1
|
Paulke NJ, Fleischhacker C, Wegener JB, Riedemann GC, Cretu C, Mushtaq M, Zaremba N, Möbius W, Zühlke Y, Wedemeyer J, Liebmann L, Gorshkova AA, Kownatzki-Danger D, Wagner E, Kohl T, Wichmann C, Jahn O, Urlaub H, Toischer K, Hasenfuß G, Moser T, Preobraschenski J, Lenz C, Rog-Zielinska EA, Lehnart SE, Brandenburg S. Dysferlin Enables Tubular Membrane Proliferation in Cardiac Hypertrophy. Circ Res 2024; 135:554-574. [PMID: 39011635 DOI: 10.1161/circresaha.124.324588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Nora Josefine Paulke
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Carolin Fleischhacker
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Justus B Wegener
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Gabriel C Riedemann
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Constantin Cretu
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience and InnerEarLab (C.C., J.P.), University Medical Center Göttingen, Germany
| | - Mufassra Mushtaq
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Nina Zaremba
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy, City Campus (W.M.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Yannik Zühlke
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Jasper Wedemeyer
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Lorenz Liebmann
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Anastasiia A Gorshkova
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Now with Institute of Transfusion Medicine, University Hospital Schleswig-Holstein; Kiel, Germany (D.K.-D)
| | - Eva Wagner
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Tobias Kohl
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab and Center for Biostructural Imaging of Neurodegeneration (C.W.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Olaf Jahn
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy (O.J.), University Medical Center Göttingen, Germany
- Neuroproteomics Group, Department of Molecular Neurobiology (O.J.)
| | - Henning Urlaub
- Department of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany (H.U., C.L.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Karl Toischer
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab (T.M.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Julia Preobraschenski
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience and InnerEarLab (C.C., J.P.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Christof Lenz
- Department of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany (H.U., C.L.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z.)
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Sören Brandenburg
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| |
Collapse
|
2
|
Cheng XL, Ruan YL, Dai JY, Fan HZ, Ling JY, Chen J, Lu WG, Gao XJ, Cao P. 8-shogaol derived from dietary ginger alleviated acute and inflammatory pain by targeting TRPV1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155500. [PMID: 38484627 DOI: 10.1016/j.phymed.2024.155500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
Ginger, a well-known spice plant, has been used widely in medicinal preparations for pain relief. However, little is known about its analgesic components and the underlying mechanism. Here, we ascertained, the efficacy of ginger ingredient 8-Shogaol (8S), on inflammatory pain and tolerance induced by morphine, and probed the role of TRPV1 in its analgesic action using genetic and electrophysiology approaches. Results showed that 8S effectively reduced nociceptive behaviors of mice elicited by chemical stimuli, noxious heat as well as inflammation, and antagonized morphine analgesic tolerance independent on opioid receptor function. Genetic deletion of TRPV1 significantly abolished 8S' analgesia action. Further calcium imaging and patch-clamp recording showed that 8S could specifically activate TRPV1 in TRPV1-expressing HEK293T cells and dorsal root ganglion (DRG) neurons. The increase of [Ca2+]i in DRG was primarily mediated through TRPV1. Mutational and computation studies revealed the key binding sites for the interactions between 8S and TRPV1 included Leu515, Leu670, Ile573, Phe587, Tyr511, and Phe591. Further studies showed that TRPV1 activation evoked by 8S resulted in channel desensitization both in vitro and in vivo, as may be attributed to TRPV1 degradation or TRPV1 withdrawal from the cell surface. Collectively, this work provides the first evidence for the attractive analgesia of 8S in inflammatory pain and morphine analgesic tolerance mediated by targeting pain-sensing TRPV1 channel. 8S from dietary ginger has potential as a candidate drug for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Xiao-Lan Cheng
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong-Lan Ruan
- Department of Neurology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Jing-Ya Dai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China; Wanbei Health Vocational College, Suzhou, Anhui, 234000, China
| | - Hai-Zhen Fan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Jin-Ying Ling
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Jiao Chen
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Wu-Guang Lu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China
| | - Xue-Jiao Gao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing 210028, China; The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, Zhejiang 324000, China.
