1
|
Boccella S, Fusco A, Ricciardi F, Morace AM, Bonsale R, Perrone M, Marabese I, De Gregorio D, Belardo C, Posa L, Rullo L, Piscitelli F, di Marzo V, Nicois A, Marfella B, Cristino L, Luongo L, Guida F, Candeletti S, Gobbi G, Romualdi P, Maione S. Acute kappa opioid receptor blocking disrupts the pro-cognitive effect of cannabidiol in neuropathic rats. Neuropharmacology 2025; 266:110265. [PMID: 39674399 DOI: 10.1016/j.neuropharm.2024.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Cannabidiol has been shown to ameliorate neuropathic pain and its affective components. Previous studies highlighted the pharmacological interaction between the CBD and opioid system, particularly the MOR, but the understanding of the interaction between CBD and kappa opioid receptor (KOR), physiologically stimulated by the endogenous opioid dynorphin, remains elusive. We assessed the pharmacological interactions between CBD and nor-BNI, a selective KOR antagonist in a rat neuropathic pain model. We show an increase in dynorphin peptide and its KOR receptors in the hippocampus' dentate gyrus (DG) of neuropathic rats showing allodynia, and memory deficits. Consistent with these findings, neuropathic pain was associated with long-term potentiation (LTP) impairment in the entorhinal cortex-DG, also referred to as the lateral perforant pathway (LPP). Moreover, a downregulation of the endocannabinoid 2-AG and an upregulation of the cannabinoid CB1 receptors in the DG were detected in neuropathic pain animals. Either an acute KOR antagonist administration or one-week CBD treatment normalized dynorphin levels and improved affective symptoms, LTP and receptor expression, whereas only CBD showed an anti-allodynic effect. In addition, CBD normalized the SNI-induced changes in neuroplasticity as well as endocannabinoid and GABA levels in the DG. Noteworthy, the acute blockade of the KOR carried out after CBD repeated administration causes the re-installment of some neuropathic condition symptoms. As a whole, these original results indicate a critical relationship between the adaptive changes in the hippocampus produced by CBD and the need to maintain the recovered physiological dynorphin tone to preserve the therapeutic effect of CBD in neuropathic rats.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy.
| | - Antimo Fusco
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Maria Morace
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Roozbe Bonsale
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Michela Perrone
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Luca Posa
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy
| | - Vincenzo di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy; Faculty of Medicine and Faculty of Agricultural and Food Sciences, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada; Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada; Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Alessandro Nicois
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy; Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, NA, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada; Research Institute, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Marchette RCN, Vendruscolo LF, Koob GF. The Dynorphin/-Opioid Receptor System at the Interface of Hyperalgesia/Hyperkatifeia and Addiction. CURRENT ADDICTION REPORTS 2025; 12:11. [PMID: 40124896 PMCID: PMC11925990 DOI: 10.1007/s40429-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/25/2025]
Abstract
Purpose of Review Drug addiction is characterized by compulsive drug seeking and use, accompanied by negative emotional states (hyperkatifeia) and heightened pain sensitivity (hyperalgesia) during withdrawal. Both hyperalgesia and hyperkatifeia are integral components of substance use disorders, negatively impacting treatment and recovery. The underlying neurobiological mechanisms of hyperalgesia and hyperkatifeia involve alterations of brain reward and stress circuits, including the dynorphin/κ-opioid receptor (KOR) system. The dynorphin/KOR system modulates pain perception, negative affect, and addictive behaviors. Here, we review the preclinical evidence of dynorphin/KOR signaling in opioid withdrawal-induced hyperalgesia and hyperkatifeia. Recent Findings In opioid dependence models, pharmacological and genetic interventions of the dynorphin/KOR system attenuate somatic and motivational signs of withdrawal and addictive-like behaviors, highlighting its therapeutic potential. Understanding the intricate interplay between dynorphin/KOR signaling, hyperalgesia, hyperkatifeia, and addiction offers novel insights into treatment strategies for opioid use disorder and other substance use disorders. Summary Further research is needed to elucidate precise mechanisms of the sexual dimorphism of dynorphin/KOR signaling and identify targeted interventions to mitigate hyperalgesia and hyperkatifeia and facilitate recovery from addiction.
