1
|
Shen B, Cheng J, Zhang X, Wu X, Wang Z, Liu X. The abnormally increased functional connectivity of the locus coeruleus in migraine without aura patients. BMC Res Notes 2024; 17:330. [PMID: 39506851 PMCID: PMC11542211 DOI: 10.1186/s13104-024-06991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The neurovascular theory is thought to be one of the main pathological mechanisms of migraine. Locus coeruleus (LC) is a major node in the neurovascular pathway. Exploring the functional network characteristics of LC in migraine without aura (MwoA) patients can help us gain insight into the underlying neural mechanisms in MwoA patients. METHODS In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) and a functional connectivity (FC) approach to explore the functional characteristics of LC in MwoA patients. 17 healthy controls (HCs) and 28 MwoA patients were included in the study. FC was calculated based on rsfMRI data collected by a 3T MRI scanner. General linear model were used to compare whether there were differences in LC brain networks between the two groups. We also utilized logistic regression to explore the role of LC functional networks in the clinical diagnosis of MwoA. RESULTS After general linear analysis, MwoA patients displayed increased FC from right LC to the left lingual and calcarine sulcus, as well as to the right frontal medial gyrus/orbit part, when compared with HCs. The results of the logistic regression showed that the LC FC signals were 81% accurate in distinguishing MwoA from the HCs. CONCLUSION Our results demonstrated that patients with MwoA exhibited significant LC FC differences in the brain areas associated with visual and cognitive function. Understanding the changes in the LC brain network in MwoA patients can provide us with new ideas to understand the pathological mechanisms of MwoA.
Collapse
Affiliation(s)
- Bangli Shen
- Department of Algiatry of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jinming Cheng
- Department of Neurology, The Hebei General Hospital, Shijiazhuang, 050050, Hebei, China
| | - Xi Zhang
- Department of Neurology, Xingtai people's Hospital, Xingtai, 054000, Hebei, China
| | - Xiaoyuan Wu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhihong Wang
- Department of Neurology of the Second Affiliated hospital, Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
2
|
Stanyer EC, Hoffmann J, Holland PR. Orexins and primary headaches: an overview of the neurobiology and clinical impact. Expert Rev Neurother 2024; 24:487-496. [PMID: 38517280 PMCID: PMC11034548 DOI: 10.1080/14737175.2024.2328728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Primary headaches, including migraines and cluster headaches, are highly prevalent disorders that significantly impact quality of life. Several factors suggest a key role for the hypothalamus, including neuroimaging studies, attack periodicity, and the presence of altered homeostatic regulation. The orexins are two neuropeptides synthesized almost exclusively in the lateral hypothalamus with widespread projections across the central nervous system. They are involved in an array of functions including homeostatic regulation and nociception, suggesting a potential role in primary headaches. AREAS COVERED This review summarizes current knowledge of the neurobiology of orexins, their involvement in sleep-wake regulation, nociception, and functions relevant to the associated symptomology of headache disorders. Preclinical reports of the antinociceptive effects of orexin-A in preclinical models are discussed, as well as clinical evidence for the potential involvement of the orexinergic system in headache. EXPERT OPINION Several lines of evidence support the targeted modulation of orexinergic signaling in primary headaches. Critically, orexins A and B, acting differentially via the orexin 1 and 2 receptors, respectively, demonstrate differential effects on trigeminal pain processing, indicating why dual-receptor antagonists failed to show clinical efficacy. The authors propose that orexin 1 receptor agonists or positive allosteric modulators should be the focus of future research.
Collapse
Affiliation(s)
- Emily C. Stanyer
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Sir Jules Thorne Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jan Hoffmann
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip R. Holland
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
3
|
Karsan N. Pathophysiology of Migraine. Continuum (Minneap Minn) 2024; 30:325-343. [PMID: 38568486 DOI: 10.1212/con.0000000000001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This article provides an overview of the current understanding of migraine pathophysiology through insights gained from the extended symptom spectrum of migraine, neuroanatomy, migraine neurochemistry, and therapeutics. LATEST DEVELOPMENTS Recent advances in human migraine research, including human experimental migraine models and functional neuroimaging, have provided novel insights into migraine attack initiation, neurochemistry, neuroanatomy, and therapeutic substrates. It has become clear that migraine is a neural disorder, in which a wide range of brain areas and neurochemical systems are implicated, producing a heterogeneous clinical phenotype. Many of these neural pathways are monoaminergic and peptidergic, such as those involving calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide. We are currently witnessing an exciting era in which specific drugs targeting these pathways have shown promise in treating migraine, including some studies suggesting efficacy before headache has even started. ESSENTIAL POINTS Migraine is a brain disorder involving both headache and altered sensory, limbic, and homeostatic processing. A complex interplay between neurotransmitter systems, physiologic systems, and pain processing likely occurs. Targeting various therapeutic substrates within these networks provides an exciting avenue for future migraine therapeutics.
Collapse
|
4
|
Li B, Cao Y, Yuan H, Yu Z, Miao S, Yang C, Gong Z, Xie W, Li C, Bai W, Tang W, Zhao D, Yu S. The crucial role of locus coeruleus noradrenergic neurons in the interaction between acute sleep disturbance and headache. J Headache Pain 2024; 25:31. [PMID: 38443795 PMCID: PMC10913606 DOI: 10.1186/s10194-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.
