with PKCε upregulation. Furthermore, PKCεv1-2, a PKCε specific inhibitor, reverses neuropathic pain, ER stress, and autophagic formation in DN. This finding suggests PKCε plays an upstream molecule in DN-associated neuropathic pain and neuropathology and could provide a potential therapeutic target.
Collapse
Affiliation(s)
- Yu-Yu Kan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wen-Chieh Liao
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Ning Chao
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
4
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Shih YV, Kingsley D, Newman H, Hoque J, Gupta A, Lascelles BDX, Varghese S. Multi-Functional Small Molecule Alleviates Fracture Pain and Promotes Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303567. [PMID: 37939302 PMCID: PMC10754086 DOI: 10.1002/advs.202303567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Bone injuries such as fractures are one major cause of morbidities worldwide. A considerable number of fractures suffer from delayed healing, and the unresolved acute pain may transition to chronic and maladaptive pain. Current management of pain involves treatment with NSAIDs and opioids with substantial adverse effects. Herein, we tested the hypothesis that the purine molecule, adenosine, can simultaneously alleviate pain and promote healing in a mouse model of tibial fracture by targeting distinctive adenosine receptor subtypes in different cell populations. To achieve this, a biomaterial-assisted delivery of adenosine is utilized to localize and prolong its therapeutic effect at the injury site. The results demonstrate that local delivery of adenosine inhibited the nociceptive activity of peripheral neurons through activation of adenosine A1 receptor (ADORA1) and mitigated pain as demonstrated by weight bearing and open field movement tests. Concurrently, local delivery of adenosine at the fracture site promoted osteogenic differentiation of mesenchymal stromal cells through adenosine A2B receptor (ADORA2B) resulting in improved bone healing as shown by histological analyses and microCT imaging. This study demonstrates the dual role of adenosine and its material-assisted local delivery as a feasible therapeutic approach to treat bone trauma and associated pain.
Collapse
Affiliation(s)
- Yu‐Ru V. Shih
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - David Kingsley
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Hunter Newman
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
| | - Jiaul Hoque
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
| | - Ankita Gupta
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - B. Duncan X. Lascelles
- Translational Research in Pain ProgramDepartment of Clinical SciencesCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
- Thurston Arthritis CenterUniversity of North Carolina School of MedicineChapel HillNC27599USA
- Center for Translational Pain MedicineDepartment of AnesthesiologyDuke University School of MedicineDurhamNC27710USA
- Comparative Pain Research and Education CenterCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNC27607USA
| | - Shyni Varghese
- Department of Orthopaedic SurgeryDuke University School of MedicineDurhamNC27710USA
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNC27710USA
- Department of Biomedical EngineeringDuke UniversityDurhamNC27710USA
| |
Collapse
|
6
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
7
|
Zhang L, Chen X, Li M, Lv R, Gu B, Chen Z. Activation of the adenosine A1 receptor in the lumbosacral spinal cord improves bladder overactivity in rats with cystitis induced by cyclophosphamide. Int Urol Nephrol 2023; 55:2183-2191. [PMID: 37330931 DOI: 10.1007/s11255-023-03659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE To investigate the effect of intrathecal administration of CCPA, an adenosine A1 receptor agonist, on voiding function in rats with cystitis induced by cyclophosphamide (CYP). METHODS Thirty 8-week-old Sprague Dawley rats were randomly divided into a control group (n = 15) and a cystitis group (n = 15). Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg, dissolved in physiological saline) in rats. Control rats were injected intraperitoneally with physiological saline. The PE10 catheter reached the level of L6-S1 spinal cord through L3-4 intervertebral space for intrathecal injection. Forty-eight hours after intraperitoneal injection, urodynamic tests were conducted to observe the effect of intrathecal administration of 10% dimethylsulfoxide (vehicle) and 1 nmol CCPA on micturition parameters, including basal pressure (BP), threshold pressure (TP), maximal voiding pressure (MVP), intercontraction interval (ICI), voided volume (VV), residual volume (RV), bladder capacity (BC), and voiding efficiency (VE). Histological changes of the bladder of cystitis rats were studied through hematoxylin-eosin staining (HE staining). Moreover, Western blot and immunofluorescence were used to study the expression of adenosine A1 receptor in the L6-S1 dorsal spinal cord in both groups of rats. RESULTS HE staining revealed submucosal hemorrhage, edema, and inflammatory cell infiltration in the bladder wall of cystitis rats. The urodynamic test showed significant increase in BP, TP, MVP and RV in cystitis rats, while ICI, VV, BC and VE decreased significantly, indicating bladder overactivity. CCPA inhibited the micturition reflex in both control and cystitis rats, and significantly increased TP, ICI, VV, BC, and VE, but had no significant effect on BP, MVP and RV. Western blot and immunofluorescence showed that there was no significant difference in the expression of adenosine A1 receptor in the L6-S1 dorsal spinal cord between the control and cystitis rats. CONCLUSION The findings of this study suggest that intrathecal administration of the adenosine A1 receptor agonist CCPA alleviates CYP-induced bladder overactivity. Furthermore, our results indicate that the adenosine A1 receptor in the lumbosacral spinal cord may be a promising target for treatment of bladder overactivity.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xun Chen
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Mingzhuo Li
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rong Lv
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Baojun Gu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Zhong Chen
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
8
|
Xu G, Zhang S, Zheng L, Hu Z, Cheng L, Chen L, Li J, Shi Z. In silico identification of A1 agonists and A2a inhibitors in pain based on molecular docking strategies and dynamics simulations. Purinergic Signal 2023; 19:87-97. [PMID: 34677752 PMCID: PMC9984648 DOI: 10.1007/s11302-021-09808-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Most recently, the adenosine is considered as one of the most promising targets for treating pain, with few side effects. It exists in the central nervous system, and plays a key role in nociceptive afferent pathway. It is reported that the A1 receptor (A1R) could inhibit Ca2+ channels to reduce the pain like analgesic mechanism of morphine. And, A2a receptor (A2aR) was reported to enhance the accumulation of AMP (cAMP) and released peptides from sensory neurons, resulting in constitutive activation of pain. Much evidence showed that A1R and A2aR could be served as the interesting targets for the treatment of pain. Herein, virtual screening was utilized to identify the small molecule compounds towards A1R and A2aR, and top six molecules were considered as candidates via amber scores. The molecular dynamic (MD) simulations and molecular mechanics/generalized born surface area (MM/GBSA) were employed to further analyze the affinity and binding stability of the six molecules towards A1R and A2aR. Moreover, energy decomposition analysis showed significant residues in A1R and A2aR, including His1383, Phe1276, and Glu1277. It provided basics for discovery of novel agonists and antagonists. Finally, the agonists of A1R (ZINC19943625, ZINC13555217, and ZINC04698406) and inhibitors of A2aR (ZINC19370372, ZINC20176051, and ZINC57263068) were successfully recognized. Taken together, our discovered small molecules may serve as the promising candidate agents for future pain research.
Collapse
Affiliation(s)
- Guangya Xu
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Shutao Zhang
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Lulu Zheng
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Zhongjiao Hu
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China.,School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Lijia Cheng
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Lvlin Chen
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China
| | - Jun Li
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China. .,Sichuan Wuyan Biotech Co. Ltd Company, Chengdu, 610041, China.
