1
|
Nguyen T, Lin Z, Dhanesha N, Patel RB, Lane M, Walters GC, Shutov LP, Strack S, Chauhan AK, Usachev YM. Mitochondrial Ca 2+ uniporter b (MCUb) regulates neuronal Ca 2+ dynamics and resistance to ischemic stroke. Cell Calcium 2025; 128:103013. [PMID: 40058292 DOI: 10.1016/j.ceca.2025.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Mitochondrial Ca2+ transport regulates many neuronal functions including synaptic transmission, ATP production, gene expression and neuronal survival. The mitochondrial Ca2+ uniporter (MCU) is the core molecular component of the mitochondrial Ca2+ uptake complex in the inner mitochondrial membrane. MCUb is a paralog of MCU that negatively regulates mitochondrial Ca2+ uptake in the heart and the cells of the immune system. However, the function of MCUb in the brain is largely unknown. Here, we report that MCUb knockout (KO) led to enhanced mitochondrial Ca2+ uptake in cortical neurons. By simultaneously monitoring changes in cytosolic and mitochondrial Ca2+ concentrations, [Ca2+]cyt and [Ca2+]mt, respectively, we also found that MCUb KO reduced the [Ca2+]cyt threshold required to induce mitochondrial uptake in cortical neurons during electrical stimulation. Exposure of cortical neurons to toxic concentrations of glutamate led to a collapse of mitochondrial membrane potential (ΔΨmt) and [Ca2+]cyt deregulation, and MCUb deletion accelerated the development of both events. Furthermore, using the middle cerebral artery occlusion (MCAO) as a model of transient ischemic stroke in mice, we found that MCUb KO significantly increased MCAO-induced brain damage in male, but not female mice. These results suggest that MCUb regulates neuronal Ca2+ dynamics and excitotoxicity and reveal a sex-dependent role of MCUb in controlling resistance to brain damage following ischemic stroke.
Collapse
Affiliation(s)
- Tam Nguyen
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Zhihong Lin
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Rakesh B Patel
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Mallorie Lane
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Grant C Walters
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Leonid P Shutov
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Anil K Chauhan
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Yuriy M Usachev
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
4
|
Rech L, Dietrich-Ntoukas T, Reinach PS, Brockmann T, Pleyer U, Mergler S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024; 13:1329. [PMID: 39195219 PMCID: PMC11352353 DOI: 10.3390/cells13161329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Collapse
Affiliation(s)
- Loreena Rech
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Tina Dietrich-Ntoukas
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Tobias Brockmann
- Department of Ophthalmology, Universitätsmedizin Rostock, 18057 Rostock, Germany;
- SciTec Department, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| |
Collapse
|
5
|
Gan Q, Zhang L, Fang Y, Yang L, Shi M, Xiao Z. Low pulse pressure and high serum complement C1q are risk factors for hemodialysis headache: A case-control study. Headache 2024; 64:285-298. [PMID: 38429985 DOI: 10.1111/head.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Hemodialysis headache (HDH) is a common complication of dialysis that negatively affects the patient's quality of life. The etiology and triggering factors of HDH are not fully understood. This study aims to assess the prevalence and characteristics of HDH among patients undergoing hemodialysis across multiple centers in China. Furthermore, we conducted a case-control study at one hospital to identify risk factors associated with HDH. METHODS The study consisted of two phases including a cross-sectional observational study and a case-control study. Participants underwent neurological examinations and interviews. Demographic and medical information were collected from both medical records and patient files. Serum creatinine, uric acid, urea, estimated glomerular filtration rate (eGFR), plasma osmolarity, glucose, C1q, and a variety of electrolytes including potassium, sodium, chloride, calcium, magnesium, and phosphorus were measured before and after dialysis. Blood pressure variables including systolic blood pressure, diastolic blood pressure, pulse pressure (PP), and heart rate were monitored hourly. Serum levels of inflammatory factors, including tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-4, IL-6, and IL-10 were quantified using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS The prevalence of HDH was 37.7% (183/485). HDH was characterized by a bilateral tightening headache of moderate intensity and duration of <2 h, occurring in different locations. The case-control study included 50 patients with HDH and 84 control patients, pre-dialysis PP was found to be lower in the HDH group than in the control group (mean ± standard deviation 51.5 ± 18.2 vs. 67.9 ± 14.9, p = 0.027). Furthermore, the pre-dialysis serum complement C1q level was significantly higher for the HDH group than the control group (median and interquartile range 201.5 [179.0-231.5] vs. 189.0 [168.9-209.0], p = 0.021). Pre-dialysis PP was associated with 5.1% decreased odds of HDH (odds ratio [OR] = 0.96; 95% confidence interval [CI], 0.93-0.99, p = 0.026), body weight was associated with a 5.4% decreased risk of HDH (OR = 0.95; 95% CI, 0.91-0.99, p = 0.013), and pre-dialysis C1q levels increased the odds of HDH by 1.9% (OR = 1.02; 95% CI, 1.01-1.03, p = 0.005). CONCLUSION Low PP, low body weight, and high blood complement C1q may be potential risk factors associated with HDH.