Collapse
Affiliation(s)
- Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Ya Cao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Huijuan Yuan
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhe Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wenhao Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
5
|
Wang W, Qiu D, Mei Y, Bai X, Yuan Z, Zhang X, Xiong Z, Tang H, Zhang P, Zhang Y, Yu X, Wang Z, Ge Z, Sui B, Wang Y. Altered functional connectivity of brainstem nuclei in new daily persistent headache: Evidence from resting-state functional magnetic resonance imaging. CNS Neurosci Ther 2024; 30:e14686. [PMID: 38516817 PMCID: PMC10958407 DOI: 10.1111/cns.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES The new daily persistent headache (NDPH) is a rare primary headache disorder. However, the underlying mechanisms of NDPH remain incompletely understood. This study aims to apply seed-based analysis to explore the functional connectivity (FC) of brainstem nuclei in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS The FC analysis from the region of interest (ROI) to whole brain voxels was used to investigate 29 patients with NDPH and 37 well-matched healthy controls (HCs) with 3.0 Tesla MRI. The 76 nuclei in the brainstem atlas were defined as ROIs. Furthermore, we explored the correlations between FC and patients' clinical characteristics and neuropsychological evaluations. RESULTS Patients with NDPH exhibited reduced FC in multiple brainstem nuclei compared to HCs (including right inferior medullary reticular formation, right mesencephalic reticular formation, bilateral locus coeruleus, bilateral laterodorsal tegmental nucleus-central gray of the rhombencephalon, median raphe, left medial parabrachial nucleus, periaqueductal gray, and bilateral ventral tegmental area-parabrachial pigmented nucleus complex) and increased FC in periaqueductal gray. No significant correlations were found between the FC of these brain regions and clinical characteristics or neuropsychological evaluations after Bonferroni correction (p > 0.00016). CONCLUSIONS Our results demonstrated that patients with NDPH have abnormal FC of brainstem nuclei involved in the perception and regulation of pain and emotions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Dong Qiu
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanliang Mei
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Radiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziyu Yuan
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xue Zhang
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Radiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhonghua Xiong
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hefei Tang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Zhang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yaqing Zhang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xueying Yu
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhe Wang
- Department of NeurologyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Zhaoli Ge
- Department of NeurologyShenzhen Second People's HospitalShenzhenGuangdongChina
| | - Binbin Sui
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yonggang Wang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Zhang YJ, Li XY, Guo ZL. Temporal trends of migraine and tension-type headache burden across the BRICS: implications from the Global Burden of Disease study 2019. Front Neurol 2023; 14:1307413. [PMID: 38187142 PMCID: PMC10771321 DOI: 10.3389/fneur.2023.1307413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background Headache disorders have become a significant global public health issue, with a notably high prevalence observed in developing countries. However, few studies have assessed headache disorders trends in Brazil, Russia, India, China and South Africa (BRICS). This study aimed to assess the prevalence of headache disorders in individuals across the BRICS, spanning the years 1990 to 2019. Methods We obtained headache disorders data from the Global Burden of Disease 2019 study (GBD2019). This evaluation examined incidence rates, prevalence, and disability-adjusted life-years (DALYs) for migraine and tension-type headache (TTH) across demographic factors like age, gender, year, and country. Migraine and TTH were diagnosed based on the International Classification of Headache Disorders (ICHD-3) criteria. We used disease codes from the International Classification of Diseases, 10th revision to identify migraine and TTH cases. Statistical analyzes included calculating age-standardized rates and estimated annual percentage changes. Future disease burden was projected using a log-linear age-period-cohort model. Results In 2019, India had the highest prevalence of migraine (213890207.93 cases) and TTH (374,453,700 cases). Brazil had the highest migraine age-standardized prevalence rate (18,331 per 100,000) and incidence rate (1,489 per 100,000). For TTH, India had the highest prevalence (26,160 per 100,000) while Russia had the highest incidence (11,512 per 100,000). From 1990 to 2019, China showed the greatest increase in migraine and TTH prevalence. India had the highest migraine (7,687,692) and TTH (741,392) DALYs in 2019. Conclusion Migraine and TTH remain highly prevalent in BRICS nations, inflicting considerable disability burden. While India and China face mounting disease prevalence, Brazil contends with high incidence rates. Tailored interventions based on country-specific epidemiological profiles are warranted to mitigate the public health impact.
Collapse
Affiliation(s)
- Yuan-jie Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-yu Li
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-lin Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Signoret-Genest J, Barnet M, Gabrielli F, Aissouni Y, Artola A, Dallel R, Antri M, Tovote P, Monconduit L. Compromised trigemino-coerulean coupling in migraine sensitization can be prevented by blocking beta-receptors in the locus coeruleus. J Headache Pain 2023; 24:165. [PMID: 38062355 PMCID: PMC10704784 DOI: 10.1186/s10194-023-01691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Migraine is a disabling neurological disorder, characterized by recurrent headaches. During migraine attacks, individuals often experience sensory symptoms such as cutaneous allodynia which indicates the presence of central sensitization. This sensitization is prevented by oral administration of propranolol, a common first-line medication for migraine prophylaxis, that also normalized the activation of the locus coeruleus (LC), considered as the main origin of descending noradrenergic pain controls. We hypothesized that the basal modulation of trigeminal sensory processing by the locus coeruleus is shifted towards more facilitation in migraineurs and that prophylactic action of propranolol may be attributed to a direct action in LC through beta-adrenergic receptors. METHODS We used simultaneous in vivo extracellular recordings from the trigeminocervical complex (TCC) and LC of male Sprague-Dawley rats to characterize the relationship between these two areas following repeated meningeal inflammatory soup infusions. Von Frey Hairs and air-puff were used to test periorbital mechanical allodynia. RNAscope and patch-clamp recordings allowed us to examine the action mechanism of propranolol. RESULTS We found a strong synchronization between TCC and LC spontaneous activities, with a precession of the LC, suggesting the LC drives TCC excitability. Following repeated dural-evoked trigeminal activations, we observed a disruption in coupling of activity within LC and TCC. This suggested an involvement of the two regions' interactions in the development of sensitization. Furthermore, we showed the co-expression of alpha-2A and beta-2 adrenergic receptors within LC neurons. Finally propranolol microinjections into the LC prevented trigeminal sensitization by desynchronizing and decreasing LC neuronal activity. CONCLUSIONS Altogether these results suggest that trigemino-coerulean coupling plays a pivotal role in migraine progression, and that propranolol's prophylactic effects involve, to some extent, the modulation of LC activity through beta-2 adrenergic receptors. This insight reveals new mechanistic aspects of LC control over sensory processing.
Collapse
Affiliation(s)
- Jérémy Signoret-Genest
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
- Department of Psychiatry, Center of Mental Health, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Maxime Barnet
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - François Gabrielli
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Alain Artola
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Myriam Antri
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078, Würzburg, Germany
| | - Lénaïc Monconduit
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm/UCA U1107, Neuro-Dol: Trigeminal Pain and Migraine, Faculté de Chirurgie Dentaire, 2 Rue de Braga, 63100, Clermont-Ferrand, France.
| |
Collapse
|
8
|
Chen Q, Bharadwaj V, Irvine KA, Clark JD. Mechanisms and treatments of chronic pain after traumatic brain injury. Neurochem Int 2023; 171:105630. [PMID: 37865340 PMCID: PMC11790307 DOI: 10.1016/j.neuint.2023.105630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
While pain after trauma generally resolves, some trauma patients experience pain for months to years after injury. An example, relevant to both combat and civilian settings, is chronic pain after traumatic brain injury (TBI). Headache as well as pain in the back and extremities are common locations for TBI-related chronic pain to be experienced. TBI-related pain can exist alone or can exacerbate pain from other injuries long after healing has occurred. Consequences of chronic pain in these settings include increased suffering, higher levels of disability, serious emotional problems, and worsened cognitive deficits. The current review will examine recent evidence regarding dysfunction of endogenous pain modulatory mechanisms, neuroplastic changes in the trigeminal circuitry and alterations in spinal nociceptive processing as contributors to TBI-related chronic pain. Key pain modulatory centers including the locus coeruleus, periaqueductal grey matter, and rostroventromedial medulla are vulnerable to TBI. Both the rationales and existing evidence for the use of monoamine reuptake inhibitors, CGRP antagonists, CXCR2 chemokine receptor antagonists, and interventional therapies will be presented. While consensus guidelines for the management of chronic post-traumatic TBI-related pain are lacking, several approaches to this clinically challenging situation deserve focused evaluation and may prove to be viable therapeutic options.