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated Hospital & College of Basic Medicine & College of Food and Biological Engineering, Chengdu University, Chengdu, 610081, China. .,School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
9
|
Hao JW, Qiao WL, Li Q, Wei S, Li XM, Liu TT, Qiu CY, Hu WP. A1 Adenosine Receptor Activation Inhibits P2X3 Receptor-Mediated ATP Currents in Rat Dorsal Root Ganglion Neurons. Mol Neurobiol 2022; 59:7025-7035. [PMID: 36074232 DOI: 10.1007/s12035-022-03019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Purinergic signaling is involved in multiple pain processes. P2X3 receptor is a key target in pain therapeutics, while A1 adenosine receptor signaling plays a role in analgesia. However, it remains unclear whether there is a link between them in pain. The present results showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) concentration dependently suppressed P2X3 receptor-mediated and α,β-methylene-ATP (α,β-meATP)-evoked inward currents in rat dorsal root ganglion (DRG) neurons. CPA significantly decreased the maximal current response to α,β-meATP, as shown a downward shift of the concentration-response curve for α,β-meATP. CPA suppressed ATP currents in a voltage-independent manner. Inhibition of ATP currents by CPA was completely prevented by the A1 adenosine receptor antagonist KW-3902, and disappeared after the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, or the cAMP analog 8-Br-cAMP. Moreover, CPA suppressed the membrane potential depolarization and action potential bursts, which were induced by α,β-meATP in DRG neurons. Finally, CPA relieved α,β-meATP-induced nociceptive behaviors in rats by activating peripheral A1 adenosine receptors. These results indicated that CPA inhibited the activity of P2X3 receptors in rat primary sensory neurons by activating A1 adenosine receptors and its downstream cAMP signaling pathway, revealing a novel peripheral mechanism underlying its analgesic effect.
Collapse
Affiliation(s)
- Jia-Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.,School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wen-Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.,School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.,School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.,School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China. .,Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Zhou X, Dai W, Qin Y, Qi S, Zhang Y, Tian W, Gu X, Zheng B, Xiao J, Yu W, Chen X, Su D. Electroacupuncture relieves neuropathic pain by inhibiting degradation of the ecto-nucleotidase PAP in the dorsal root ganglions of CCI mice. Eur J Pain 2022; 26:991-1005. [PMID: 35138669 DOI: 10.1002/ejp.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS EA treatment alleviated CCI surgery induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Wanbing Dai
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yi Qin
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Siyi Qi
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yizhe Zhang
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weitian Tian
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xiyao Gu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Beijie Zheng
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Jie Xiao
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weifeng Yu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xuemei Chen
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Diansan Su
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| |
Collapse
|
11
|
Jung SM, Peyton L, Essa H, Choi DS. Adenosine receptors: Emerging non-opioids targets for pain medications. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100087. [PMID: 35372716 PMCID: PMC8971635 DOI: 10.1016/j.ynpai.2022.100087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Physical and emotional pain deteriorates the quality of well-being. Also, numerous non-invasive and invasive treatments for diagnosed diseases such as cancer medications and surgical procedures cause various types of pain. Despite the multidisciplinary approaches available to manage pain, the unmet needs for medication with minimal side effects are substantial. Especially with the surge of opioid crisis during the last decades, non-opioid analgesics may reduce life-threatening overdosing and addictive liability. Although many clinical trials supported the potential potency of cannabis and cannabidiol (CBD) in pain management or treatment, the long-term benefits of cannabis or CBD are still not evident. At the same time, growing evidence shows the risk of overusing cannabis and CBD. Therefore, it is urgent to develop novel analgesic medications that minimize side effects. All four well-identified adenosine receptors, A1, A2A, A2B, and A3, are implicated in pain. Recently, a report demonstrated that an adenosine A1R-specific positive allosteric modulator (PAM) is a potent analgesic without noticeable side effects. Also, several A3R agonists are being considered as promising analgesic agent. However, the importance of adenosine in pain is relatively underestimated. To help readers understand, first, we will summarize the historical perspective of the adenosine system in preclinical and clinical studies. Then, we will discuss possible interactions of adenosine and opioids or the cannabis system focusing on pain. Overall, this review will provide the potential role of adenosine and adenosine receptors in pain treatment.