Collapse
Affiliation(s)
- Quan Gan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lily Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuting Fang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Shi
- Department of Dialysis Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Cortez I, Gaffney CM, Crelli CV, Lee E, Nichols JM, Pham HV, Mehdi S, Janjic JM, Shepherd AJ. Sustained pain and macrophage infiltration in a mouse muscle contusion model. Muscle Nerve 2024; 69:103-114. [PMID: 37929655 PMCID: PMC11851331 DOI: 10.1002/mus.28001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION/AIMS Prior studies have emphasized the role of inflammation in the response to injury and muscle regeneration, but little emphasis has been placed on characterizing the relationship between innate inflammation, pain, and functional impairment. The aim of our study was to determine the contribution of innate immunity to prolonged pain following muscle contusion. METHODS We developed a closed-impact mouse model of muscle contusion and a macrophage-targeted near-infrared fluorescent nanoemulsion. Closed-impact contusions were delivered to the lower left limb. Pain sensitivity, gait dysfunction, and inflammation were assessed in the days and weeks post-contusion. Macrophage accumulation was imaged in vivo by injecting i.v. near-infrared nanoemulsion. RESULTS Despite hindpaw hypersensitivity persisting for several weeks, disruptions to gait and grip strength typically resolved within 10 days of injury. Using non-invasive imaging and immunohistochemistry, we show that macrophage density peaks in and around the affected muscle 3 day post-injury and quickly subsides. However, macrophage density in the ipsilateral sciatic nerve and dorsal root ganglia (DRG) increases more gradually and persists for at least 14 days. DISCUSSION In this study, we demonstrate pain sensitivity is influenced by the degree of lower muscle contusion, without significant changes to gait and grip strength. This may be due to modulation of pain signaling by macrophage proliferation in the sciatic nerve, upstream from the site of injury. Our work suggests chronic pain developing from muscle contusion is driven by macrophage-derived neuroinflammation in the peripheral nervous system.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- These authors contributed equally to this study
| | - Caitlyn M. Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- These authors contributed equally to this study
| | - Caitlin V. Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282
| | - Eric Lee
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - James M. Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Syed Mehdi
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282
| | - Andrew J. Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
7
|
Gong JH, Zhang CM, Wu B, Zhang ZX, Zhou ZY, Zhu JH, Liu H, Rong Y, Yin Q, Chen YT, Zheng R, Yang GZ, Yang XF, Chen S. Central and peripheral analgesic active components of triterpenoid saponins from Stauntonia chinensis and their action mechanism. Front Pharmacol 2023; 14:1275041. [PMID: 37908974 PMCID: PMC10613692 DOI: 10.3389/fphar.2023.1275041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Triterpenoid saponins from Stauntonia chinensis have been proven to be a potential candidate for inflammatory pain relief. Our pharmacological studies confirmed that the analgesic role of triterpenoid saponins from S. chinensis occurred via a particular increase in the inhibitory synaptic response in the cortex at resting state and the modulation of the capsaicin receptor. However, its analgesic active components and whether its analgesic mechanism are limited to this are not clear. In order to further determine its active components and analgesic mechanism, we used the patch clamp technique to screen the chemical components that can increase inhibitory synaptic response and antagonize transient receptor potential vanilloid 1, and then used in vivo animal experiments to evaluate the analgesic effect of the selected chemical components. Finally, we used the patch clamp technique and molecular biology technology to study the analgesic mechanism of the selected chemical components. The results showed that triterpenoid saponins from S. chinensis could enhance the inhibitory synaptic effect and antagonize the transient receptor potential vanilloid 1 through different chemical components, and produce central and peripheral analgesic effects. The above results fully reflect that "traditional Chinese medicine has multi-component, multi-target, and multi-channel synergistic regulation".