Collapse
Affiliation(s)
- QiLiang Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Vimala Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA
| | - Karen-Amanda Irvine
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, School of Medicine, Stanford, CA, 94305, USA; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave (E4-220), Palo Alto, CA, 94304, USA.
| |
Collapse
|
9
|
Messina R, Rocca MA, Goadsby PJ, Filippi M. Insights into migraine attacks from neuroimaging. Lancet Neurol 2023; 22:834-846. [PMID: 37478888 DOI: 10.1016/s1474-4422(23)00152-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 07/23/2023]
Abstract
Migraine is one of the most common neurological diseases and it has a huge social and personal impact. Although head pain is the core symptom, individuals with migraine can have a plethora of non-headache symptoms that precede, accompany, or follow the pain. Neuroimaging studies have shown that the involvement of specific brain areas can explain many of the symptoms reported during the different phases of migraine. Recruitment of the hypothalamus, pons, spinal trigeminal nucleus, thalamus, and visual and pain-processing cortical areas starts during the premonitory phase and persists through the headache phase, contributing to the onset of pain and associated symptoms. Once the pain stops, the involvement of most brain areas ends, although the pons, hypothalamus, and visual cortex remain active after acute treatment intake and resolution of migraine symptoms. A better understanding of the correlations between imaging findings and migraine symptomatology can provide new insight into migraine pathophysiology and the mechanisms of novel migraine-specific treatments.
Collapse
Affiliation(s)
- Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Peter J Goadsby
- NIHR King's Clinical Research Facility, King's College, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
10
|
Karsan N, Goadsby PJ. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review. J Headache Pain 2023; 24:106. [PMID: 37563570 PMCID: PMC10416375 DOI: 10.1186/s10194-023-01617-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The premonitory phase, or prodrome, of migraine, provides valuable opportunities to study attack initiation and for treating the attack before headache starts. Much that has been learned about this phase in recent times has come from the outcomes of functional imaging studies. This review will summarise these studies to date and use their results to provide some feasible insights into migraine neurobiology. MAIN BODY The ability to scan repeatedly a patient without radiation and with non-invasive imaging modalities, as well as the recognition that human experimental migraine provocation compounds, such as nitroglycerin (NTG) and pituitary adenylate cyclase activating polypeptide (PACAP), can trigger typical premonitory symptoms (PS) and migraine-like headache in patients with migraine, have allowed feasible and reproducible imaging of the premonitory phase using NTG. Some studies have used serial scanning of patients with migraine to image the migraine cycle, including the 'pre-ictal' phase, defined by timing to headache onset rather than symptom phenotype. Direct observation and functional neuroimaging of triggered PS have also revealed compatible neural substrates for PS in the absence of headache. Various imaging methods including resting state functional MRI (rsfMRI), arterial spin labelling (ASL), positron emission tomography (PET) and diffusion tensor imaging (DTI) have been used. The results of imaging the spontaneous and triggered premonitory phase have been largely consistent and support a theory of central migraine attack initiation involving brain areas such as the hypothalamus, midbrain and limbic system. Early dysfunctional pain, sensory, limbic and homeostatic processing via monoaminergic and peptidergic neurotransmission likely manifests in the heterogeneous PS phenotype. CONCLUSION Advances in human migraine research, including the use of functional imaging techniques lacking radiation or radio-isotope exposure, have led to an exciting opportunity to study the premonitory phase using repeated measures imaging designs. These studies have provided novel insights into attack initiation, migraine neurochemistry and therapeutic targets. Emerging migraine-specific therapies, such as those targeting calcitonin gene-related peptide (CGRP), are showing promise acutely when taken during premonitory phase to reduce symptoms and prevent subsequent headache. Therapeutic research in this area using PS for headache onset prediction and early treatment is likely to grow in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK.
| | - Peter J Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
11
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
12
|
Pelzer N, de Boer I, van den Maagdenberg AMJM, Terwindt GM. Neurological and psychiatric comorbidities of migraine: Concepts and future perspectives. Cephalalgia 2023; 43:3331024231180564. [PMID: 37293935 DOI: 10.1177/03331024231180564] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND This narrative review aims to discuss several common neurological and psychiatric disorders that show comorbidity with migraine. Not only can we gain pathophysiological insights by studying these disorders, comorbidities also have important implications for treating migraine patients in clinical practice. METHODS A literature search on PubMed and Embase was conducted with the keywords "comorbidity", "migraine disorders", "migraine with aura", "migraine without aura", "depression", "depressive disorders", "epilepsy", "stroke", "patent foramen ovale", "sleep wake disorders", "restless legs syndrome", "genetics", "therapeutics". RESULTS Several common neurological and psychiatric disorders show comorbidity with migraine. Major depression and migraine show bidirectional causality and have shared genetic factors. Dysregulation of both hypothalamic and thalamic pathways have been implicated as a possibly cause. The increased risk of ischaemic stroke in migraine likely involves spreading depolarizations. Epilepsy is not only bidirectionally related to migraine, but is also co-occurring in monogenic migraine syndromes. Neuronal hyperexcitability is an important overlapping mechanism between these conditions. Hypothalamic dysfunction is suggested as the underlying mechanism for comorbidity between sleep disorders and migraine and might explain altered circadian timing in migraine. CONCLUSION These comorbid conditions in migraine with distinct pathophysiological mechanisms have important implications for best treatment choices and may provide clues for future approaches.
Collapse
Affiliation(s)
- Nadine Pelzer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Karsan N, Bose RP, O'Daly O, Zelaya F, Goadsby PJ. Regional cerebral perfusion during the premonitory phase of triggered migraine: A double-blind randomized placebo-controlled functional imaging study using pseudo-continuous arterial spin labeling. Headache 2023; 63:771-787. [PMID: 37337681 DOI: 10.1111/head.14538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To identify changes in regional cerebral blood flow (CBF) associated with premonitory symptoms (PS) of nitroglycerin (NTG)-triggered migraine attacks. BACKGROUND PS could provide insights into attack initiation and alterations in neuronal function prior to headache onset. METHODS We undertook a functional imaging study using a double-blind placebo-controlled randomized approach in patients with migraine who spontaneously experienced PS, and in whom PS and migraine-like headache could be induced by administration of NTG. All study visits took place in a dedicated clinical research facility housing a monitoring area with clinical beds next to a 3Tesla magnetic resonance imaging scanner. Fifty-three patients with migraine were enrolled; imaging on at least one triggered visit was obtained from 25 patients, with 21 patients completing the entire imaging protocol including a placebo visit. Whole brain CBF maps were acquired using 3D pseudo-continuous arterial spin labeling (3D pCASL). RESULTS The primary outcome was that patients with migraine not taking preventive treatment (n = 12) displayed significant increases in CBF in anterior cingulate cortex, caudate, midbrain, lentiform, amygdala and hippocampus (p < 0.05 family-wise error-corrected) during NTG-induced PS. A separate region of interest analysis revealed significant CBF increases in the region of the hypothalamus (p = 0.006, effect size 0.77). Post hoc analyses revealed significant reductions in CBF over the occipital cortices in participants with a history of migraine with underlying aura (n = 14). CONCLUSIONS We identified significant regional CBF changes associated with NTG-induced PS, consistent with other investigations and with novel findings, withstanding statistical comparison against placebo. These findings were not present in patients who continually took preventive medication. Additional findings were identified only in participants who experience migraine with aura. Understanding this biological and treatment-related heterogeneity is vital to evaluating functional imaging outcomes in migraine research.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
| | - Ray Pyari Bose
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility, King's College Hospital, London, UK
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Han DG. Evolutionary game model of migraine based on the human brain hypersensitivity. Front Neurol 2023; 14:1123978. [PMID: 37064196 PMCID: PMC10090412 DOI: 10.3389/fneur.2023.1123978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Based on all studies published up to 2020, the prevalence of migraine worldwide is approximately 14%, although it varies regionally. Despite being one of the most disabling diseases, migraine still exists through natural selection and is prevalent today. This raises the question of what evolutionary advantages have led to the survival of migraine. The ultimate answer to this question should be found in evolution; however, there is no clear explanation yet. Notably, all the genes that cause migraine make the sensory organs and cortex of the migraine sufferer hypersensitive. In a state of hypersensitivity, the brain could recognize external threats easily. Game theory is a useful tool for explaining evolution in terms of genes. Just as the Hawk–Dove game, which has two strategies (aggressive and passive) and four fitness values, an evolutionary game between a migraineur and a non-migraineur, which shows two phenotypes (more sensitive and less sensitive) and four fitness values, can be played if a migraineur quickly recognizes a predator and informs a non-migraineur of its appearance and the non-migraineur later helps the migraineur escape from danger. This study aimed to explore the evolutionary mechanics of migraine that can be modeled. Furthermore, it tried to define why the human brain's hypersensitivity is a prerequisite for developing this evolutionary game model.