| |
Collapse
|
3
|
Hong JY, Yeo C, Kim H, Lee J, Jeon WJ, Lee YJ, Ha IH. Repeated epidural delivery of Shinbaro2: effects on neural recovery, inflammation, and pain modulation in a rat model of lumbar spinal stenosis. Front Pharmacol 2024; 15:1324251. [PMID: 38828447 PMCID: PMC11140021 DOI: 10.3389/fphar.2024.1324251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
The choice of treatment for lumbar spinal stenosis (LSS) depends on symptom severity. When severe motor issues with urinary dysfunction are not present, conservative treatment is often considered to be the priority. One such conservative treatment is epidural injection, which is effective in alleviating inflammation and the pain caused by LSS-affected nerves. In this study, Shinbaro2 (Sh2), pharmacopuncture using natural herbal medicines for patients with disc diseases, is introduced as an epidural to treat LSS in a rat model. The treatment of primary sensory neurons from the rats' dorsal root ganglion (DRG) neurons with Sh2 at various concentrations (0.5, 1, and 2 mg/mL) was found to be safe and non-toxic. Furthermore, it remarkably stimulated axonal outgrowth even under H2O2-treated conditions, indicating its potential for stimulating nerve regeneration. When LSS rats received epidural injections of two different concentrations of Sh2 (1 and 2 mg/kg) once daily for 4 weeks, a significant reduction was seen in ED1+ macrophages surrounding the silicone block used for LSS induction. Moreover, epidural injection of Sh2 in the DRG led to a significant suppression of pain-related factors. Notably, Sh2 treatment resulted in improved locomotor recovery, as evaluated by the Basso, Beattie, and Bresnahan scale and the horizontal ladder test. Additionally, hind paw hypersensitivity, assessed using the Von Frey test, was reduced, and normal gait was restored. Our findings demonstrate that epidural Sh2 injection not only reduced inflammation but also improved locomotor function and pain in LSS model rats. Thus, Sh2 delivery via epidural injection has potential as an effective treatment option for LSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| |
Collapse
|
4
|
Gong JH, Zhang CM, Wu B, Zhang ZX, Zhou ZY, Zhu JH, Liu H, Rong Y, Yin Q, Chen YT, Zheng R, Yang GZ, Yang XF, Chen S. Central and peripheral analgesic active components of triterpenoid saponins from Stauntonia chinensis and their action mechanism. Front Pharmacol 2023; 14:1275041. [PMID: 37908974 PMCID: PMC10613692 DOI: 10.3389/fphar.2023.1275041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Triterpenoid saponins from Stauntonia chinensis have been proven to be a potential candidate for inflammatory pain relief. Our pharmacological studies confirmed that the analgesic role of triterpenoid saponins from S. chinensis occurred via a particular increase in the inhibitory synaptic response in the cortex at resting state and the modulation of the capsaicin receptor. However, its analgesic active components and whether its analgesic mechanism are limited to this are not clear. In order to further determine its active components and analgesic mechanism, we used the patch clamp technique to screen the chemical components that can increase inhibitory synaptic response and antagonize transient receptor potential vanilloid 1, and then used in vivo animal experiments to evaluate the analgesic effect of the selected chemical components. Finally, we used the patch clamp technique and molecular biology technology to study the analgesic mechanism of the selected chemical components. The results showed that triterpenoid saponins from S. chinensis could enhance the inhibitory synaptic effect and antagonize the transient receptor potential vanilloid 1 through different chemical components, and produce central and peripheral analgesic effects. The above results fully reflect that "traditional Chinese medicine has multi-component, multi-target, and multi-channel synergistic regulation".