Collapse
Affiliation(s)
- Soo-Min Jung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
12
|
Wei S, Hao JW, Qiao WL, Li Q, Liu TT, Qiu CY, Hu WP. Suppression of ASIC activity by the activation of A1 adenosine receptors in rat primary sensory neurons. Neuropharmacology 2021; 205:108924. [PMID: 34919904 DOI: 10.1016/j.neuropharm.2021.108924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022]
Abstract
Peripheral A1 adenosine receptor signaling has been shown to have analgesic effects in a variety of pain conditions. However, it is not yet fully elucidated for the precise molecular mechanisms. Acid sensing ion channels (ASICs) are expressed predominantly in nociceptive sensory neurons responding to protons. Given that both A1 adenosine receptors and ASICs are present in dorsal root ganglia (DRG) neurons, we therefore investigated whether there was a cross-talk between the two types of receptors. Herein, electrophysiological recordings showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) suppressed acid-induced currents and action potentials, which were mediated by ASICs, in rat DRG neurons. CPA inhibited the maximum response to protons, as shown a downward shift of concentration-response curve for protons. The CPA-induced suppression of ASIC currents was blocked by the A1 adenosine receptor antagonist KW-3902 and also prevented by intracellular application of the Gi/o-protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, and the cAMP analog 8-Br-cAMP. Finally, intraplantar pretreatment of CPA dose-dependently relieved acid-induced nociceptive responses in rats through peripheral A1 adenosine receptors. These results suggested that CPA suppressed ASICs via A1 adenosine receptors and intracellular Gi/o-proteins and cAMP signaling cascades in rat DRG neurons, which was a novel potential mechanism underlying analgesia of peripheral A1 adenosine receptors.
Collapse
Affiliation(s)
- Shuang Wei
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Jia-Wei Hao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wen-Long Qiao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Qing Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China; Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, PR China.
| |
Collapse
|
13
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
14
|
Perreault T, Fernández-de-las-Peñas C, Cummings M, Gendron BC. Needling Interventions for Sciatica: Choosing Methods Based on Neuropathic Pain Mechanisms-A Scoping Review. J Clin Med 2021; 10:2189. [PMID: 34069357 PMCID: PMC8158699 DOI: 10.3390/jcm10102189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sciatica is a condition often accompanied by neuropathic pain (NP). Acupuncture and dry needling are common treatments for pain, and the current literature supports acupuncture as an effective treatment for sciatica. However, it is unknown if the mechanisms of NP are considered in the delivery of needling interventions for sciatica. Our objective was to assess the efficacy and the effectiveness of needling therapies, to identify common needling practices and to investigate if NP mechanisms are considered in the treatment of sciatica. A scoping review of the literature on needling interventions for sciatica and a review of the literature on mechanisms related to NP and needling interventions were performed. Electronic literature searches were conducted on PubMed, MEDLINE, CINAHL and Cochrane Database of Systematic Reviews from inception to August, 2020 to identify relevant papers. Reference lists of included papers were also manually screened and a related-articles search through PubMed was performed on all included articles. Mapping of the results included description of included studies, summary of results, and identification of gaps in the existing literature. Ten articles were included. All studies used acupuncture for the treatment of sciatica, no studies on dry needling were identified. Current evidence supports the efficacy and effectiveness of acupuncture for sciatica, however, no studies considered underlying NP mechanisms in the acupuncture approach for sciatica and the rationale for using acupuncture was inconsistent among trials. This review reveals that neuropathic pain mechanisms are not routinely considered in needling approaches for patients with sciatica. Studies showed acupuncture to be an effective treatment for sciatic pain, however, further research is warranted to explore if needling interventions for sciatica and NP would be more effective if NP mechanisms are considered.