Collapse
Affiliation(s)
- Ji-Hong Gong
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Chang-Ming Zhang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Bo Wu
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Zi-Xun Zhang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Zhong-Yan Zhou
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jia-Hui Zhu
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Han Liu
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Yi Rong
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Qian Yin
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ya-Ting Chen
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Rong Zheng
- Gynecology Department, Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Guang-Zhong Yang
- College of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Su Chen
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| |
Collapse
|
8
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Hayashi K, Lesnak JB, Plumb AN, Rasmussen LA, Sluka KA. P2X7-NLRP3-Caspase-1 signaling mediates activity-induced muscle pain in male but not female mice. Pain 2023; 164:1860-1873. [PMID: 36930885 PMCID: PMC10363217 DOI: 10.1097/j.pain.0000000000002887] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/23/2022] [Indexed: 03/19/2023]
Abstract
ABSTRACT We developed an animal model of activity-induced muscle pain that is dependent on local macrophage activation and release of interleukin-1β (IL-1β). Activation of purinergic type 2X (P2X) 7 receptors recruits the NOD-like receptor protein (NLRP) 3 and activates Caspase-1 to release IL-1β. We hypothesized that pharmacological blockade of P2X7, NLRP3, and Caspase-1 would prevent development of activity-induced muscle pain in vivo and release of IL-1β from macrophages in vitro. The decrease in muscle withdrawal thresholds in male, but not female, mice was prevented by the administration of P2X7, NLRP3, and Caspase-1 inhibitors before induction of the model, whereas blockade of IL-1β before induction prevented muscle hyperalgesia in both male and female mice. Blockade of P2X7, NLRP3, Capsase-1, or IL-1β 24 hours, but not 1 week, after induction of the model alleviated muscle hyperalgesia in male, but not female, mice. mRNA expression of P2X7, NLRP3, Caspase-1, and IL-1β from muscle was increased 24 hours after induction of the model in both male and female mice. Using multiplex, increases in IL-1β induced by combining adenosine triphosphate with pH 6.5 in lipopolysaccharide-primed male and female macrophages were significantly lower with the presence of inhibitors of P2X7 (A740003), NLRP3 (MCC950), and Caspase-1 (Z-WEHD-FMK) when compared with the vehicle. The current data suggest the P2X7/NLRP3/Caspase-1 pathway contributed to activity-induced muscle pain initiation and early maintenance phases in male but not female, and not in late maintenance phases in male mice.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Ashley N. Plumb
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Lynn A. Rasmussen
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Ohashi N, Tashima K, Namiki T, Horie S. Allyl isothiocyanate, an activator of TRPA1, increases gastric mucosal blood flow through calcitonin gene-related peptide and adrenomedullin in anesthetized rats. J Pharmacol Sci 2023; 151:187-194. [PMID: 36925217 DOI: 10.1016/j.jphs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Allyl isothiocyanate (AITC) activates transient receptor potential ankyrin 1 (TRPA1) channel, which is involved in the control of intestinal mucosal blood flow. However, the mechanism underlying the increased gastric mucosal blood flow (GMBF) in response to AITC remains unknown. We examined the effect of AITC on GMBF in the ex vivo stomachs of normal and sensory deafferented rats using a laser Doppler flowmeter. Mucosal application of AITC increased GMBF in a concentration-dependent manner. Repeated AITC exposure resulted in a marked desensitization. The increased GMBF response induced by AITC was entirely blocked by co-application of TRPA1 channel blockers HC-030031 or AP-18. Increased GMBF in response to AITC was significantly attenuated by chemical deafferentation following systemic capsaicin injections (total dose: 100 mg/kg). In contrast, increased GMBF responses to capsaicin, a transient receptor potential vanilloid 1 (TRPV1) activator, were completely abolished by chemical deafferentation. The increased GMBF response to AITC was markedly inhibited by BIBN 4096, a calcitonin gene-related peptide receptor (CGRP) antagonist, or AGP-8412, an adrenomedullin receptor antagonist. These results suggest that AITC-stimulated TRPA1 activation results in the increased GMBF through the release of CGRP and adrenomedullin.
Collapse
Affiliation(s)
- Noriyuki Ohashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan; Department of Frontier Japanese-Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kimihito Tashima
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan.
| | - Takao Namiki
- Department of Frontier Japanese-Oriental (Kampo) Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Chiba, Japan
| |
Collapse
|
12
|
Tanaka T, Okuda H, Isonishi A, Terada Y, Kitabatake M, Shinjo T, Nishimura K, Takemura S, Furue H, Ito T, Tatsumi K, Wanaka A. Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF through an SNX25-Nrf2 pathway. Nat Immunol 2023; 24:439-451. [PMID: 36703006 PMCID: PMC9977679 DOI: 10.1038/s41590-022-01418-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
Cross-talk between peripheral neurons and immune cells is important in pain sensation. We identified Snx25 as a pain-modulating gene in a transgenic mouse line with reduced pain sensitivity. Conditional deletion of Snx25 in monocytes and macrophages, but not in peripheral sensory neurons, in mice (Snx25cKO mice) reduced pain responses in both normal and neuropathic conditions. Bone marrow transplantation using Snx25cKO and wild-type mice indicated that macrophages modulated pain sensitivity. Expression of sorting nexin (SNX)25 in dermal macrophages enhanced expression of the neurotrophic factor NGF through the inhibition of ubiquitin-mediated degradation of Nrf2, a transcription factor that activates transcription of Ngf. As such, dermal macrophages set the threshold for pain sensitivity through the production and secretion of NGF into the dermis, and they may cooperate with dorsal root ganglion macrophages in pain perception.