Collapse
Affiliation(s)
- Renata C. N. Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, Division of Intramural Clinical and Biological Research, National Institute on Drug Abuse, Intramural Research Program, and National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD 21224 USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| |
Collapse
|
3
|
Davis M. Buprenorphine Pharmacodynamics: A Bridge to Understanding Buprenorphine Clinical Benefits. Drugs 2025; 85:215-230. [PMID: 39873915 DOI: 10.1007/s40265-024-02128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers. Buprenorphine reduces analgesic tolerance by acting as a delta opioid receptor (DOR) antagonist. As a kappa opioid receptor (KOR) antagonist, buprenorphine reduces craving associated with addiction. Buprenorphine is a model opioid for the ordinal bifunctional analogs BU10038, BU08028 which have been shown to be potent analgesics in non-human primates without reinforcing effects and little to no respiratory depression.
Collapse
MESH Headings
- Buprenorphine/pharmacology
- Buprenorphine/therapeutic use
- Buprenorphine/pharmacokinetics
- Buprenorphine/administration & dosage
- Humans
- Animals
- Analgesics, Opioid/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid/metabolism
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/agonists
Collapse
Affiliation(s)
- Mellar Davis
- Palliative Medicine, Geisinger Medical Center, Danville, PA, USA.
| |
Collapse
|
4
|
Pereira-Silva R, Neto FL, Martins I. Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights from Pre-Clinical Studies. Int J Mol Sci 2025; 26:402. [PMID: 39796255 PMCID: PMC11722076 DOI: 10.3390/ijms26010402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diffuse noxious inhibitory control (DNIC), also known as conditioned pain modulation (CPM) in humans, is a paradigm wherein the heterotopic application of a noxious stimulus results in the attenuation of another spatially distant noxious input. The pre-clinical and clinical studies show the involvement of several neurochemical systems in DNIC/CPM and point to a major contribution of the noradrenergic, serotonergic, and opioidergic systems. Here, we thoroughly review the latest data on the monoaminergic and opioidergic studies, focusing particularly on pre-clinical models of chronic pain. We also conduct an in-depth analysis of these systems by integrating the available data with the descending pain modulatory circuits and the neurochemical systems therein to bring light to the mechanisms involved in the regulation of DNIC. The most recent data suggest that DNIC may have a dual outcome encompassing not only analgesic effects but also hyperalgesic effects. This duality might be explained by the underlying circuitry and the receptor subtypes involved therein. Acknowledging this duality might contribute to validating the prognostic nature of the paradigm. Additionally, DNIC/CPM may serve as a robust paradigm with predictive value for guiding pain treatment through more effective targeting of descending pain modulation.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fani L. Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 PMCID: PMC11968146 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Santos JM, Deshmukh H, Elmassry MM, Yakhnitsa V, Ji G, Kiritoshi T, Presto P, Antenucci N, Liu X, Neugebauer V, Shen CL. Beneficial Effects of Ginger Root Extract on Pain Behaviors, Inflammation, and Mitochondrial Function in the Colon and Different Brain Regions of Male and Female Neuropathic Rats: A Gut-Brain Axis Study. Nutrients 2024; 16:3563. [PMID: 39458557 PMCID: PMC11510108 DOI: 10.3390/nu16203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined. OBJECTIVE Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model. METHODS One hundred rats (fifty males and fifty females) were randomly assigned to five groups: sham + vehicle, SNL + vehicle, and SNL with three different GEG doses (200, 400, and 600 mg/kg BW) for 5 weeks. A rat grimace scale and vocalizations were used to assess spontaneous and emotional/affective pain behaviors, respectively. mRNA gene and protein expression levels for tight junction protein, neuroinflammation, mitochondria homeostasis, and oxidative stress were measured in the amygdala, frontal cortex, hippocampus, and colon using qRT-PCR and Western blot (colon). RESULTS GEG supplementation mitigated spontaneous pain in both male and female rats with NP while decreasing emotional/affective responses only in male NP rats. GEG supplementation increased intestinal integrity (claudin 3) and suppressed neuroinflammation [glial activation (GFAP, CD11b, IBA1) and inflammation (TNFα, NFκB, IL1β)] in the selected brain regions and colon of male and female NP rats. GEG supplementation improved mitochondrial homeostasis [increased biogenesis (TFAM, PGC1α), increased fission (FIS, DRP1), decreased fusion (MFN2, MFN1) and mitophagy (PINK1), and increased Complex III] in the selected brain regions and colon in both sexes. Some GEG dose-response effects in gene expression were observed in NP rats of both sexes. CONCLUSIONS GEG supplementation decreased emotional/affective pain behaviors of males and females via improving gut integrity, suppressing neuroinflammation, and improving mitochondrial homeostasis in the amygdala, frontal cortex, hippocampus, and colon in both male and female SNL rats in an NP model, implicating the gut-brain axis in NP. Sex differences observed in the vocalizations assay may suggest different mechanisms of evoked NP responses in females.