Collapse
Affiliation(s)
- Thomas Perreault
- Northern New England Spine Center, Department of Physical Therapy, Wentworth Douglass Hospital, Dover, NH 03820, USA;
| | - César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
- Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Mike Cummings
- British Medical Acupuncture Society, London WC1N 3HR, UK;
| | - Barry C. Gendron
- Northern New England Spine Center, Department of Physical Medicine and Rehabilitation, Musculoskeletal Health and Rehabilitation, Wentworth Douglass Hospital, Dover, NH 03820, USA;
| |
Collapse
|
15
|
Abstract
Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The "purinome" encompasses 4 G-protein-coupled receptors (GPCRs) for adenosine, 8 GPCRs activated by nucleotides, 7 adenosine 5'-triphosphate-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain. Adenosine and its analogues potently suppress nociception in preclinical models by activating A1 and/or A3 adenosine receptors (ARs), but safely harnessing this pathway to clinically treat pain has not been achieved. Both A2AAR agonists and antagonists are efficacious in pain models. Highly selective A3AR agonists offer a novel approach to treat chronic pain. We have explored the structure activity relationship of nucleoside derivatives at this subtype using a computational structure-based approach. Novel A3AR agonists for pain control containing a bicyclic ring system (bicyclo [3.1.0] hexane) in place of ribose were designed and screened using an in vivo phenotypic model, which reflected both pharmacokinetic and pharmacodynamic parameters. High specificity (>10,000-fold selective for A3AR) was achieved with the aid of receptor homology models based on related GPCR structures. These A3AR agonists are well tolerated in vivo and highly efficacious in models of chronic neuropathic pain. Furthermore, signaling molecules acting at P2X3, P2X4, P2X7, and P2Y12Rs play critical roles in maladaptive pain neuroplasticity, and their antagonists reduce chronic or inflammatory pain, and, therefore, purine receptor modulation is a promising approach for future pain therapeutics. Structurally novel antagonists for these nucleotide receptors were discovered recently.
Collapse
|
16
|
Release of adenosine-induced immunosuppression: Comprehensive characterization of dual A 2A/A 2B receptor antagonist. Int Immunopharmacol 2021; 96:107645. [PMID: 33894488 DOI: 10.1016/j.intimp.2021.107645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/27/2021] [Accepted: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Immunosuppression is one of the main mechanisms facilitating tumor expansion. It may be driven by immune checkpoint protein expression, anti-inflammatory cytokine secretion or enhanced metabolic enzyme production, leading to the subsequent build-up of metabolites such as adenosine. Under physiological conditions, adenosine prevents the development of tissue damage resulting from a prolonged immune response; the same mechanism might be employed by tumor tissue to promote immunosuppression. Immune cells expressing A2A and A2B adenosine receptors present in an adenosine-rich environment have suppressed effector functions, such as cytotoxicity, proinflammatory cytokine release, antigen presentation and others, making them inert to cancer cells. This study was designed to investigate the dual antagonist potential of SEL330-639 to abolish adenosine-driven immunosuppression. SEL330-639 has slow dissociation kinetics. It inhibits cAMP production in human CD4+ cells, CD8+ cells and moDCs, which leads to diminished CREB phosphorylation and restoration of antitumor cytokine production (IL-2, TNFα, IL-12) in multiple primary human immune cells. The aforementioned results were additionally validated by gene expression analysis and functional assays in which NK cell line cytotoxicity was recovered by SEL330-639. Adenosine-driven immunosuppression is believed to preclude the effectiveness of immune checkpoint inhibitor therapies. Hence, there is an urgent need to develop new immuno-oncological strategies. Here, we comprehensively characterize SEL330-639, a novel dual A2A/A2B receptor antagonist effective in both lymphoid and myeloid cell populations with nanomolar potency. Due to its tight binding to the A2A and A2B receptors, this binding is sustained even at high adenosine concentrations mimicking the upper limit of the range of adenosine levels observed in the tumor microenvironment.