Collapse
Affiliation(s)
- Ji-Hong Gong
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Chang-Ming Zhang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Bo Wu
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Zi-Xun Zhang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Zhong-Yan Zhou
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jia-Hui Zhu
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Han Liu
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Yi Rong
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Qian Yin
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ya-Ting Chen
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Rong Zheng
- Gynecology Department, Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Guang-Zhong Yang
- College of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Su Chen
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| |
Collapse
|
5
|
Liu X, Zhao S, Zhao Q, Chen Y, Jia S, Xiang R, Zhang J, Sun J, Xu Y, Zhao M. Butein, a potential drug for the treatment of bone cancer pain through bioinformatic and network pharmacology. Toxicol Appl Pharmacol 2023; 472:116570. [PMID: 37268026 DOI: 10.1016/j.taap.2023.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Bone cancer pain is a difficult-to-treat pathologic condition that impairs the patient's quality of life. The effective therapy options for BCP are restricted due to the unknown pathophysiology. Transcriptome data were obtained from the Gene Expression Omnibus database and differentially expressed gene extraction was performed. DEGs integrated with pathological targets found 68 genes in the study. Butein was discovered as a possible medication for BCP after the 68 genes were submitted to the Connectivity Map 2.0 database for drug prediction. Moreover, butein has good drug-likeness properties. To collect the butein targets, we used the CTD, SEA, TargetNet, and Super-PRED databases. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed butein's pharmacological effects, indicating that butein may aid in treating BCP by altering the hypoxia-inducible factor, NF-kappa B, angiogenesis, and sphingolipid signaling pathways. Moreover, the pathological targets integrated with drug targets were obtained as the shared gene set A, which was analyzed by ClueGO and MCODE. Biological process analysis and MCODE algorithm further analyzed that BCP related targets were mainly involved in signal transduction process and ion channel-related pathways. Next, we integrated targets related to network topology parameters and targets of core pathways, identified PTGS2, EGFR, JUN, ESR1, TRPV1, AKT1 and VEGFA as butein regulated hub genes by molecular docking, which play a critical role in its analgesic effect. This study lays the scientific groundwork for elucidating the mechanism underlying butein's success in the treatment of BCP.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shangfeng Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qianqian Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yiwei Chen
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shubing Jia
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rongwu Xiang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jianfang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
6
|
Corral-Pujol M, Arpa B, Rosell-Mases E, Egia-Mendikute L, Mora C, Stratmann T, Sanchez A, Casanovas A, Esquerda JE, Mauricio D, Vives-Pi M, Verdaguer J. NOD mouse dorsal root ganglia display morphological and gene expression defects before and during autoimmune diabetes development. Front Endocrinol (Lausanne) 2023; 14:1176566. [PMID: 37334284 PMCID: PMC10272810 DOI: 10.3389/fendo.2023.1176566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction During the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out. Methods Histopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed. Results The results showed the formation of cytoplasmic vacuoles in DRG cells early in life that could be related to a neurodegenerative process. In view of these results, mRNA expression analyses were conducted to determine the cause and/or the molecules involved in this suspected disorder. The results showed that DRG cells from NOD mice have alterations in the transcription of a wide range of genes, which explain the previously observed alterations. In addition, differences in the transcription genes in white blood cells were also detected. Discussion Taken together, these results indicate that functional defects are not only seen in beta cells but also in DRG in NOD mice. These results also indicate that these defects are not a consequence of the autoimmune process that takes place in NOD mice and suggest that they may be involved as triggers for its development.
Collapse
Affiliation(s)
- Marta Corral-Pujol
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Berta Arpa
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Estela Rosell-Mases
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Leire Egia-Mendikute
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alex Sanchez
- Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Spain
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Josep Enric Esquerda
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Didac Mauricio
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Faculty of Medicine, Central University of Catalonia, Vic, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Xian F, Sondermann JR, Gomez Varela D, Schmidt M. Deep proteome profiling reveals signatures of age and sex differences in paw skin and sciatic nerve of naïve mice. eLife 2022; 11:e81431. [PMID: 36448997 PMCID: PMC9711526 DOI: 10.7554/elife.81431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
The age and sex of studied animals profoundly impact experimental outcomes in biomedical research. However, most preclinical studies in mice use a wide-spanning age range from 4 to 20 weeks and do not assess male and female mice in parallel. This raises concerns regarding reproducibility and neglects potentially relevant age and sex differences, which are largely unknown at the molecular level in naïve mice. Here, we employed an optimized quantitative proteomics workflow in order to deeply profile mouse paw skin and sciatic nerves (SCN) - two tissues implicated in nociception and pain as well as diseases linked to inflammation, injury, and demyelination. Remarkably, we uncovered significant differences when comparing male and female mice at adolescent (4 weeks) and adult (14 weeks) age. Our analysis deciphered protein subsets and networks that were correlated with the age and/or sex of mice. Notably, among these were proteins/biological pathways with known (patho)physiological relevance, e.g., homeostasis and epidermal signaling in skin, and, in SCN, multiple myelin proteins and regulators of neuronal development. Extensive comparisons with available databases revealed that various proteins associated with distinct skin diseases and pain exhibited significant abundance changes in dependence on age and/or sex. Taken together, our study uncovers hitherto unknown sex and age differences at the level of proteins and protein networks. Overall, we provide a unique proteome resource that facilitates mechanistic insights into somatosensory and skin biology, and integrates age and sex as biological variables - a prerequisite for successful preclinical studies in mouse disease models.