Collapse
Affiliation(s)
- Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Department of Microanatomy and Cellular Biology, Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA;
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Xiaobo Liu
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| |
Collapse
|
7
|
Lillo Vizin RC, Ito H, Kopruszinski CM, Ikegami M, Ikegami D, Yue X, Navratilova E, Moutal A, Cowen SL, Porreca F. Cortical kappa opioid receptors integrate negative affect and sleep disturbance. Transl Psychiatry 2024; 14:417. [PMID: 39366962 PMCID: PMC11452529 DOI: 10.1038/s41398-024-03123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Sleep disruption and negative affect are attendant features of many psychiatric and neurological conditions that are often co-morbid including major depressive disorder, generalized anxiety disorder and chronic pain. Whether there is a causal relationship between negative affect and sleep disruption remains unclear. We therefore asked if mechanisms promoting negative affect can disrupt sleep and whether inhibition of pathological negative affect can normalize disrupted sleep. Signaling at the kappa opioid receptor (KOR) elicits dysphoria in humans and aversive conditioning in animals. We tested the possibility that (a) increased KOR signaling in the anterior cingulate cortex (ACC), a brain region associated with negative emotions, would be sufficient to promote both aversiveness and sleep disruption and (b) inhibition of KOR signaling would normalize pathological negative affect and sleep disruption induced by chronic pain. Chemogenetic Gi-mediated inhibition of KOR-expressing ACC neurons produced conditioned place aversion (CPA) as well as sleep fragmentation in naïve mice. CRISPR/Cas9 editing of ACC KOR normalized both the negative affect and sleep disruption elicited by pathological chronic pain while maintaining the physiologically critical sensory features of pain. These findings suggest therapeutic utility of KOR antagonists for treatment of disease conditions that are associated with both negative affect and sleep disturbances.
Collapse
Affiliation(s)
- Robson C Lillo Vizin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Hisakatsu Ito
- Department of Anesthesiology, University of Toyama, Toyama, Japan
| | | | | | - Daigo Ikegami
- Shonan University of Medical Sciences, Yokohama, Japan
| | - Xu Yue
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Stephen L Cowen
- Department of Psychology, College of Science Psychology, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Kummer K, Sheets PL. Targeting Prefrontal Cortex Dysfunction in Pain. J Pharmacol Exp Ther 2024; 389:268-276. [PMID: 38702195 PMCID: PMC11125798 DOI: 10.1124/jpet.123.002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Patrick L Sheets
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Ji G, Presto P, Kiritoshi T, Chen Y, Navratilova E, Porreca F, Neugebauer V. Chemogenetic Manipulation of Amygdala Kappa Opioid Receptor Neurons Modulates Amygdala Neuronal Activity and Neuropathic Pain Behaviors. Cells 2024; 13:705. [PMID: 38667320 PMCID: PMC11049235 DOI: 10.3390/cells13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | - Yong Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Liu S(S, Pickens S, Barta Z, Rice M, Dagher M, Lebens R, Nguyen TV, Cummings BJ, Cahill CM. Neuroinflammation drives sex-dependent effects on pain and negative affect in a murine model of repeated mild traumatic brain injury. Pain 2024; 165:848-865. [PMID: 37943063 PMCID: PMC10949215 DOI: 10.1097/j.pain.0000000000003084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023]
Abstract
ABSTRACT The Center for Disease Control and Prevention estimates that 75% of reported cases of traumatic brain injury (TBI) are mild, where chronic pain and depression are 2 of the most common symptoms. In this study, we used a murine model of repeated mild TBI to characterize the associated pain hypersensitivity and affective-like behavior and to what extent microglial reactivity contributes to these behavioral phenotypes. Male and female C57BL/6J mice underwent sham or repeated mild traumatic brain injury (rmTBI) and were tested for up to 9 weeks postinjury, where an anti-inflammatory/neuroprotective drug (minocycline) was introduced at 5 weeks postinjury in the drinking water. Repeated mild traumatic brain injury mice developed cold nociceptive hypersensitivity and negative affective states, as well as increased locomotor activity and risk-taking behavior. Minocycline reversed negative affect and pain hypersensitivities in male but not female mice. Repeated mild traumatic brain injury also produced an increase in microglial and brain-derived neurotropic factor mRNA transcripts in limbic structures known to be involved in nociception and affect, but many of these changes were sex dependent. Finally, we show that the antiepileptic drug, gabapentin, produced negative reinforcement in male rmTBI mice that was prevented by minocycline treatment, whereas rmTBI female mice showed a place aversion to gabapentin. Collectively, pain hypersensitivity, increased tonic-aversive pain components, and negative affective states were evident in both male and female rmTBI mice, but suppression of microglial reactivity was only sufficient to reverse behavioral changes in male mice. Neuroinflammation in limbic structures seems to be a contributing factor in behavioral changes resulting from rmTBI.