Collapse
|
15
|
The sensory and affective components of pain differentially shape pupillary dilatation during cold pressor tests. Auton Neurosci 2023; 246:103084. [PMID: 36934567 DOI: 10.1016/j.autneu.2023.103084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Nociceptive and affective stimuli increase reflex sympathetic outflow to the pupils. To investigate effects of stimulus intensity, unpleasantness and distress on these pupillary reflexes, and to assess their stability, healthy participants immersed their hand in ice-water three times (for 20, 40 and 60 s; or 60, 40 and 20 s; or three times for 60 s) (N = 21 in each condition). Each ice-water immersion was preceded by a 90 s warm water immersion. To evaluate phasic sympathetic influences on pupil diameter, pupillary re-dilatation after 1 s of bright light was assessed during the last 10 s of each immersion. By-and-large, pain ratings and pupil diameter were greater during longer than shorter ice-water immersions, and ice-water immersions facilitated pupillary re-dilatation after the flash stimulus. However, mean pupil diameter during ice- and warm water immersions, minor ipsilateral amplification of the pupillary response, and ratings of pain unpleasantness and distress decreased across the experiment. Together, these findings suggest that nociceptive input increased sympathetic pupillary tone and amplified phasic increases in sympathetic activity after exposure to light. However, tonic sympathetic influences on pupil diameter and lateralization decreased across repeated immersions, possibly as novel or threatening aspects of the experience declined. Pupillary nociceptive and affective reflexes involve the locus coeruleus, an integral component of neural circuits that heighten cortical arousal and regulate pain. As these reflexes appear to reflect different aspects of sensory and affective processing, their combined assessment might increase the sensitivity and specificity of tests of locus coeruleus function in patients with suspected deficits.
Collapse
|
16
|
Vila-Pueyo M, Cuenca-León E, Queirós AC, Kulis M, Sintas C, Cormand B, Martín-Subero JI, Pozo-Rosich P, Fernàndez-Castillo N, Macaya A. Genome-wide DNA methylation analysis in an antimigraine-treated preclinical model of cortical spreading depolarization. Cephalalgia 2023; 43:3331024221146317. [PMID: 36759321 DOI: 10.1177/03331024221146317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Cortical spreading depolarization, the cause of migraine aura, is a short-lasting depolarization wave that moves across the brain cortex, transiently suppressing neuronal activity. Prophylactic treatments for migraine, such as topiramate or valproate, reduce the number of cortical spreading depression events in rodents. OBJECTIVE To investigate whether cortical spreading depolarization with and without chronic treatment with topiramate or valproate affect the DNA methylation of the cortex. METHODS Sprague-Dawley rats were intraperitoneally injected with saline, topiramate or valproate for four weeks when cortical spreading depolarization were induced and genome-wide DNA methylation was performed in the cortex of six rats per group. RESULTS The DNA methylation profile of the cortex was significantly modified after cortical spreading depolarization, with and without topiramate or valproate. Interestingly, topiramate reduced by almost 50% the number of differentially methylated regions, whereas valproate increased them by 17%, when comparing to the non-treated group after cortical spreading depolarization induction. The majority of the differentially methylated regions lay within intragenic regions, and the analyses of functional group over-representation retrieved several enriched functions, including functions related to protein processing in the cortical spreading depolarization without treatment group; functions related to metabolic processes in the cortical spreading depolarization with topiramate group; and functions related to synapse and ErbB, MAPK or retrograde endocannabinoid signaling in the cortical spreading depolarization with valproate group. CONCLUSIONS Our results may provide insights into the underlying physiological mechanisms of migraine with aura and emphasize the role of epigenetics in migraine susceptibility.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.,Pediatric Neurology Research Group, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Ester Cuenca-León
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.,Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Ana C Queirós
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Cèlia Sintas
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.,Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.,Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona Spain
| |
Collapse
|
17
|
Robertson CE, Benarroch EE. The anatomy of head pain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:41-60. [PMID: 38043970 DOI: 10.1016/b978-0-12-823356-6.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pain-sensitive structures in the head and neck, including the scalp, periosteum, meninges, and blood vessels, are innervated predominantly by the trigeminal and upper cervical nerves. The trigeminal nerve supplies most of the sensation to the head and face, with the ophthalmic division (V1) providing innervation to much of the supratentorial dura mater and vessels. This creates referral patterns for pain that may be misleading to clinicians and patients, as described by studies involving awake craniotomies and stimulation with electrical and mechanical stimuli. Most brain parenchyma and supratentorial vessels refer pain to the ipsilateral V1 territory, and less commonly the V2 or V3 region. The upper cervical nerves provide innervation to the posterior scalp, while the periauricular region and posterior fossa are territories with shared innervation. Afferent fibers that innervate the head and neck send nociceptive input to the trigeminocervical complex, which then projects to additional pain processing areas in the brainstem, thalamus, hypothalamus, and cortex. This chapter discusses the pain-sensitive structures in the head and neck, including pain referral patterns for many of these structures. It also provides an overview of peripheral and central nervous system structures responsible for transmitting and interpreting these nociceptive signals.