Collapse
Affiliation(s)
- Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan.
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Yuki Terada
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Takeaki Shinjo
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Nishimura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Shoko Takemura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiro Ito
- Department of Immunology, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Kashihara, Japan.
| |
Collapse
|
13
|
Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1. Cells 2023; 12:cells12040556. [PMID: 36831223 PMCID: PMC9954636 DOI: 10.3390/cells12040556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Collapse
|
14
|
Khan KM, Bierlein-De La Rosa G, Biggerstaff N, Pushpavathi Selvakumar G, Wang R, Mason S, Dailey ME, Marcinkiewcz CA. Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain Behav Immun 2023; 107:419-431. [PMID: 35907582 PMCID: PMC10289137 DOI: 10.1016/j.bbi.2022.07.160] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/09/2023] Open
Abstract
Adolescent alcohol use can permanently alter brain function and lead to poor health outcomes in adulthood. Emerging evidence suggests that alcohol use can predispose individuals to pain disorders or exacerbate existing pain conditions, but the underlying neural mechanisms are currently unknown. Here we report that mice exposed to adolescent intermittent access to ethanol (AIE) exhibit increased pain sensitivity and depressive-like behaviors that persist for several weeks after alcohol cessation and are accompanied by elevated CD68 expression in microglia and reduced numbers of serotonin (5-HT)-expressing neurons in the dorsal raphe nucleus (DRN). 5-HT expression was also reduced in the thalamus, anterior cingulate cortex (ACC) and amygdala as well as the lumbar dorsal horn of the spinal cord. We further demonstrate that chronic minocycline administration after AIE alleviated hyperalgesia and social deficits, while chemogenetic activation of microglia in the DRN of ethanol-naïve mice reproduced the effects of AIE on pain and social behavior. Chemogenetic activation of microglia also reduced tryptophan hydroxylase 2 (Tph2) expression and was negatively correlated with the number of 5-HT-immunoreactive cells in the DRN. Taken together, these results indicate that microglial activation in the DRN may be a primary driver of pain, negative affect, and 5-HT depletion after AIE.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Natalie Biggerstaff
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Suzanne Mason
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Michael E Dailey
- Iowa Neuroscience Institute, University of Iowa, United States; Department of Biology, University of Iowa, United States
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, United States; Iowa Neuroscience Institute, University of Iowa, United States.
| |
Collapse
|
15
|
Ye F, Du L, Huang W, Wang S. Shared Genetic Regulatory Networks Contribute to Neuropathic and Inflammatory Pain: Multi-Omics Systems Analysis. Biomolecules 2022; 12:1454. [PMID: 36291662 PMCID: PMC9599593 DOI: 10.3390/biom12101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of chronic pain are complex, and genetic factors play an essential role in the development of chronic pain. Neuropathic pain (NP) and inflammatory pain (IP) are two primary components of chronic pain. Previous studies have uncovered some common biological processes in NP and IP. However, the shared genetic mechanisms remained poorly studied. We utilized multi-omics systematic analyses to investigate the shared genetic mechanisms of NP and IP. First, by integrating several genome-wide association studies (GWASs) with multi-omics data, we revealed the significant overlap of the gene co-expression modules in NP and IP. Further, we uncovered the shared biological pathways, including the previously reported mitochondrial electron transport and ATP metabolism, and stressed the role of genetic factors in chronic pain with neurodegenerative diseases. Second, we identified 24 conservative key drivers (KDs) contributing to NP and IP, containing two well-established pain genes, IL1B and OPRM1, and some novel potential pain genes, such as C5AR1 and SERPINE1. The subnetwork of those KDs highlighted the processes involving the immune system. Finally, gene expression analysis of the KDs in mouse models underlined two of the KDs, SLC6A15 and KCNQ5, with unidirectional regulatory functions in NP and IP. Our study provides strong evidence to support the current understanding of the shared genetic regulatory networks underlying NP and IP and potentially benefit the future common therapeutic avenues for chronic pain.