Collapse
Affiliation(s)
- Shiwei (Steve) Liu
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
- Department of Pharmacology, University of California Irvine, Irvine, CA, United States
| | - Sarah Pickens
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Zack Barta
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Myra Rice
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Merel Dagher
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Ryan Lebens
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Theodore V. Nguyen
- Physical Medicine & Rehabilitation, Anatomy & Neurobiology, University of California Irvine, Irvine, CA, United States
| | - Brian J. Cummings
- Physical Medicine & Rehabilitation, Anatomy & Neurobiology, University of California Irvine, Irvine, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Fiatcoski F, Jesus CHA, de Melo Turnes J, Chichorro JG, Kopruszinski CM. Sex differences in descending control of nociception (DCN) responses after chronic orofacial pain induction in rats and the contribution of kappa opioid receptors. Behav Brain Res 2024; 459:114789. [PMID: 38036264 DOI: 10.1016/j.bbr.2023.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Descending control of nociception (DCN), a measure of efficiency of descending pain inhibition, can be assessed in animals by the combined application of test and conditioning noxious stimuli. Evidence from pre-clinical and clinical studies indicates that this mechanism of pain control may differ between sexes and might be impaired in many chronic pain states. However, little is known about sex differences in DCN efficiency in models of acute and chronic orofacial pain. Herein, we first evaluated DCN responses in male and female rats by the applying formalin into the upper lip or capsaicin into the forepaw as the conditioning stimulus, followed by mechanical stimulation (Randall-Selitto) of the hind paw as the test stimulus. The same protocol (i.e., capsaicin in the forepaw followed by mechanical stimulation of the hind paw) was evaluated in male and female rats on day 3 after intraoral incision and on day 15 and 30 after chronic constriction injury of the infraorbital nerve (CCI-ION). Additionally, we assessed the effect of the kappa opioid receptor (KOR) antagonist Norbinaltorphimine (nor-BNI) on DCN responses of female nerve-injured rats. This study shows that naïve female rats exhibit less efficient DCN compared to males. Postoperative pain did not alter DCN responses in female and male rats, but CCI-ION induced loss of DCN responses in females but not in males. Systemic pretreatment with nor-BNI prevented the loss of DCN induced by CCI-ION in female rats. The results reveal sex differences in DCN responses and female-specific impairment of DCN following chronic orofacial pain. Moreover, the findings suggest that, at least for females, blocking KOR could be a promising therapeutic approach to prevent maladaptive changes in chronic orofacial pain.
Collapse
Affiliation(s)
- Fernanda Fiatcoski
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Joelle de Melo Turnes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | |
Collapse
|
12
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
13
|
Navratilova E, Qu C, Ji G, Neugebauer V, Guerrero M, Rosen H, Roberts E, Porreca F. Opposing Effects on Descending Control of Nociception by µ and κ Opioid Receptors in the Anterior Cingulate Cortex. Anesthesiology 2024; 140:272-283. [PMID: 37725756 PMCID: PMC11466009 DOI: 10.1097/aln.0000000000004773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. METHODS This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation-induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). RESULTS Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. CONCLUSIONS Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of μ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Chaoling Qu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Miguel Guerrero
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Hugh Rosen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Edward Roberts
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Lorente JD, Cuitavi J, Rullo L, Candeletti S, Romualdi P, Hipólito L. Sex-dependent effect of inflammatory pain on negative affective states is prevented by kappa opioid receptors blockade in the nucleus accumbens shell. Neuropharmacology 2024; 242:109764. [PMID: 37879455 DOI: 10.1016/j.neuropharm.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Pain comorbidities include several psychological disorders, such as anxiety and anhedonia. However, the way pain affects male and female individuals and by which mechanism is not well understood. Previous research shows that pain induces alterations in the dynorphinergic pathway within the mesocorticolimbic system (MCLS), together with a relationship between corticotropin-releasing system and dynorphin release in the MCLS. Here, we analyse the sex and time course-dependent effects of pain on negative affect. Additionally, we study the implication of dynorphinergic and corticotropin releasing factor in these pain related behaviours. We used behavioural pharmacology and biochemical tools to characterise negative affective states induced by inflammatory pain in male and female rats, and the alterations in the dynorphinergic and the corticotropin systems within the MCLS. Female rats showed persistent anxiety-like and reversible anhedonia-like behaviours derived from inflammatory pain. Additionally, we found alterations in dynorphin and corticotropin releasing factor in NAc and amygdala, which suggests sex-dependent dynamic adaptations. Finally blockade on the kappa opioid receptor in the NAc confirmed its role in pain-induced anxiety-like behaviour in female rats. Our results show sex and time-dependent anxiety- and anhedonia-like behaviours induced by the presence of pain in female rats. Furthermore, we replicated previous data, pointing to the KOR/DYN recruitment in the NAc as a key neurological substrate mediating pain-induced behavioural alterations. This research studies the mechanisms underlying these behaviours, to better understand the emotional dimension of pain.