Collapse
Affiliation(s)
- Carrie E Robertson
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
18
|
Halili A. Temporal model for central sensitization: A hypothesis for mechanism and treatment using systemic manual therapy, a focused review. MethodsX 2022; 10:101942. [PMID: 36570602 PMCID: PMC9772546 DOI: 10.1016/j.mex.2022.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this focused review is to develop a consolidated hypothesis as to the causes and mechanisms of central sensitization and a related model for a treatment approach using Systemic Manual Therapy (SMT). The key to understanding central sensitization is a firm grasp on structure and function of the Locus-coeruleus noradrenaline system (LC-NA). This system uses an elaborate switching mechanism to control the level and rate of activation of multiple systems. This review evaluates the mechanisms and temporal relationships behind four components: salient stimuli, threat coding, aberrant afferent input, and oxidative stress. The five-stage temporal model for central sensitization includes phasic activation of the LC-NA system, salient stimuli, threat coding of salient stimuli, central sensitization, and neural degeneration. The three components of treatment include temporarily reducing afferent visceral input, shifting humoral inflammatory activity away from the brain and outside the body, and reducing oxidative stress by making oxygenated blood more available around the LC and other stressed areas in the brain. The SMT protocols that could help in reduction of visceral afferent input are GUOU, Barral and LAUG. Protocols that should shift humoral inflammatory activity away from the brain or completely out of the body include UD and DCS. One protocol that can potentially reduce oxidative stress by making oxygenated blood more available around the LC is CCCV. Future research and hypothesis-testing strategies as well as limitations are further discussed.
Collapse
|
19
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal Model of Chronic Migraine. Cells 2022; 11:3092. [PMID: 36231054 PMCID: PMC9562879 DOI: 10.3390/cells11193092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Calcitonin-gene-related peptide (CGRP) plays a key role in migraine pathophysiology and more specifically in the mechanisms underlying peripheral and central sensitization. Here, we explored the interaction of CGRP with other pain mediators relevant for neuronal sensitization in an animal model of chronic migraine. Male Sprague-Dawley rats were exposed to nitroglycerin (NTG, 5 mg/kg, i.p.) or vehicle co-administered with the CGRP receptor antagonist olcegepant (2 mg/kg i.p.), or its vehicle, every other day over a 9-day period. Twenty-four hours after the last injection of NTG (or vehicle), behavioral test and ex vivo analysis were performed. Olcegepant attenuated NTG-induced trigeminal hyperalgesia in the second phase of the orofacial formalin test. Interestingly, it also reduced gene expression and protein levels of CGRP, pro-inflammatory cytokines, inflammatory-associated miRNAs (miR-155-5p, miR-382-5p, and miR-34a-5p), and transient receptor potential ankyrin channels in the medulla-pons area, cervical spinal cord, and trigeminal ganglia. Similarly, olcegepant reduced the NTG-induced increase in CGRP and inflammatory cytokines in serum. The findings show that the activation of the CGRP pathway in a migraine animal model was associated to the persistent activation of inflammatory pathways, which was paralleled by a condition of hyperalgesia. These molecular events are relevant for informing us about the mechanisms underlying chronic migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
Fu C, Zhang Y, Ye Y, Hou X, Wen Z, Yan Z, Luo W, Feng M, Liu B. Predicting response to tVNS in patients with migraine using functional MRI: A voxels-based machine learning analysis. Front Neurosci 2022; 16:937453. [PMID: 35992927 PMCID: PMC9388938 DOI: 10.3389/fnins.2022.937453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMigraine is a common disorder, affecting many patients. However, for one thing, lacking objective biomarkers, misdiagnosis, and missed diagnosis happen occasionally. For another, though transcutaneous vagus nerve stimulation (tVNS) could alleviate migraine symptoms, the individual difference of tVNS efficacy in migraineurs hamper the clinical application of tVNS. Therefore, it is necessary to identify biomarkers to discriminate migraineurs as well as select patients suitable for tVNS treatment.MethodsA total of 70 patients diagnosed with migraine without aura (MWoA) and 70 matched healthy controls were recruited to complete fMRI scanning. In study 1, the fractional amplitude of low-frequency fluctuation (fALFF) of each voxel was calculated, and the differences between healthy controls and MWoA were compared. Meaningful voxels were extracted as features for discriminating model construction by a support vector machine. The performance of the discriminating model was assessed by accuracy, sensitivity, and specificity. In addition, a mask of these significant brain regions was generated for further analysis. Then, in study 2, 33 of the 70 patients with MWoA in study 1 receiving real tVNS were included to construct the predicting model in the generated mask. Discriminative features of the discriminating model in study 1 were used to predict the reduction of attack frequency after a 4-week tVNS treatment by support vector regression. A correlation coefficient between predicted value and actual value of the reduction of migraine attack frequency was conducted in 33 patients to assess the performance of predicting model after tVNS treatment. We vislized the distribution of the predictive voxels as well as investigated the association between fALFF change (post-per treatment) of predict weight brain regions and clinical outcomes (frequency of migraine attack) in the real group.ResultsA biomarker containing 3,650 features was identified with an accuracy of 79.3%, sensitivity of 78.6%, and specificity of 80.0% (p < 0.002). The discriminative features were found in the trigeminal cervical complex/rostral ventromedial medulla (TCC/RVM), thalamus, medial prefrontal cortex (mPFC), and temporal gyrus. Then, 70 of 3,650 discriminative features were identified to predict the reduction of attack frequency after tVNS treatment with a correlation coefficient of 0.36 (p = 0.03). The 70 predictive features were involved in TCC/RVM, mPFC, temporal gyrus, middle cingulate cortex (MCC), and insula. The reduction of migraine attack frequency had a positive correlation with right TCC/RVM (r = 0.433, p = 0.021), left MCC (r = 0.451, p = 0.016), and bilateral mPFC (r = 0.416, p = 0.028), and negative with left insula (r = −0.473, p = 0.011) and right superior temporal gyrus/middle temporal gyrus (r = −0.684, p < 0.001), respectively.ConclusionsBy machine learning, the study proposed two potential biomarkers that could discriminate patients with MWoA and predict the efficacy of tVNS in reducing migraine attack frequency. The pivotal features were mainly located in the TCC/RVM, thalamus, mPFC, and temporal gyrus.