Collapse
|
17
|
Luongo L, Guida F, Maione S, Jacobson KA, Salvemini D. Adenosine Metabotropic Receptors in Chronic Pain Management. Front Pharmacol 2021; 12:651038. [PMID: 33935761 PMCID: PMC8085424 DOI: 10.3389/fphar.2021.651038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Livio Luongo
- Division of Pharmacology, Department of Experimental Medicine, Università della Campania "L. Vanvitelli", Caserta, Italy.,IRCSS, Neuromed, Pozzilli, Italy
| | - Francesca Guida
- Division of Pharmacology, Department of Experimental Medicine, Università della Campania "L. Vanvitelli", Caserta, Italy
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, Università della Campania "L. Vanvitelli", Caserta, Italy.,IRCSS, Neuromed, Pozzilli, Italy
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Fang J, Du J, Xiang X, Shao X, He X, Jiang Y, Liu B, Liang Y, Fang J. SNI and CFA induce similar changes in TRPV1 and P2X3 expressions in the acute phase but not in the chronic phase of pain. Exp Brain Res 2021; 239:983-995. [PMID: 33464388 DOI: 10.1007/s00221-020-05988-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Peripheral inflammation and nerve injury usually accompany each other. However, whether inflammatory and neuropathic pain share similar mechanisms at all stages is unknown. TRPV1 and P2X3 are two major ion channels in dorsal root ganglia (DRGs) and are involved in chronic pain. Here, their function and expression in DRGs at different phases of the two types of pain were investigated. Both the paw withdrawal threshold (PWT) and paw withdrawal latency were decreased in rats injected with complete Freud's adjuvant (CFA). However, only the PWT was decreased in rats with spared nerve injury (SNI). CFA increased the magnitude of the TRPV1-mediated Ca2+ response but not the P2X3-mediated Ca2+ response 14 days after injection. Consistent with this result, the P2X3 expression level in CFA rats was increased only at 3 days after injection. SNI surgery increased the magnitudes of the TRPV1- and P2X3-mediated Ca2+ responses and upregulated both TRPV1 and P2X3 expression in lumbar DRGs. The distributions of TRPV1 and P2X3 in DRGs after modeling were observed, and TRPV1 was found to be highly expressed mainly in the L4-L5 DRGs in CFA rats and in the L5-L6 DRGs in SNI rats. P2X3 was highly expressed in the L4-L6 DRGs in CFA rats 3 days after injection but was only highly expressed in the L4 DRG 14 days after modeling. On the other hand, SNI promoted the P2X3 expression L4-L5 DRGs 3 days after surgery, but only L6 DRG 14 days after modeling. All the results indicate that P2X3 and TPRV1 are involved in inflammatory and neuropathic pain by different expression levels and distributions in the lumbar DRG in the chronic stage.
Collapse
Affiliation(s)
- Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuaner Xiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofeng He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
20
|
Yeh TY, Luo IW, Hsieh YL, Tseng TJ, Chiang H, Hsieh ST. Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 2020; 9:cells9122725. [PMID: 33371371 PMCID: PMC7767346 DOI: 10.3390/cells9122725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain exerts a global burden caused by the lesions in the somatosensory nerve system, including the central and peripheral nervous systems. The mechanisms of nerve injury-induced neuropathic pain involve multiple mechanisms, various signaling pathways, and molecules. Currently, poor efficacy is the major limitation of medications for treating neuropathic pain. Thus, understanding the detailed molecular mechanisms should shed light on the development of new therapeutic strategies for neuropathic pain. Several well-established in vivo pain models were used to investigate the detail mechanisms of peripheral neuropathic pain. Molecular mediators of pain are regulated differentially in various forms of neuropathic pain models; these regulators include purinergic receptors, transient receptor potential receptor channels, and voltage-gated sodium and calcium channels. Meanwhile, post-translational modification and transcriptional regulation are also altered in these pain models and have been reported to mediate several pain related molecules. In this review, we focus on molecular mechanisms and mediators of neuropathic pain with their corresponding transcriptional regulation and post-translational modification underlying peripheral sensitization in the dorsal root ganglia. Taken together, these molecular mediators and their modification and regulations provide excellent targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ti-Yen Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - I-Wei Luo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hostpital, Kaohsiung 80708, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | | | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Brian and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88182); Fax: +886-223915292
| |
Collapse
|
21
|
Shaw S, Uniyal A, Gadepalli A, Tiwari V, Belinskaia DA, Shestakova NN, Venugopala KN, Deb PK, Tiwari V. Adenosine receptor signalling: Probing the potential pathways for the ministration of neuropathic pain. Eur J Pharmacol 2020; 889:173619. [DOI: 10.1016/j.ejphar.2020.173619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
|
22
|
Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. Int J Mol Sci 2020; 21:ijms21228710. [PMID: 33218074 PMCID: PMC7698931 DOI: 10.3390/ijms21228710] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a purine nucleoside, responsible for the regulation of multiple physiological and pathological cellular and tissue functions by activation of four G protein-coupled receptors (GPCR), namely A1, A2A, A2B, and A3 adenosine receptors (ARs). In recent years, extensive progress has been made to elucidate the role of adenosine in pain regulation. Most of the antinociceptive effects of adenosine are dependent upon A1AR activation located at peripheral, spinal, and supraspinal sites. The role of A2AAR and A2BAR is more controversial since their activation has both pro- and anti-nociceptive effects. A3AR agonists are emerging as promising candidates for neuropathic pain. Although their therapeutic potential has been demonstrated in diverse preclinical studies, no AR ligands have so far reached the market. To date, novel pharmacological approaches such as adenosine regulating agents and allosteric modulators have been proposed to improve efficacy and limit side effects enhancing the effect of endogenous adenosine. This review aims to provide an overview of the therapeutic potential of ligands interacting with ARs and the adenosinergic system for the treatment of acute and chronic pain.