Collapse
Affiliation(s)
- J D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - J Cuitavi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain
| | - L Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - S Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - P Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Italy
| | - L Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain; University Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Valencia, Spain.
| |
Collapse
|
15
|
Kerr PL, Gregg JM. The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. ADVANCES IN NEUROBIOLOGY 2024; 35:183-220. [PMID: 38874724 DOI: 10.1007/978-3-031-45493-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.
Collapse
Affiliation(s)
- Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA.
| | - John M Gregg
- Department of Surgery, VTCSOM, Blacksburg, VA, USA
| |
Collapse
|
16
|
Flores AJ, Bartlett MJ, Seaton BT, Samtani G, Sexauer MR, Weintraub NC, Siegenthaler JR, Lu D, Heien ML, Porreca F, Sherman SJ, Falk T. Antagonism of kappa opioid receptors accelerates the development of L-DOPA-induced dyskinesia in a preclinical model of moderate dopamine depletion. Brain Res 2023; 1821:148613. [PMID: 37783263 PMCID: PMC10841913 DOI: 10.1016/j.brainres.2023.148613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson's disease (PD) and following the development of l-DOPA-induced dyskinesia (LID). It remains unclear whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) via measuring of tonic levels of striatal DA. While nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, it affected the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of l-DOPA in a rat PD model with a moderate striatal 6-hydroxdopamine (6-OHDA) lesion. We tested five escalating doses of l-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg l-DOPA doses. However, after reaching the 72 mg/kg l-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of l-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we observed an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.
Collapse
Affiliation(s)
- Andrew J Flores
- Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA; Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ 85724, USA
| | - Mitchell J Bartlett
- Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA; Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | - Blake T Seaton
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Grace Samtani
- Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA
| | - Morgan R Sexauer
- Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA
| | - Nathan C Weintraub
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | - James R Siegenthaler
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Dong Lu
- Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | - Michael L Heien
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | - Scott J Sherman
- Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA
| | - Torsten Falk
- Department of Neurology, The University of Arizona, Tucson, AZ 85724, USA; Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ 85724, USA; Department of Pharmacology, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
17
|
Vu PD, Bansal V, Chitneni A, Robinson CL, Viswanath O, Urits I, Kaye AD, Nguyen A, Govindaraj R, Chen GH, Hasoon J. Buprenorphine for Chronic Pain Management: a Narrative Review. Curr Pain Headache Rep 2023; 27:811-820. [PMID: 37897592 DOI: 10.1007/s11916-023-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to educate healthcare professionals regarding buprenorphine for the use of opioid use disorder (OUD) as well as for chronic pain management. This review provides physicians and practitioners with updated information regarding the distinct characteristics and intricacies of prescribing buprenorphine. RECENT FINDINGS Buprenorphine is approved by the US Food and Drug Administration (FDA) for acute pain, chronic pain, opioid use disorder (OUD), and opioid dependence. When compared to most other opioids, buprenorphine offers superior patient tolerability, an excellent half-life, and minimal respiratory depression. Buprenorphine does have notable side effects as well as pharmacokinetic properties that require special attention, especially if patients require future surgical interventions. Many physicians are not trained to initiate or manage patients on buprenorphine. However, buprenorphine offers a potentially safer alternative for medication management for patients who require chronic opioid therapy for pain or have OUD. This review provides updated information on buprenorphine for both chronic pain and OUD.