Collapse
Affiliation(s)
- Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Du
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Sheng Wang
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Bertozzi MM, Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA, Fattori V, Staurengo-Ferrari L, Ferraz CR, Domiciano TP, Calixto-Campos C, Borghi SM, Zarpelon AC, Cunha TM, Casagrande R, Verri WA. Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice. Brain Sci 2022; 12:brainsci12091247. [PMID: 36138983 PMCID: PMC9496717 DOI: 10.3390/brainsci12091247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.
Collapse
Affiliation(s)
- Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Talita P. Domiciano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Cassia Calixto-Campos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina 86041-120, PR, Brazil
| | - Ana C. Zarpelon
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto 14049-900, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or ; Tel.: +55-43-3371-4979; Fax: +55-43-3371-4387
| |
Collapse
|
17
|
Mechanical Stretch Induced Skin Regeneration: Molecular and Cellular Mechanism in Skin Soft Tissue Expansion. Int J Mol Sci 2022; 23:ijms23179622. [PMID: 36077018 PMCID: PMC9455829 DOI: 10.3390/ijms23179622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Skin soft tissue expansion is one of the most basic and commonly used techniques in plastic surgery to obtain excess skin for a variety of medical uses. However, skin soft tissue expansion is faced with many problems, such as long treatment process, poor skin quality, high retraction rate, and complications. Therefore, a deeper understanding of the mechanisms of skin soft tissue expansion is needed. The key to skin soft tissue expansion lies in the mechanical stretch applied to the skin by an inflatable expander. Mechanical stimulation activates multiple signaling pathways through cellular adhesion molecules and regulates gene expression profiles in cells. Meanwhile, various types of cells contribute to skin expansion, including keratinocytes, dermal fibroblasts, and mesenchymal stem cells, which are also regulated by mechanical stretch. This article reviews the molecular and cellular mechanisms of skin regeneration induced by mechanical stretch during skin soft tissue expansion.
Collapse
|
18
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
20
|
Hu M, Doyle AD, Yamada KM, Kulkarni AB. Visualization of trigeminal ganglion sensory neuronal signaling regulated by Cdk5. Cell Rep 2022; 38:110458. [PMID: 35263573 PMCID: PMC9004325 DOI: 10.1016/j.celrep.2022.110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
The mechanisms underlying facial pain are still incompletely understood, posing major therapeutic challenges. Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase involved in pain signaling. However, the regulatory roles of Cdk5 in facial pain signaling and the possibility of therapeutic intervention at the level of mouse trigeminal ganglion primary neurons remain elusive. In this study, we use optimized intravital imaging to directly compare trigeminal neuronal activities after mechanical, thermal, and chemical stimulation. We then test whether facial inflammatory pain in mice could be alleviated by the Cdk5 inhibitor peptide TFP5. We demonstrate regulation of total Ca2+ intensity by Cdk5 activity using transgenic and knockout mouse models. In mice with vibrissal pad inflammation, application of TFP5 specifically decreases total Ca2+ intensity in response to noxious stimuli. It also alleviates inflammation-induced allodynia by inhibiting activation of trigeminal peripheral sensory neurons. Cdk5 inhibitors may provide promising non-opioid candidates for pain treatment.
Collapse
Affiliation(s)
- Minghan Hu
- Functional Genomics Section and Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, MSC 4359, Bethesda, MD, USA.