Collapse
Affiliation(s)
- Chengwei Fu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongsong Ye
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeying Wen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Luo
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Menghan Feng
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Bo Liu
| |
Collapse
|
21
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
22
|
Puledda F, Wang SJ, Diener HC, Schytz HW. A history of International Headache Society grants and their impact on headache careers. Cephalalgia 2022; 42:1288-1293. [PMID: 35698291 PMCID: PMC9535968 DOI: 10.1177/03331024221107384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The International Headache Society has been offering multiple award opportunities for young researchers and clinicians for many years, with the aim of supporting the development of careers in headache science and medicine. Methods In order to assess the outcomes of the International Headache Society award grants, a questionnaire was sent to all previous recipients, investigating a series of aspects related to their work, both during and after award completion. Results Of 44 total questionnaires sent, 36 were returned. Eighty-one percent of the recipients reported to have remained in the headache field since the award, half of them held a current academic position and over three-quarters had stayed in contact with the host institution. The totality of questionnaire responders stated that the grant had had a significantly positive impact on their careers. Conclusions The International Headache Society grants have assisted many young researchers in building an academic and clinical career in the field of headache, throughout the years.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Shuu-Jiun Wang
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Henrik Winther Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Vila-Pueyo M, Page K, Murdock PR, Loraine HJ, Woodrooffe AJ, Johnson KW, Goadsby PJ, Holland PR. The selective 5-HT 1F receptor agonist lasmiditan inhibits trigeminal nociceptive processing: Implications for migraine and cluster headache. Br J Pharmacol 2022; 179:358-370. [PMID: 34600443 DOI: 10.1111/bph.15699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Lasmiditan is a novel selective 5-HT1F receptor agonist, recently approved for acute treatment of migraine. 5-HT1F receptors are widely expressed in the CNS and trigeminovascular system. Here, we have explored the therapeutic effects of 5-HT1F receptor activation in preclinical models of migraine and cluster headache. EXPERIMENTAL APPROACH Electrical stimulation of the dura mater or the superior salivatory nucleus in anaesthetised rats evoked trigeminovascular or trigeminal-autonomic reflex activation at the level of the trigeminocervical complex. Additionally, cranial autonomic manifestations in response to trigeminal-autonomic reflex activation were measured, via anterior choroidal blood flow alterations. These responses were then challenged with lasmiditan. We explored the tissue distribution of mRNA for 5-HT1F receptors in human post-mortem tissue and of several 5-HT1 receptor subtypes in specific tissue beds. KEY RESULTS Lasmiditan dose-dependently reduced trigeminovascular activation in a preclinical model of migraine. Lasmiditan also reduced superior salivatory nucleus-evoked activation of the trigeminal-autonomic reflex, but had no effect on cranial autonomic activation. mRNA profiling in human tissue showed expression of the 5-HT1F receptor in several structures relevant for migraine and cluster headache. CONCLUSION AND IMPLICATIONS Our data suggest that lasmiditan acts, at least in part, as an anti-migraine agent by reducing trigeminovascular activation. Furthermore, our results highlight a clear action for lasmiditan in a preclinical model of cluster headache. Given the proven translational efficacy of this model, our data support the potential utility of lasmiditan as a therapeutic option for the acute treatment of cluster headache attacks. LINKED ARTICLES This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | | | | | | | - Kirk W Johnson
- Neuroscience Discovery, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip R Holland
- Headache Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Villar-Martinez MD, Goadsby PJ. Dim the Lights: A Narrative Review of Photophobia in Migraine. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A preference for darkness is one of the main associated features in people with migraine, the cause remaining a mystery until some decades ago. In this article, we describe the epidemiology of photophobia in migraine and explain the pathophysiological mechanisms following an anatomical structure. In addition, we review the current management of migraine and photophobia. Ongoing characterization of patients with photophobia and its different manifestations continues to increase our understanding of the intricate pathophysiology of migraine and vice versa. Detailed phenotyping of the patient with photophobia is encouraged.
Collapse
|
25
|
Abstract
Most people who see, treat or experience migraine will be aware that its clinical manifestations exceed the symptom of head pain. However, available acute treatments so far have targeted migraine symptoms only in the context of the pain phase of an attack. The associated disability clearly involves more than just these symptoms, and the phenotype can include additional painless features, including alterations in mood, cognition and homeostasis and sensory sensitivities. Recognising these symptoms, understanding their neurobiological basis and systematically recording them prospectively in clinical therapeutic trials are likely to offer valuable pathophysiological and therapeutic insights into this complex brain disorder, ultimately helping to improve the quality of lives of sufferers. We aim to explore the multifaceted disorder that is migraine, with a particular focus on the non-painful non-aura symptoms.
Collapse
Affiliation(s)
- Nazia Karsan
- NIHR-Welcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK
| | - Peter J Goadsby
- NIHR-Welcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK.,University of California, Los Angeles, California, USA
| |
Collapse
|
26
|
Rapoport AM, Lipton RB. Potassium channel openers - novel triggers of aura and migraine. Nat Rev Neurol 2021; 17:397-398. [PMID: 34040232 DOI: 10.1038/s41582-021-00517-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alan M Rapoport
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA.,Montefiore Medical Center, New York City, NY, USA
| |
Collapse
|
27
|
Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci 2021; 15:646692. [PMID: 34149377 PMCID: PMC8209296 DOI: 10.3389/fnhum.2021.646692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression. We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This article summarizes the current understanding of the pathophysiology of migraine, including some controversial aspects of the underlying mechanisms of the disorder. RECENT FINDINGS Recent functional neuroimaging studies focusing on the nonpainful symptoms of migraine have identified key areas of the central nervous system implicated in the early phases of a migraine attack. Clinical studies of spontaneous and provoked migraine attacks, together with preclinical studies using translational animal models, have led to a better understanding of the disease and the development of disease-specific and targeted therapies. SUMMARY Our knowledge of the pathophysiology of migraine has advanced significantly in the past decades. Current evidence supports our understanding of migraine as a complex cyclical brain disorder that likely results from dysfunctional sensory processing and dysregulation of homeostatic mechanisms. This article reviews the underlying mechanisms of the clinical manifestations of each phase of the migraine cycle.
Collapse
|
29
|
Mollan SP, Virdee JS, Bilton EJ, Thaller M, Krishan A, Sinclair AJ. Headache for ophthalmologists: current advances in headache understanding and management. Eye (Lond) 2021; 35:1574-1586. [PMID: 33580185 PMCID: PMC8169696 DOI: 10.1038/s41433-021-01421-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Patients with headache and head pain are often referred to ophthalmologists. These symptoms can either be associated with underlying ophthalmic conditions, or more often are headache disorders unrelated to the eyes. Understanding the phenotype of the headache is critical for advice, safe discharge or onward referral. This review will provide an update on the criteria for common headache disorders that are often seen by ophthalmology and embrace disorders associated with ophthalmic diseases. It will also describe the changing management of migraine and outline recent therapies that are currently available.
Collapse
Affiliation(s)
- Susan P Mollan
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, B15 2TH, Birmingham, UK
| | - Jasvir S Virdee
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, B15 2TH, Birmingham, UK
| | - Edward J Bilton
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, B15 2TH, Birmingham, UK
| | - Mark Thaller
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, B15 2TH, Birmingham, UK
| | - Anita Krishan
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, L9 7LJ, UK
| | - Alexandra J Sinclair
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, B15 2TH, Birmingham, UK.
- Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
30
|
Vagus nerve stimulation inhibits cortical spreading depression exclusively through central mechanisms. Pain 2021; 161:1661-1669. [PMID: 32142015 DOI: 10.1097/j.pain.0000000000001856] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Experimental and clinical data strongly support vagus nerve stimulation (VNS) as a novel treatment in migraine. Vagus nerve stimulation acutely suppresses cortical spreading depression (CSD) susceptibility, an experimental model that has been used to screen for migraine therapies. However, mechanisms underlying VNS efficacy on CSD are unknown. Here, we interrogated the central and peripheral mechanisms using VNS delivered either invasively (iVNS) or noninvasively (nVNS) in male Sprague-Dawley rats. Cortical spreading depression susceptibility was evaluated 40 minutes after the stimulation. iVNS elevated the electrical CSD threshold more than 2-fold and decreased KCl-induced CSD frequency by 22% when delivered to intact vagus nerve. Distal vagotomy did not alter iVNS efficacy (2-fold higher threshold and 19% lower frequency in iVNS vs sham). By contrast, proximal vagotomy completely abolished iVNS effect on CSD. Pharmacological blockade of nucleus tractus solitarius, the main relay for vagal afferents, by lidocaine or glutamate receptor antagonist CNQX also prevented CSD suppression by nVNS. Supporting a role for both norepinephrine and serotonin, CSD suppression by nVNS was inhibited by more than 50% after abrogating norepinephrinergic or serotonergic neurotransmission alone using specific neurotoxins; abrogating both completely blocked the nVNS effect. Our results suggest that VNS inhibits CSD through central afferents relaying in nucleus tractus solitarius and projecting to subcortical neuromodulatory centers providing serotonergic and norepinephrinergic innervation to the cortex.
Collapse
|
31
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
32
|
Galgani A, Lombardo F, Della Latta D, Martini N, Bonuccelli U, Fornai F, Giorgi FS. Locus Coeruleus Magnetic Resonance Imaging in Neurological Diseases. Curr Neurol Neurosci Rep 2020; 21:2. [PMID: 33313963 PMCID: PMC7732795 DOI: 10.1007/s11910-020-01087-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. RECENT FINDINGS LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.
Collapse
Affiliation(s)
| | - Francesco Lombardo
- U.O.C. "Risonanza Magnetica Specialistica e Neuroradiologia", Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - Daniele Della Latta
- Deep Health Unit, Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | - Nicola Martini
- Deep Health Unit, Fondazione "G. Monasterio"- National Research Council/Tuscany Region, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Filippo Sean Giorgi
- Neurology Unit, Pisa University Hospital, Pisa, Italy.
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|
33
|
Orexin A induced increases in rat locus coeruleus neuronal activity are attenuated by systemic administration of OX1R and OX2R antagonists. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Karsan N, Bose PR, O’Daly O, Zelaya FO, Goadsby PJ. Alterations in Functional Connectivity During Different Phases of the Triggered Migraine Attack. Headache 2020; 60:1244-1258. [DOI: 10.1111/head.13865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nazia Karsan
- Headache Group Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Pyari R. Bose
- Headache Group Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Owen O’Daly
- Department of Neuroimaging Centre for Neuroimaging Sciences Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
| | - Fernando O. Zelaya
- Department of Neuroimaging Centre for Neuroimaging Sciences Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
| | - Peter J. Goadsby
- Headache Group Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility SLaM Biomedical Research Centre King’s College Hospital London UK
| |
Collapse
|
35
|
Abstract
Migraine is the most common disabling primary headache globally. Attacks typically present with unilateral throbbing headache and associated symptoms including, nausea, multisensory hypersensitivity, and marked fatigue. In this article, the authors address the underlying neuroanatomical basis for migraine-related headache, associated symptomatology, and discuss key clinical and preclinical findings that indicate that migraine likely results from dysfunctional homeostatic mechanisms. Whereby, abnormal central nervous system responses to extrinsic and intrinsic cues may lead to increased attack susceptibility.
Collapse
Affiliation(s)
- Peter J Goadsby
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Philip R Holland
- Headache Group, Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
36
|
Holton CM, Strother LC, Dripps I, Pradhan AA, Goadsby PJ, Holland PR. Acid-sensing ion channel 3 blockade inhibits durovascular and nitric oxide-mediated trigeminal pain. Br J Pharmacol 2020; 177:2478-2486. [PMID: 31975427 PMCID: PMC7205795 DOI: 10.1111/bph.14990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023] Open
Abstract
Background and Purpose There is a major unmet need to develop new therapies for migraine. We have previously demonstrated the therapeutic potential of the acid‐sensing ion channel (ASIC) blockade in migraine, via an ASIC1 mechanism. ASIC3 is expressed in the trigeminal ganglion and its response is potentiated by NO that can trigger migraine attacks in patients. Thus we sought to explore the potential therapeutic effect of ASIC3 blockade in migraine. Experimental Approach To investigate this, we utilised validated electrophysiological and behavioural rodent preclinical models. In rats, ASIC3 blockade using APETx2 (50 or 100 μg·kg−1, i.v.) was measured by using durovascular and NO‐evoked trigeminal nociceptive responses along with cortical spreading depression models. In mice, we sought to determine if periorbital mechanical sensitivity, induced by acute nitroglycerin (10 mg·kg−1, i.p.), was attenuated by APETx2 (230 μg·kg−1, i.p.), as well as latent sensitisation induced by bright light stress in a chronic nitroglycerin model. Key Results Here, we show that the ASIC3 blocker APETx2 inhibits durovascular‐evoked and NO‐induced sensitisation of trigeminal nociceptive responses in rats. In agreement, acute and chronic periorbital mechanosensitivity induced in mice by nitroglycerin and subsequent bright light stress‐evoked latent sensitivity as a model of chronic migraine are all reversed by APETx2. Conclusion and Implications These results support the development of specific ASIC3 or combined ASIC1/3 blockers for migraine‐related pain and point to a potential role for ASIC‐dependent NO‐mediated attack triggering. This has key implications for migraine, given the major unmet need for novel therapeutic targets.
Collapse
Affiliation(s)
- Christopher M Holton
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lauren C Strother
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Peter J Goadsby
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
37
|
Kawano H, Mitchell SB, Koh JY, Goodman KM, Harata NC. Calcium-induced calcium release in noradrenergic neurons of the locus coeruleus. Brain Res 2020; 1729:146627. [PMID: 31883849 DOI: 10.1016/j.brainres.2019.146627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
The locus coeruleus (LC) is a nucleus within the brainstem that consists of norepinephrine-releasing neurons. It is involved in broad processes including cognitive and emotional functions. Understanding the mechanisms that control the excitability of LC neurons is important because they innervate widespread brain regions. One of the key regulators is cytosolic calcium concentration ([Ca2+]c), the increases in which can be amplified by calcium-induced calcium release (CICR) from intracellular calcium stores. Although the electrical activities of LC neurons are regulated by changes in [Ca2+]c, the extent of CICR involvement in this regulation has remained unclear. Here we show that CICR hyperpolarizes acutely dissociated LC neurons of the rat and demonstrate the underlying pathway. When CICR was activated by extracellular application of 10 mM caffeine, LC neurons were hyperpolarized in the current-clamp mode of patch-clamp recording, and the majority of neurons showed an outward current in the voltage-clamp mode. This outward current was accompanied by increased membrane conductance, and its reversal potential was close to the K+ equilibrium potential, indicating that it is mediated by opening of K+ channels. The outward current was generated in the absence of extracellular calcium and was blocked when the calcium stores were inhibited by applying ryanodine. Pharmacological blockers indicated that it was mediated by Ca2+-activated K+ channels of the non-small conductance type. The application of caffeine increased [Ca2+]c, as visualized by fluorescence microscopy. These findings show CICR suppresses LC neuronal activity, and indicate its dynamic role in modulating the LC-mediated noradrenergic tone in the brain.