Collapse
|
23
|
Dai QX, Huang LP, Mo YC, Yu LN, Du WW, Zhang AQ, Geng WJ, Wang JL, Yan M. Role of spinal adenosine A1 receptors in the analgesic effect of electroacupuncture in a rat model of neuropathic pain. J Int Med Res 2019; 48:300060519883748. [PMID: 31868057 PMCID: PMC7783270 DOI: 10.1177/0300060519883748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the role of spinal adenosine A1 receptors (A1Rs) in the analgesic effects of electroacupuncture (EA) for neuropathic pain. METHODS We performed EA for 30 minutes at the zusanli acupoint in the legs of rats with previously induced chronic constriction injuries and observed the mechanical and thermal pain thresholds 1 hour later. We also examined adenosine levels by high-performance liquid chromatography and A1R expression in the L4-6 spinal cord by western blot analysis. We then injected A1R short interfering RNA (AV-shA1RNA) into the L4-6 spinal cord to downregulate A1R expression and re-examined the mechanical and thermal pain thresholds. RESULTS Adenosine levels and A1R expression in the L4-6 spinal cord were increased at 1 hour after EA. In addition, EA exhibited an analgesic effect that was reversed by AV-shA1RNA. CONCLUSIONS Our results suggest that EA at the zusanli acupoint elicits an analgesic effect against neuropathic pain, mediated by A1Rs in the spinal cord.
Collapse
Affiliation(s)
- Qin-Xue Dai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, China.,Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - Lu-Ping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - Yun-Chang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - Li-Na Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, China
| | - Wen-Wen Du
- Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - An-Qi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - Wu-Jun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - Jun-Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wen Zhou Medical University, Wen Zhou, China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, China
| |
Collapse
|
24
|
Magni G, Ceruti S. The role of adenosine and P2Y receptors expressed by multiple cell types in pain transmission. Brain Res Bull 2019; 151:132-143. [PMID: 30797817 DOI: 10.1016/j.brainresbull.2019.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
The role of extracellular nucleotides and nucleosides as signaling molecules in cell-to-cell communication has now been clearly established. This is particularly true in the central and peripheral nervous system, where purines and pyrimidines are involved in both physiological and pathological interactions between neurons and surrounding glial cells. It can be thus foreseen that the purinergic system could represent a new potential target for the development of effective analgesics, also through the normalization of neuronal functions and the inhibition of glial cell activation. Research in the last 15 years has progressively confirmed this hypothesis, but no purinergic-based analgesics have reach the market so far; in the present review we have collected the more recent discoveries on the role of G protein-coupled P2Y nucleotide and of adenosine receptors expressed by both neurons and glial cells under painful conditions, and we have highlighted some of the challenges that must be faced to translate basic and preclinical studies to clinics.