Collapse
Affiliation(s)
- Feng Xian
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Julia Regina Sondermann
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of ViennaViennaAustria
| | - David Gomez Varela
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Manuela Schmidt
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of ViennaViennaAustria
| |
Collapse
|
8
|
Reeh PW, Fischer MJM. Nobel somatosensations and pain. Pflugers Arch 2022; 474:405-420. [PMID: 35157132 PMCID: PMC8924131 DOI: 10.1007/s00424-022-02667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The Nobel prices 2021 for Physiology and Medicine have been awarded to David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch", TRPV1 and PIEZO1/2. The present review tells the past history of the capsaicin receptor, covers further selected TRP channels, TRPA1 in particular, and deals with mechanosensitivity in general and mechanical hyperalgesia in particular. Other achievements of the laureates and translational aspects of their work are shortly treated.
Collapse
|
9
|
Eom S, Lee BB, Lee S, Park Y, Yeom HD, Kim TH, Nam SH, Lee JH. Antioxidative and Analgesic Effects of Naringin through Selective Inhibition of Transient Receptor Potential Vanilloid Member 1. Antioxidants (Basel) 2021; 11:64. [PMID: 35052566 PMCID: PMC8773328 DOI: 10.3390/antiox11010064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
Abstract
Transient receptor potential vanilloid member 1 (TRPV1) is activated in response to capsaicin, protons, temperature, and free reactive oxygen species (ROS) released from inflammatory molecules after exposure to harmful stimuli. The expression level of TRPV1 is elevated in the dorsal root ganglion, and its activation through capsaicin and ROS mediates neuropathic pain in mice. Its expression is high in peripheral and central nervous systems. Although pain is a response evolved for survival, many studies have been conducted to develop analgesics, but no clear results have been reported. Here, we found that naringin selectively inhibited capsaicin-stimulated inward currents in Xenopus oocytes using a two-electrode voltage clamp. The results of this study showed that naringin has an IC50 value of 33.3 μM on TRPV1. The amino acid residues D471 and N628 of TRPV1 were involved in its binding to naringin. Our study bridged the gap between the pain suppression effect of TRPV1 and the preventive effect of naringin on neuropathic pain and oxidation. Naringin had the same characteristics as a model selective antagonist, which is claimed to be ideal for the development of analgesics targeting TRPV1. Thus, this study suggests the applicability of naringin as a novel analgesic candidate through antioxidative and analgesic effects of naringin.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Bo-Bae Lee
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, Naju 59021, Korea;
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Youngseo Park
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| | - Tae-Hwan Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Junho H. Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Korea; (S.E.); (S.L.); (Y.P.); (H.D.Y.)
| |
Collapse
|
10
|
Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep 2021; 37:110152. [PMID: 34936870 DOI: 10.1016/j.celrep.2021.110152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury. In contrast, Tmem160 seems to be dispensable for other nerve injury-induced pain modalities, such as non-evoked and movement-evoked pain, and for other pain entities. Mechanistically, we show that global KO males exhibit dampened neuroimmune signaling and diminished TRPA1-mediated activity in cultured dorsal root ganglia. Neither these changes nor altered pain-related behaviors are observed in global KO female and male peripheral sensory neuron-specific KO mice. Our findings reveal Tmem160 as a sexually dimorphic factor contributing to the establishment, but not maintenance, of discrete nerve injury-induced pain behaviors in male mice.