Collapse
Affiliation(s)
- Hiroyuki Kawano
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jin-Young Koh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA
| | - Kirsty M Goodman
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - N Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
38
|
Pisanu C, Lundin E, Preisig M, Gholam-Rezaee M, Castelao E, Pistis G, Merikangas KR, Glaus J, Squassina A, Del Zompo M, Schiöth HB, Mwinyi J. Major depression subtypes are differentially associated with migraine subtype, prevalence and severity. Cephalalgia 2019; 40:347-356. [DOI: 10.1177/0333102419884935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective Migraine and major depressive disorder show a high rate of comorbidity, but little is known about the associations between the subtypes of major depressive disorder and migraine. In this cross-sectional study we aimed at investigating a) the lifetime associations between the atypical, melancholic, combined and unspecified subtype of major depressive disorder and migraine with and without aura and b) the associations between major depressive disorder and its subtypes and the severity of migraine. Methods A total of 446 subjects with migraine (migraine without aura: n = 294; migraine with aura: n = 152) and 2511 controls from the population-based CoLaus/PsyCoLaus study, Switzerland, were included. Associations between major depressive disorder subtypes and migraine characteristics were tested using binary logistic or linear regression. Results Melancholic, combined and unspecified major depressive disorder were associated with increased frequency of migraine with aura, whereas only melancholic major depressive disorder was associated with increased frequency of migraine without aura. Lifetime and unspecified major depressive disorder were associated with severe migraine intensity among subjects with migraine with aura but not migraine without aura, while combined major depressive disorder was associated with higher migraine frequency independently from migraine subtype. Conclusion This study suggests that melancholic but not atypical major depressive disorder is associated with migraine and migraine subtypes. Future studies exploring pathophysiological mechanisms shared between melancholic depression and migraine are warranted.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Neuroscience, University of Uppsala, Uppsala, Sweden
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Emma Lundin
- Department of Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | | | - Enrique Castelao
- Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Giorgio Pistis
- Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Kathleen R Merikangas
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Jennifer Glaus
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Helgi B Schiöth
- Department of Neuroscience, University of Uppsala, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
39
|
Bolay H, Vuralli D, Goadsby PJ. Aura and Head pain: relationship and gaps in the translational models. J Headache Pain 2019; 20:94. [PMID: 31481015 PMCID: PMC6734357 DOI: 10.1186/s10194-019-1042-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex brain disorder and initiating events for acute attacks still remain unclear. It seems difficult to explain the development of migraine headache with one mechanism and/or a single anatomical location. Cortical spreading depression (CSD) is recognized as the biological substrate of migraine aura and experimental animal studies have provided mechanisms that possibly link CSD to the activation of trigeminal neurons mediating lateralized head pain. However, some CSD features do not match the clinical features of migraine headache and there are gaps in translating CSD to migraine with aura. Clinical features of migraine headache and results from research are critically evaluated; and consistent and inconsistent findings are discussed according to the known basic features of canonical CSD: typical SD limited to the cerebral cortex as it was originally defined. Alternatively, arguments related to the emergence of SD in other brain structures in addition to the cerebral cortex or CSD initiated dysfunction in the thalamocortical network are proposed. Accordingly, including thalamus, particularly reticular nucleus and higher order thalamic nuclei, which functions as a hub connecting the visual, somatosensory, language and motor cortical areas and subjects to modulation by brain stem projections into the CSD theory, would greatly improve our current understanding of migraine.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, 06510 Ankara, Turkey
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
| | - Doga Vuralli
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
- Department of Algology, Bakirkoy Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
40
|
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019; 20:91. [PMID: 31464579 PMCID: PMC6734323 DOI: 10.1186/s10194-019-1043-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. Main body Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. Conclusion Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
41
|
Gallelli L, Cione E, Peltrone F, Siviglia S, Verano A, Chirchiglia D, Zampogna S, Guidetti V, Sammartino L, Montana A, Caroleo MC, De Sarro G, Di Mizio G. Hsa-miR-34a-5p and hsa-miR-375 as Biomarkers for Monitoring the Effects of Drug Treatment for Migraine Pain in Children and Adolescents: A Pilot Study. J Clin Med 2019; 8:jcm8070928. [PMID: 31252698 PMCID: PMC6679182 DOI: 10.3390/jcm8070928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRs) have emerged as biomarkers of migraine disease in both adults and children. In this study we evaluated the expression of hsa-miR-34a-5p and hsa-miR-375 in serum and saliva of young subjects (age 11 ± 3.467 years) with migraine without aura (MWA), while some underwent pharmacological treatment, and healthy young subjects were used as controls. miRs were determined using the qRT-PCR method, and gene targets of hsa-miR-34a-5p and hsa-miR-375 linked to pain-migraine were found by in silico analysis. qRT-PCR revealed comparable levels of hsa-miRs in both blood and saliva. Higher expression of hsa-miR-34a-5p and hsa-miR-375 was detected in saliva of untreated MWAs compared to healthy subjects (hsa-miR-34a-5p: p < 0.05; hsa-miR-375 p < 0.01). Furthermore, in MWA treated subjects, a significant decrease of hsa-miR-34a-5p and of hsa-miR-375 was documented in saliva and blood compared to MWA untreated ones. Altogether, these findings suggested thathsa-miR-34a-5p and hsa-miR-375 are expressed equally in blood and saliva and that they could be a useful biomarker of disease and of drug efficacy in patients with MWA.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro CZ, Italy.
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata, Rende CS, Italy
| | - Fancesco Peltrone
- Operative Unit of Pediatric diseases, Pugliese Ciaccio Hospital, 88100 Catanzaro CZ, Italy
| | - Serena Siviglia
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro CZ, Italy
| | - Antonio Verano
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata, Rende CS, Italy
| | - Domenico Chirchiglia
- Department of Neurosurgery, University of Catanzaro, Campus Germaneto, 88100 Catanzaro CZ, Italy
| | - Stefania Zampogna
- Operative Unit of Pediatric diseases, Pugliese Ciaccio Hospital, 88100 Catanzaro CZ, Italy
| | - Vincenzo Guidetti
- Section of Child and Adolescent Neuropsychiatry, Department of Human Neuroscience, "Sapienza" University, 00185, Rome RM, Italy
| | | | - Angelo Montana
- Department of Medical Science, Surgical Science and advanced Technologies "G.F, Ingrassia", University of Catania, 95124 Catania CT, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata, Rende CS, Italy
| | | | - Giulio Di Mizio
- Department of Medical Science, Surgical Science and advanced Technologies "G.F, Ingrassia", University of Catania, 95124 Catania CT, Italy.
| |
Collapse
|