Collapse
Affiliation(s)
- Giulia Magni
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy.
| |
Collapse
|
25
|
Lin CL, Chang CH, Chang YS, Lu SC, Hsieh YL. Treatment with methyl-β-cyclodextrin prevents mechanical allodynia in resiniferatoxin neuropathy in a mouse model. Biol Open 2019; 8:bio.039511. [PMID: 30578250 PMCID: PMC6361210 DOI: 10.1242/bio.039511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Specialized microdomains which have cholesterol-rich membrane regions contain transient receptor potential vanilloid subtype 1 (TRPV1) are involved in pain development. Our previous studies have demonstrated that the depletion of prostatic acid phosphatase (PAP) – a membrane-bound ectonucleotidase – and disordered adenosine signaling reduce the antinociceptive effect. The role of membrane integrity in the PAP-mediated antinociceptive effect in small-fiber neuropathy remains unclear, especially with respect to whether TRPV1 and PAP are colocalized in the same microdomain which is responsible for PAP-mediated antinociception. Immunohistochemistry was conducted on the dorsal root ganglion to identify the membrane compositions, and pharmacological interventions were conducted using methyl-β-cyclodextrin (MβC) – a membrane integrity disruptor that works by depleting cholesterol – in pure small-fiber neuropathy with resiniferatoxin (RTX). Immunohistochemical evidence indicated that TRPV1 and PAP were highly colocalized with flotillin 1 (66.7%±9.7%) and flotillin 2 (73.7%±6.0%), which reside in part in the microdomain. MβC mildly depleted PAP, which maintained the ability to hydrolyze phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and delayed the development of mechanical allodynia. MβC treatment had no role in thermal transduction and neuronal injury following RTX neuropathy. In summary, this study demonstrated the following: (1) membrane cholesterol depletion preserves PAP-mediated antinociception through PI(4,5)P2 hydrolysis and (2) pain hypersensitivity that develops after TRPV1(+) neuron depletion-mediated neurodegeneration following RTX neuropathy is attributable to the downregulation of PAP analgesic signaling. Summary: The role and mechanism of cholesterol-rich membrane integrity in pain development for small-fiber neuropathy remains unclear. Depletion of membrane cholesterol contents preserves functional PAP profiles and the antinociceptive effect after RTX neuropathy.
Collapse
Affiliation(s)
- Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shui-Chin Lu
- Department of Medical Research, Ultrastructural Laboratory, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
26
|
Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy. J Pain Res 2019; 12:317-326. [PMID: 30679921 PMCID: PMC6338122 DOI: 10.2147/jpr.s186699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Skin denervation that develops in patients with diabetes mellitus as a neuropathic manifestation is known as diabetic peripheral neuropathy (DPN). Skin denervation is parallel to neuronal injuries that alter intracellular signaling. To date, the correlation between nerve injury and the activation of intracellular responses to neuropathic manifestations has not been elucidated; specifically, whether activating transcription factor 3 (ATF3) is responsible for neuronal injury and a critical molecule that modulates the activation of intracellular protein kinase C epsilon (p-PKCε) and pain development in DPN is a crucial question. Methods To address, ATF3 knockout (atf3−/− group, C57/B6 genetic background) and wild-type mice (atf3+/+ group) received a single dose of streptozotocin (200 mg/kg) to generate a mouse model of DPN. Results Both atf3+/+ and atf3−/− mice exhibited hyperglycemia and the same pathology of skin denervation at posttreatment month 2, but only atf3+/+ mice developed thermal hyperalgesia (P<0.001) and mechanical allodynia (P=0.002). The atf3+/+ group, but not the atf3−/− group, had preferential ATF3 upregulation on p-PKCε(+) neurons with a ratio of 37.7%±6.1% in p-PKCε(+):ATF3(+) neurons (P<0.001). In addition, B-cell lymphoma-extra large (Bcl-XL), an antiapoptotic Bcl2 family protein, exhibited parallel patterns to p-PKCε (ie, Bcl-XL upregulation was reversed in atf3−/− mice). These two molecules were colocalized and increased by approximately two-fold in the atf3+/+ group compared with the atf3−/− group (30.0%±3.4% vs 13.7% ± 6.2%, P=0.003). Furthermore, linear analysis results showed that the densities of p-PKCε and Bcl-XL had a reverse linear relationship with the degrees of thermal hyperalgesia and mechanical allodynia. Conclusion Collectively, this report suggested that ATF3 is a critical upstream molecule that modulates p-PKCε and Bcl-XL expression, which consequently mediated the development of neuropathic manifestation in DPN.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan,
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan,
| |
Collapse
|