Collapse
|
11
|
Qian HY, Zhou F, Wu R, Cao XJ, Zhu T, Yuan HD, Chen YN, Zhang PA. Metformin Attenuates Bone Cancer Pain by Reducing TRPV1 and ASIC3 Expression. Front Pharmacol 2021; 12:713944. [PMID: 34421611 PMCID: PMC8371459 DOI: 10.3389/fphar.2021.713944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Bone cancer pain (BCP) is a common pathologic pain associated with destruction of bone and pathological reconstruction of nervous system. Current treatment strategies in clinical is inadequate and have unacceptable side effects due to the unclear pathology mechanism. In the present study, we showed that transplantation of Walker 256 cells aggravated mechanical allodynia of BCP rats (**p < 0.01 vs. Sham), and the expression of ASIC3 (Acid-sensitive ion channel 3) and TRPV1 was obviously enhanced in L4-6 dorsal root ganglions (DRGs) of BCP rats (**p < 0.01 vs. Sham). ASIC3 and TRPV1 was mainly expressed in CGRP and IB4 positive neurons of L4-6 DRGs. While, TRPV1 but not ASIC3 was markedly upregulated in L4-6 spinal dorsal horn (SDH) of BCP rats (**p < 0.01 vs. Sham). Importantly, intrathecal injection of CPZ (a TRPV1 inhibitor) or Amiloride (an ASICs antagonist) markedly increased the paw withdraw threshold (PWT) of BCP rats response to Von Frey filaments (**p < 0.01 vs. BCP + NS). What’s more, intraperitoneally injection of Metformin or Vinorelbine markedly elevated the PWT of BCP rats, but reduced the expression of TRPV1 and ASIC3 in L4-6 DRGs and decreased the TRPV1 expression in SDH (*p < 0.05, **p < 0.01 vs. BCP + NS). Collectively, these results suggest an effective analgesic effect of Metformin on mechanical allodynia of BCP rats, which may be mediated by the downregulation of ASIC3 and TRPV1.
Collapse
Affiliation(s)
- He-Ya Qian
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.,Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Fang Zhou
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Rui Wu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xiao-Jun Cao
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Tao Zhu
- Department of Laboratory, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Hao-Dong Yuan
- Department of Laboratory, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ya-Nan Chen
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ping-An Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Fang J, Du J, Xiang X, Shao X, He X, Jiang Y, Liu B, Liang Y, Fang J. SNI and CFA induce similar changes in TRPV1 and P2X3 expressions in the acute phase but not in the chronic phase of pain. Exp Brain Res 2021; 239:983-995. [PMID: 33464388 DOI: 10.1007/s00221-020-05988-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Peripheral inflammation and nerve injury usually accompany each other. However, whether inflammatory and neuropathic pain share similar mechanisms at all stages is unknown. TRPV1 and P2X3 are two major ion channels in dorsal root ganglia (DRGs) and are involved in chronic pain. Here, their function and expression in DRGs at different phases of the two types of pain were investigated. Both the paw withdrawal threshold (PWT) and paw withdrawal latency were decreased in rats injected with complete Freud's adjuvant (CFA). However, only the PWT was decreased in rats with spared nerve injury (SNI). CFA increased the magnitude of the TRPV1-mediated Ca2+ response but not the P2X3-mediated Ca2+ response 14 days after injection. Consistent with this result, the P2X3 expression level in CFA rats was increased only at 3 days after injection. SNI surgery increased the magnitudes of the TRPV1- and P2X3-mediated Ca2+ responses and upregulated both TRPV1 and P2X3 expression in lumbar DRGs. The distributions of TRPV1 and P2X3 in DRGs after modeling were observed, and TRPV1 was found to be highly expressed mainly in the L4-L5 DRGs in CFA rats and in the L5-L6 DRGs in SNI rats. P2X3 was highly expressed in the L4-L6 DRGs in CFA rats 3 days after injection but was only highly expressed in the L4 DRG 14 days after modeling. On the other hand, SNI promoted the P2X3 expression L4-L5 DRGs 3 days after surgery, but only L6 DRG 14 days after modeling. All the results indicate that P2X3 and TPRV1 are involved in inflammatory and neuropathic pain by different expression levels and distributions in the lumbar DRG in the chronic stage.