| |
Collapse
|
21
|
Castro J, Harrington AM, Chegini F, Matusica D, Spencer NJ, Brierley SM, Haberberger RV, Barry CM. Clodronate Treatment Prevents Vaginal Hypersensitivity in a Mouse Model of Vestibulodynia. Front Cell Infect Microbiol 2022; 11:784972. [PMID: 35118009 PMCID: PMC8803747 DOI: 10.3389/fcimb.2021.784972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
IntroductionImproved understanding of vestibulodynia pathophysiology is required to develop appropriately targeted treatments. Established features include vulvovaginal hyperinnervation, increased nociceptive signalling and hypersensitivity. Emerging evidence indicates macrophage-neuron signalling contributes to chronic pain pathophysiology. Macrophages are broadly classified as M1 or M2, demonstrating pro-nociceptive or anti-nociceptive effects respectively. This study investigates the impact of clodronate liposomes, a macrophage depleting agent, on nociceptive signalling in a mouse model of vestibulodynia.MethodsMicroinjection of complete Freund’s adjuvant (CFA) at the vaginal introitus induced mild chronic inflammation in C57Bl/6J mice. A subgroup was treated with the macrophage depleting agent clodronate. Control mice received saline. After 7 days, immunolabelling for PGP9.5, F4/80+CD11c+ and F4/80+CD206+ was used to compare innervation density and presence of M1 and M2 macrophages respectively in experimental groups. Nociceptive signalling evoked by vaginal distension was assessed using immunolabelling for phosphorylated MAP extracellular signal-related kinase (pERK) in spinal cord sections. Hyperalgesia was assessed by visceromotor response to graded vaginal distension.ResultsCFA led to increased vaginal innervation (p < 0.05), increased pERK-immunoreactive spinal cord dorsal horn neurons evoked by vaginal-distension (p < 0.01) and enhanced visceromotor responses compared control mice (p < 0.01). Clodronate did not reduce vaginal hyperinnervation but significantly reduced the abundance of M1 and M2 vaginal macrophages and restored vaginal nociceptive signalling and vaginal sensitivity to that of healthy control animals.ConclusionsWe have developed a robust mouse model of vestibulodynia that demonstrates vaginal hyperinnervation, enhanced nociceptive signalling, hyperalgesia and allodynia. Macrophages contribute to hypersensitivity in this model. Macrophage-sensory neuron signalling pathways may present useful pathophysiological targets.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Fariba Chegini
- Musculoskeletal Neurobiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Sensory Neurobiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, SA, Australia
| | - Rainer V. Haberberger
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christine M. Barry
- Musculoskeletal Neurobiology Laboratory, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA, Australia
- *Correspondence: Christine M. Barry,
| |
Collapse
|
22
|
Tong Y, Liu J, Yang T, Wang J, Zhao T, Kang Y, Fan Y. Association of Pain with Plasma C5a in Patients with Neuromyelitis Optica Spectrum Disorders During Remission. Neuropsychiatr Dis Treat 2022; 18:1039-1046. [PMID: 35615424 PMCID: PMC9124695 DOI: 10.2147/ndt.s359620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the association of pain with plasma C5a levels and other related inflammatory cytokines in neuromyelitis optica spectrum disorders (NMOSD) patients during remission. PARTICIPANTS AND METHODS NMOSD patients (n = 87) and healthy controls (HC; n = 44) were consecutively recruited between January 2017 and April 2018. Plasma complement 5 (C5), C5a, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β levels were detected. Visual Analogue Scale (VAS), ID pain scale, 24-item Hamilton Depression Scale (HAMD), Multiple Sclerosis Impact Scale (MSIS-29), and Kurtzke Expanded Disability Status Scale (EDSS) were used to evaluate the degree and types of pain, the existence of depression and anxiety, and the life quality and disability status of patients. Binary logistic regression equation was used to assess the association of pain with plasma C5a levels. RESULTS Among the 87 NMOSD patients, 40 complained of pain that in 67.5% (27/40) of cases had a neuropathic component (ID pain ≥2). Plasma C5a, IL-6, TNF-α, and IL-1β levels were significantly elevated in NMOSD patients than in HC. Plasma C5 levels were negatively correlated with the time from sampling to the last relapse or disease onset. NMOSD patients with pain had higher plasma C5a levels, and they suffered from a higher disability, more anxiety, and worse life quality compared to those patients without pain. In NMOSD patients with pain, there were not significant differences between plasma levels of C5, C5a, IL-6, TNF-α, or IL-1β, regardless of neuropathic pain or not. Binary logistic regression showed that the OR of plasma C5a level was 1.002, with gender and EDSS score were identified as independent factors associated with pain in NMOSD. CONCLUSION NMOSD patients during remission had elevated C5a and related inflammatory cytokines levels in peripheral blood. Elevated C5a may have a unique role in the pathogenesis of pain in NMOSD patients.
Collapse
Affiliation(s)
- Yanping Tong
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Jie Liu
- Department of Respiratory Medicine, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, People's Republic of China
| | - Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Jingwen Wang
- Department of Neurology, Beijing Miyun District Hospital of Traditional Chinese Medicine, Beijing, 101599, People's Republic of China
| | - Tianyou Zhao
- Department of Neurology, Beijing Miyun District Hospital of Traditional Chinese Medicine, Beijing, 101599, People's Republic of China
| | - Yuezhi Kang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| |
Collapse
|
23
|
Jiang GT, Shao L, Kong S, Zeng ML, Cheng JJ, Chen TX, Han S, Yin J, Liu WH, He XH, Liu YM, Gongga L, Peng BW. Complement C3 Aggravates Post-epileptic Neuronal Injury Via Activation of TRPV1. Neurosci Bull 2021; 37:1427-1440. [PMID: 34309810 PMCID: PMC8490607 DOI: 10.1007/s12264-021-00750-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is a brain condition characterized by the recurrence of unprovoked seizures. Recent studies have shown that complement component 3 (C3) aggravate the neuronal injury in epilepsy. And our previous studies revealed that TRPV1 (transient receptor potential vanilloid type 1) is involved in epilepsy. Whether complement C3 regulation of neuronal injury is related to the activation of TRPV1 during epilepsy is not fully understood. We found that in a mouse model of status epilepticus (SE), complement C3 derived from astrocytes was increased and aggravated neuronal injury, and that TRPV1-knockout rescued neurons from the injury induced by complement C3. Circular RNAs are abundant in the brain, and the reduction of circRad52 caused by complement C3 promoted the expression of TRPV1 and exacerbated neuronal injury. Mechanistically, disorders of neuron-glia interaction mediated by the C3-TRPV1 signaling pathway may be important for the induction of neuronal injury. This study provides support for the hypothesis that the C3-TRPV1 pathway is involved in the prevention and treatment of neuronal injury and cognitive disorders.