Collapse
Affiliation(s)
- Peter D Vu
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Vishal Bansal
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ahish Chitneni
- Department of Rehabilitation and Regenerative Medicine, New York-Presbyterian Hospital - Columbia and Cornell, New York, NY, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Anvinh Nguyen
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Ranganathan Govindaraj
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Grant H Chen
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jamal Hasoon
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
18
|
Vázquez-León P, Miranda-Páez A, Sánchez-Castillo H, Marichal-Cancino BA. Pharmacologic hyperreactivity of kappa opioid receptors in periaqueductal gray matter during alcohol withdrawal syndrome in rats. Pharmacol Rep 2023; 75:1299-1308. [PMID: 37658980 DOI: 10.1007/s43440-023-00522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Periaqueductal gray matter (PAG) is a brain region rich in kappa-opioid receptors (KOR). KOR in PAG mediates behavioral responses related to pain integration, and panic response, among others. Its participation in the addiction phenomena has been poorly studied. Hence, this preliminary study explored the pharmacological effects of KOR stimulation/blockade in dorsal-PAG (D-PAG) during alcohol withdrawal on anxiety-type behaviors and alcohol intake/preference. METHODS Juvenile male Wistar rats were unexposed (A-naïve group) or exposed to alcohol for 5 weeks and then restricted (A-withdrawal group). Posteriorly, animals received intra D-PAG injections of vehicle (10% DMSO), salvinorin A (SAL-A; a selective KOR agonist), or 2-Methyl-N-((2'-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine (PF-04455242; a highly selective KOR-antagonist). Subsequently, the defensive burying behavior (DBB) and alcohol intake/preference paradigms were evaluated. RESULTS SAL-A markedly increased burying time, the height of bedding, and alcohol consumption/preference in A-withdrawal, while slightly increased the height of bedding in A-näive rats. PF-04455242 decreased both burying and immobility duration, whereas increases latency to burying, frequency of rearing, and the number of stretches attempts with no action on alcohol intake/preference in A-withdrawal rats. CONCLUSIONS In general, stimulation/blockade of KOR in A-withdrawal animals exert higher responses compared to A-naïve ones. SAL-A produced anxiety-like behaviors and increased alcohol consumption/preference, especially/solely in the alcohol-withdrawal condition, while PF-04455242 augmented exploration with no effects on alcohol intake/preference. Our findings suggest a possible pharmacologic hyperreactivity of the KOR in PAG during alcohol withdrawal.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología Y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, 20131, Aguascalientes, Ags, Mexico
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 07738, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología Y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, 20131, Aguascalientes, Ags, Mexico.
| |
Collapse
|
19
|
Flores AJ, Bartlett MJ, Seaton BT, Samtani G, Sexauer MR, Weintraub NC, Siegenthaler JR, Lu D, Heien ML, Porreca F, Sherman SJ, Falk T. Antagonism of kappa opioid receptors accelerates the development of L-DOPA-induced dyskinesia in a preclinical model of moderate dopamine depletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551112. [PMID: 37577558 PMCID: PMC10418115 DOI: 10.1101/2023.07.31.551112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson disease (PD) and following the development of L-DOPA-induced dyskinesia (LID). It remains unclear, whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) with measuring tonic levels of striatal DA. Nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, but a change in the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of L-DOPA in a rat PD model with a moderate striatal 6-hydroxydopamine (6-OHDA) lesion. We tested five escalating doses of L-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg L-DOPA doses. However, after dosing with 72 mg/kg L-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of L-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we saw an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.
Collapse
|
20
|
Ma D, Huang Q, Gao X, Ford NC, Guo R, Zhang C, Liu S, He SQ, Raja SN, Guan Y. The Utility of Peripherally Restricted Kappa-Opioid Receptor Agonists for Inhibiting Below-Level Pain After Spinal Cord Injury in Mice. Neuroscience 2023; 527:92-102. [PMID: 37516437 PMCID: PMC10530135 DOI: 10.1016/j.neuroscience.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Pain after spinal cord injury (SCI) can be difficult to treat. Drugs that target the opioid receptor (OR) outside the central nervous system (CNS) have gained increasing interest in pain control owing to their low risk of central side effects. Asimadoline and ICI-204448 are believed to be peripherally restricted KOR agonists withlimited access to the CNS. This study examined whether they can attenuate pain hypersensitivity in mice subjected to a contusive T10 SCI. Subcutaneous (s.c.) injection of asimadoline (5, 20 mg/kg) and ICI-204448 (1, 10 mg/kg) inhibited heat hypersensitivity at both doses, but only attenuated mechanical hypersensitivity at the high dose. However, the high-dose asimadoline adversely affected animals' exploratory performance in SCI mice and caused aversion, suggesting CNS drug penetration. In contrast, high-dose ICI-204448 did not impair exploration and remained effective in reducing both mechanical and heat hypersensitivities after SCI. Accordingly, we chose to examine the potential peripheral neuronal mechanism for ICI-204448-induced pain inhibition by conducting in vivo calcium imaging of dorsal root ganglion (DRG) in Pirt-GCaMP6s+/- mice. High-dose ICI-204448 (10 mg/kg, s.c.) attenuated the increased fluorescence intensity of lumbar DRG neurons activated by a noxious pinch (400 g) stimulation in SCI mice. In conclusion, systemic administration of ICI-204448 achieved SCI pain inhibition at doses that did not induce notable side effects and attenuated DRG neuronal excitability which may partly contribute to its pain inhibition. These findings suggest that peripherally restricted KOR agonists may be useful for treating SCI pain, but the therapeutic window must be carefully examined.