Collapse
Affiliation(s)
- Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuaner Xiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofeng He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Fischer MJM, Ciotu CI, Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents. Front Physiol 2020; 11:554195. [PMID: 33391007 PMCID: PMC7772409 DOI: 10.3389/fphys.2020.554195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as "capsaicin desensitization," during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several "mysteries" remain unsolved to date, including the molecular underpinnings of "capsaicin desensitization," and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I. Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Szallasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Michel N, Narayanan P, Shomroni O, Schmidt M. Maturational Changes in Mouse Cutaneous Touch and Piezo2-Mediated Mechanotransduction. Cell Rep 2020; 32:107912. [PMID: 32697985 DOI: 10.1016/j.celrep.2020.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
The age of studied animals has a profound impact on experimental outcomes in animal-based research. In mice, age influences molecular, morphological, physiological, and behavioral parameters, particularly during rapid postnatal growth and maturation until adulthood (at 12 weeks of age). Despite this knowledge, most biomedical studies use a wide-spanning age range from 4 to 12 weeks, raising concerns about reproducibility and potential masking of relevant age differences. Here, using mouse behavior and electrophysiology in cultured dorsal root ganglia (DRG), we reveal a decline in behavioral cutaneous touch sensitivity and Piezo2-mediated mechanotransduction in vitro during mouse maturation but not thereafter. In addition, we identify distinct transcript changes in individual Piezo2-expressing mechanosensitive DRG neurons by combining electrophysiology with single-cell RNA sequencing (patch-seq). Taken together, our study emphasizes the need for accurate age matching and uncovers hitherto unknown maturational plasticity in cutaneous touch at the level of behavior, mechanotransduction, and transcripts.
Collapse
Affiliation(s)
- Niklas Michel
- Max-Planck Institute of Experimental Medicine and University of Goettingen, Somatosensory Signaling and Systems Biology Group, 37075 Goettingen, Germany
| | - Pratibha Narayanan
- Max-Planck Institute of Experimental Medicine and University of Goettingen, Somatosensory Signaling and Systems Biology Group, 37075 Goettingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics, Department of Human Genetics at the University Medical Center Goettingen (UMG), 37075 Goettingen, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine and University of Goettingen, Somatosensory Signaling and Systems Biology Group, 37075 Goettingen, Germany.
| |
Collapse
|
15
|
Dihazi GH, Eltoweissy M, Jahn O, Tampe B, Zeisberg M, Wülfrath HS, Müller GA, Dihazi H. The Secretome Analysis of Activated Human Renal Fibroblasts Revealed Beneficial Effect of the Modulation of the Secreted Peptidyl-Prolyl Cis-Trans Isomerase A in Kidney Fibrosis. Cells 2020; 9:cells9071724. [PMID: 32708451 PMCID: PMC7407823 DOI: 10.3390/cells9071724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The secretome is an important mediator in the permanent process of reciprocity between cells and their environment. Components of secretome are involved in a large number of physiological mechanisms including differentiation, migration, and extracellular matrix modulation. Alteration in secretome composition may therefore trigger cell transformation, inflammation, and diseases. In the kidney, aberrant protein secretion plays a central role in cell activation and transition and in promoting renal fibrosis onset and progression. Using comparative proteomic analyses, we investigated in the present study the impact of cell transition on renal fibroblast cells secretome. Human renal cell lines were stimulated with profibrotic hormones and cytokines, and alterations in secretome were investigated using proteomic approaches. We identified protein signatures specific for the fibrotic phenotype and investigated the impact of modeling secretome proteins on extra cellular matrix accumulation. The secretion of peptidyl-prolyl cis-trans isomerase A (PPIA) was demonstrated to be associated with fibrosis phenotype. We showed that the in-vitro inhibition of PPIA with ciclosporin A (CsA) resulted in downregulation of PPIA and fibronectin (FN1) expression and significantly reduced their secretion. Knockdown studies of PPIA in a three-dimensional (3D) cell culture model significantly impaired the secretion and accumulation of the extracellular matrix (ECM), suggesting a positive therapeutic effect on renal fibrosis progression.
Collapse
Affiliation(s)
- Gry H. Dihazi
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (G.H.D.); (H.S.W.)
| | - Marwa Eltoweissy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt;
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany;
| | - Björn Tampe
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Hauke S. Wülfrath
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (G.H.D.); (H.S.W.)
| | - Gerhard A. Müller
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-399-1221; Fax: +49-551-399-1039
| |
Collapse
|
16
|
Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci 2020; 10:brainsci10060344. [PMID: 32503260 PMCID: PMC7348931 DOI: 10.3390/brainsci10060344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023] Open
Abstract
Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.