Collapse
Affiliation(s)
- Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing-Jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yu-Min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lanzi Gongga
- Medical College, Tibet University, Lhasa, 850013, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
24
|
Luo X, Chen O, Wang Z, Bang S, Ji J, Lee SH, Huh Y, Furutani K, He Q, Tao X, Ko MC, Bortsov A, Donnelly CR, Chen Y, Nackley A, Berta T, Ji RR. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021; 109:2691-2706.e5. [PMID: 34473953 DOI: 10.1016/j.neuron.2021.06.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jasmine Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
25
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
26
|
Lowy DB, Makker PGS, Moalem-Taylor G. Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States. Front Immunol 2021; 12:660203. [PMID: 33912189 PMCID: PMC8071857 DOI: 10.3389/fimmu.2021.660203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.
Collapse
Affiliation(s)
- Daniel B Lowy
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Fang J, Du J, Xiang X, Shao X, He X, Jiang Y, Liu B, Liang Y, Fang J. SNI and CFA induce similar changes in TRPV1 and P2X3 expressions in the acute phase but not in the chronic phase of pain. Exp Brain Res 2021; 239:983-995. [PMID: 33464388 DOI: 10.1007/s00221-020-05988-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Peripheral inflammation and nerve injury usually accompany each other. However, whether inflammatory and neuropathic pain share similar mechanisms at all stages is unknown. TRPV1 and P2X3 are two major ion channels in dorsal root ganglia (DRGs) and are involved in chronic pain. Here, their function and expression in DRGs at different phases of the two types of pain were investigated. Both the paw withdrawal threshold (PWT) and paw withdrawal latency were decreased in rats injected with complete Freud's adjuvant (CFA). However, only the PWT was decreased in rats with spared nerve injury (SNI). CFA increased the magnitude of the TRPV1-mediated Ca2+ response but not the P2X3-mediated Ca2+ response 14 days after injection. Consistent with this result, the P2X3 expression level in CFA rats was increased only at 3 days after injection. SNI surgery increased the magnitudes of the TRPV1- and P2X3-mediated Ca2+ responses and upregulated both TRPV1 and P2X3 expression in lumbar DRGs. The distributions of TRPV1 and P2X3 in DRGs after modeling were observed, and TRPV1 was found to be highly expressed mainly in the L4-L5 DRGs in CFA rats and in the L5-L6 DRGs in SNI rats. P2X3 was highly expressed in the L4-L6 DRGs in CFA rats 3 days after injection but was only highly expressed in the L4 DRG 14 days after modeling. On the other hand, SNI promoted the P2X3 expression L4-L5 DRGs 3 days after surgery, but only L6 DRG 14 days after modeling. All the results indicate that P2X3 and TPRV1 are involved in inflammatory and neuropathic pain by different expression levels and distributions in the lumbar DRG in the chronic stage.
Collapse
Affiliation(s)
- Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuaner Xiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofeng He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
28
|
Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proc Natl Acad Sci U S A 2020; 117:22357-22366. [PMID: 32839313 DOI: 10.1073/pnas.1922683117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fever is a conserved and prominent response to infection. Yet, the issue of how CD4 T cell responses are modulated if they occur at fever temperatures remains poorly addressed. We have examined the priming of naive CD4 T cells in vitro at fever temperatures, and we report notable fever-mediated modulation of their cytokine commitment. When naive CD4 T cells were primed by plate-bound anti-CD3 and anti-CD28 monoclonal antibodies at moderate fever temperature (39 °C), they enhanced commitment to IL4/5/13 (Th2) and away from IFNg (Th1). This was accompanied by up-regulation of the Th2-relevant transcription factor GATA3 and reduction in the Th1-relevant transcription factor Tbet. Fever sensing by CD4 T cells involved transient receptor potential vanilloid cation channels (TRPVs) since TRPV1/TRPV4 antagonism blocked the febrile Th2 switch, while TRPV1 agonists mediated a Th2 switch at 37 °C. The febrile Th2 switch was IL4 independent, but a γ-secretase inhibitor abrogated it, and it was not found in Notch1-null CD4 T cells, identifying the Notch pathway as a major mediator. However, when naive CD4 T cells were primed via antigen and dendritic cells (DCs) at fever temperatures, the Th2 switch was abrogated via increased production of IL12 from DCs at fever temperatures. Thus, immune cells directly sense fever temperatures with likely complex physiological consequences.