Collapse
Affiliation(s)
- Danxu Ma
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Neil C Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Shuguang Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Srinivasa N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
22
|
Shahbazi Nia S, Hossain MA, Ji G, Jonnalagadda SK, Obeng S, Rahman MA, Sifat AE, Nozohouri S, Blackwell C, Patel D, Thompson J, Runyon S, Hiranita T, McCurdy CR, McMahon L, Abbruscato TJ, Trippier PC, Neugebauer V, German NA. Studies on diketopiperazine and dipeptide analogs as opioid receptor ligands. Eur J Med Chem 2023; 254:115309. [PMID: 37054561 PMCID: PMC10634475 DOI: 10.1016/j.ejmech.2023.115309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.
Collapse
Affiliation(s)
- Siavash Shahbazi Nia
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samuel Obeng
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL, 35229, USA
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Collin Blackwell
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jon Thompson
- Veterinary School of Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | - Scott Runyon
- Reserach Triangle Institute, Research Triangle Park, Durham, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
23
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
24
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
25
|
Ito H, Navratilova E, Vagnerova B, Watanabe M, Kopruszinski C, Moreira de Souza LH, Yue X, Ikegami D, Moutal A, Patwardhan A, Khanna R, Yamazaki M, Guerrero M, Rosen H, Roberts E, Neugebauer V, Dodick DW, Porreca F. Chronic pain recruits hypothalamic dynorphin/kappa opioid receptor signalling to promote wakefulness and vigilance. Brain 2023; 146:1186-1199. [PMID: 35485490 PMCID: PMC10169443 DOI: 10.1093/brain/awac153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Increased vigilance in settings of potential threats or in states of vulnerability related to pain is important for survival. Pain disrupts sleep and conversely, sleep disruption enhances pain, but the underlying mechanisms remain unknown. Chronic pain engages brain stress circuits and increases secretion of dynorphin, an endogenous ligand of the kappa opioid receptor (KOR). We therefore hypothesized that hypothalamic dynorphin/KOR signalling may be a previously unknown mechanism that is recruited in pathological conditions requiring increased vigilance. We investigated the role of KOR in wakefulness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep in freely moving naïve mice and in mice with neuropathic pain induced by partial sciatic nerve ligation using EEG/EMG recordings. Systemic continuous administration of U69,593, a KOR agonist, over 5 days through an osmotic minipump decreased the amount of NREM and REM sleep and increased sleep fragmentation in naïve mice throughout the light-dark sleep cycle. We used KORcre mice to selectively express a Gi-coupled designer receptor activated by designer drugs (Gi-DREADD) in KORcre neurons of the hypothalamic paraventricular nucleus, a key node of the hypothalamic-pituitary-adrenal stress response. Sustained activation of Gi-DREADD with clozapine-N-oxide delivered in drinking water over 4 days, disrupted sleep in these mice in a similar way as systemic U69,593. Mice with chronic neuropathic pain also showed disrupted NREM and total sleep that was normalized by systemic administration of two structurally different KOR antagonists, norbinaltorphimine and NMRA-140, currently in phase II clinical development, or by CRISPR/Cas9 editing of paraventricular nucleus KOR, consistent with endogenous KOR activation disrupting sleep in chronic pain. Unexpectedly, REM sleep was diminished by either systemic KOR antagonist or by CRISPR/Cas9 editing of paraventricular nucleus KOR in sham-operated mice. Our findings reveal previously unknown physiological and pathophysiological roles of dynorphin/KOR in eliciting arousal. Physiologically, dynorphin/KOR signalling affects transitions between sleep stages that promote REM sleep. Furthermore, while KOR antagonists do not promote somnolence in the absence of pain, they normalized disrupted sleep in chronic pain, revealing a pathophysiological role of KOR signalling that is selectively recruited to promote vigilance, increasing chances of survival. Notably, while this mechanism is likely beneficial in the short-term, disruption of the homeostatic need for sleep over longer periods may become maladaptive resulting in sustained pain chronicity. A novel approach for treatment of chronic pain may thus result from normalization of chronic pain-related sleep disruption by KOR antagonism.