Collapse
|
17
|
Wei J, Lin J, Zhang J, Tang D, Xiang F, Cui L, Zhang Q, Yuan H, Song H, Lv Y, Jia J, Zhang D, Huang Y. TRPV1 activation mitigates hypoxic injury in mouse cardiomyocytes by inducing autophagy through the AMPK signaling pathway. Am J Physiol Cell Physiol 2020; 318:C1018-C1029. [PMID: 32293932 DOI: 10.1152/ajpcell.00161.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a highly conserved self-protection mechanism that plays a crucial role in cardiovascular diseases. Cardiomyocyte hypoxic injury promotes oxidative stress and pathological alterations in the heart, although the interplay between these effects remains elusive. The transient receptor potential vanilloid 1 (TRPV1) ion channel is a nonselective cation channel that is activated in response to a variety of exogenous and endogenous physical and chemical stimuli. Here, we investigated the effects and mechanisms of action of TRPV1 on autophagy in hypoxic cardiomyocytes. In this study, primary cardiomyocytes isolated from C57 mice were subjected to hypoxic stress, and their expression of TRPV1 and adenosine 5'-monophosphate-activated protein kinase (AMPK) was regulated. The autophagy flux was assessed by Western blotting and immunofluorescence staining, and the cell viability was determined through Cell counting kit-8 assay and Lactate dehydrogenase assays. In addition, the calcium influx after the upregulation of TRPV1 expression in cardiomyocytes was examined. The results showed that the number of autophagosomes in cardiomyocytes was higher under hypoxic stress and that the blockade of autophagy flux aggravated hypoxic damage to cardiomyocytes. Moreover, the expression of TRPV1 was induced under hypoxic stress, and its upregulation by capsaicin improved the autophagy flux and protected cardiomyocytes from hypoxic damage, whereas the silencing of TRPV1 significantly attenuated autophagy. Our observations also revealed that AMPK signaling was activated and involved in TRPV1-induced autophagy in cardiomyocytes under hypoxic stress. Overall, this study demonstrates that TRPV1 activation mitigates hypoxic injury in cardiomyocytes by improving autophagy flux through the AMPK signaling pathway and highlights TRPV1 as a novel therapeutic target for the treatment of hypoxic cardiac disease.
Collapse
Affiliation(s)
- Jinyu Wei
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Dermatology, the 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| | - Jiezhi Lin
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Military Burn Center, the 963th (224th) Hospital of Joint Logistics Support Force of PLA, Jiamusi, China
| | - Junhui Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Tang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Xiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Cui
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongping Yuan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huapei Song
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanling Lv
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiezhi Jia
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongxia Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
18
|
Cun-Jin S, Jian-Hao X, Xu L, Feng-Lun Z, Jie P, Ai-Ming S, Duan-Min H, Yun-Li Y, Tong L, Yu-Song Z. X-ray induces mechanical and heat allodynia in mouse via TRPA1 and TRPV1 activation. Mol Pain 2019; 15:1744806919849201. [PMID: 31012378 PMCID: PMC6509987 DOI: 10.1177/1744806919849201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy-related pain is a common adverse reaction with a high incidence among cancer patients undergoing radiotherapy and remarkably reduces the quality of life. However, the mechanisms of ionizing radiation-induced pain are largely unknown. In this study, mice were treated with 20 Gy X-ray to establish ionizing radiation-induced pain model. X-ray evoked a prolonged mechanical, heat, and cold allodynia in mice. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 were significantly upregulated in lumbar dorsal root ganglion. The mechanical and heat allodynia could be transiently reverted by intrathecal injection of transient receptor potential vanilloid 1 antagonist capsazepine and transient receptor potential ankyrin 1 antagonist HC-030031. Additionally, the phosphorylated extracellular regulated protein kinases (ERK) and Jun NH2-terminal Kinase (JNK) in pain neural pathway were induced by X-ray treatment. Our findings indicated that activation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 is essential for the development of X-ray-induced allodynia. Furthermore, our findings suggest that targeting on transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 may be promising prevention strategies for X-ray-induced allodynia in clinical practice.
Collapse
Affiliation(s)
- Su Cun-Jin
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xu Jian-Hao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Xu
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhao Feng-Lun
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pan Jie
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi Ai-Ming
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hu Duan-Min
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yun-Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Tong
- Institute of Neuroscience, Soochow University, Suzhou, China
- College of Life Sciences, Yanan University, Yanan, China
| | - Zhang Yu-Song
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|