Collapse
|
29
|
ChIP-seq Profiling Identifies Histone Deacetylase 2 Targeting Genes Involved in Immune and Inflammatory Regulation Induced by Calcitonin Gene-Related Peptide in Microglial Cells. J Immunol Res 2020; 2020:4384696. [PMID: 32832570 PMCID: PMC7424498 DOI: 10.1155/2020/4384696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a mediator of microglial activation at the transcriptional level. The involvement of the epigenetic mechanism in this process is largely undefined. Histone deacetylase (HDAC)1/2 are considered important epigenetic regulators of gene expression in activated microglia. In this study, we examined the effect of CGRP on HDAC2-mediated gene transcription in microglial cells through the chromatin immunoprecipitation sequencing (ChIP-seq) method. Immunofluorescence analysis showed that mouse microglial cells (BV2) expressed CGRP receptor components. Treatment of microglia with CGRP increased HDAC2 protein expression. ChIP-seq data indicated that CGRP remarkably altered promoter enrichments of HDAC2 in microglial cells. We identified 1271 gene promoters, whose HDAC2 enrichments are significantly altered in microglia after CGRP treatment, including 1181 upregulating genes and 90 downregulating genes. Bioinformatics analyses showed that HDAC2-enriched genes were mainly associated with immune- and inflammation-related pathways, such as nitric oxide synthase (NOS) biosynthetic process, retinoic acid-inducible gene- (RIG-) like receptor signaling pathway, and nuclear factor kappa B (NF-κB) signaling pathway. The expression of these key pathways (NOS, RIG-I, and NF-κB) were further verified by Western blot. Taken together, our findings suggest that genes with differential HDAC2 enrichments induced by CGRP function in diverse cellular pathways and many are involved in immune and inflammatory responses.
Collapse
|
30
|
Zhou Q, Shi Y, Qi H, Liu H, Wei N, Jiang Y, Wang K. Identification of two natural coumarin enantiomers for selective inhibition of TRPV2 channels. FASEB J 2020; 34:12338-12353. [PMID: 32729134 DOI: 10.1096/fj.201901541rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Thermosensitive transient receptor potential vanilloid 2 (thermoTRPV2) is a nonselective Ca2+ -permeable cation channel broadly expressed, and is implicated in the pathology of diseases such as diabetes and pancreatitis. However, the physiological and pharmacological functions of TRPV2 channels have not been extensively investigated because of the absence of specific modulators. In this study, we report a pair of natural coumarin derivative enantiomers (-)-murraxocin (B304-1) and (+)-murraxocin (B304-2) from Murraya exotica for their selective inhibition of TRPV2 channels expressed in HEK293 cells and native TRPV2 currents in differentiated brown adipocytes. Whole-cell patch clamp recordings confirmed the enantiomers B304-1 and B304-2 could selectively inhibit the agonist mediated activation of TRPV2 current with IC50 values of 22.2 ± 7.8 μM and 3.7 ± 0.7 μM, respectively. Molecular docking and site-directed mutagenesis revealed a key residue I600 of TRPV2 critical for the binding of the enantiomers. Furthermore, B304-1 and B304-2 significantly reversed TRPV2 agonist-induced inhibition of mouse brown adipocyte differentiation. Taken together, our identification of two natural coumarin enantiomers provides valuable tools and chemical leads for further elucidation of TRPV2 channel function, and pharmacological modulation of thermoTRPV2 in brown adipocytes may represent a new therapeutic strategy for treatment of energy imbalance or metabolic disorders.
Collapse
Affiliation(s)
- Qiqi Zhou
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yuntao Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hang Qi
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Huijie Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
31
|
Blockade of peripheral nociceptive signal input relieves the formation of spinal central sensitization and retains morphine efficacy in a neuropathic pain rat model. Neurosci Lett 2020; 716:134643. [PMID: 31760085 DOI: 10.1016/j.neulet.2019.134643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
|