Collapse
Affiliation(s)
- Hisakatsu Ito
- Department of Pharmacology, University of Arizona, Tucson, USA
- Department of Anesthesiology, University of Toyama, Toyama, Japan
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona, Tucson, USA
- Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| | | | - Moe Watanabe
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | | | - Xu Yue
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Daigo Ikegami
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Amol Patwardhan
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | - Miguel Guerrero
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Hugh Rosen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Ed Roberts
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, USA
| | | | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, USA
- Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| |
Collapse
|
26
|
Zhou S, Yin Y, Sheets PL. Mouse models of surgical and neuropathic pain produce distinct functional alterations to prodynorphin expressing neurons in the prelimbic cortex. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100121. [PMID: 36864928 PMCID: PMC9971546 DOI: 10.1016/j.ynpai.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The medial prefrontal cortex (mPFC) consists of a heterogeneous population of neurons that respond to painful stimuli, and our understanding of how different pain models alter these specific mPFC cell types remains incomplete. A distinct subpopulation of mPFC neurons express prodynorphin (Pdyn+), the endogenous peptide agonist for kappa opioid receptors (KORs). Here, we used whole cell patch clamp for studying excitability changes to Pdyn expressing neurons in the prelimbic region of the mPFC (PLPdyn+ neurons) in mouse models of surgical and neuropathic pain. Our recordings revealed that PLPdyn+ neurons consist of both pyramidal and inhibitory cell types. We find that the plantar incision model (PIM) of surgical pain increases intrinsic excitability only in pyramidal PLPdyn+ neurons one day after incision. Following recovery from incision, excitability of pyramidal PLPdyn+ neurons did not differ between male PIM and sham mice, but was decreased in PIM female mice. Moreover, the excitability of inhibitory PLPdyn+ neurons was increased in male PIM mice, but was with no difference between female sham and PIM mice. In the spared nerve injury model (SNI), pyramidal PLPdyn+ neurons were hyperexcitable at both 3 days and 14 days after SNI. However, inhibitory PLPdyn+ neurons were hypoexcitable at 3 days but hyperexcitable at 14 days after SNI. Our findings suggest different subtypes of PLPdyn+ neurons manifest distinct alterations in the development of different pain modalities and are regulated by surgical pain in a sex-specific manner. Our study provides information on a specific neuronal population that is affected by surgical and neuropathic pain.
Collapse
Affiliation(s)
- Shudi Zhou
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuexi Yin
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick L. Sheets
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author at: Indiana University School of Medicine, Neuroscience Research Building 400 D, 320 West 15th St, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Wei H, Chen Z, Lei J, You HJ, Pertovaara A. Reduced mechanical hypersensitivity by inhibition of the amygdala in experimental neuropathy: Sexually dimorphic contribution of spinal neurotransmitter receptors. Brain Res 2022; 1797:148128. [PMID: 36265669 DOI: 10.1016/j.brainres.2022.148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022]
Abstract
Here we studied spinal neurotransmitter mechanisms involved in the reduction of mechanical hypersensitivity by inhibition of the amygdaloid central nucleus (CeA) in male and female rats with spared nerve injury (SNI) model of neuropathy. SNI induced mechanical hypersensitivity that was stronger in females. Reversible blocking of the CeA with muscimol (GABAA receptor agonist) induced a reduction of mechanical hypersensitivity that did not differ between males and females. Following spinal co-administration of atipamezole (α2-adrenoceptor antagonist), the reduction of mechanical hypersensitivity by CeA muscimol was attenuated more in males than females. In contrast, following spinal co-administration of raclopride (dopamine D2 receptor antagonist) the reduction of hypersensitivity by CeA muscimol was attenuated more in females than males. The reduction of mechanical hypersensitivity by CeA muscimol was equally attenuated in males and females by spinal co-administration of WAY-100635 (5-HT1A receptor antagonist) or bicuculline (GABAA receptor antagonist). The CeA muscimol induced attenuation of ongoing pain-like behavior (conditioned place preference test) that was reversed by spinal co-administration of atipamezole in both sexes. The results support the hypothesis that CeA contributes to mechanical hypersensitivity and ongoing pain-like behavior in SNI males and females. Disinhibition of descending controls acting on spinal α2-adrenoceptors, 5-HT1A, dopamine D2 and GABAA receptors provides a plausible explanation for the reduction of mechanical hypersensitivity by CeA block in SNI. The involvement of spinal dopamine D2 receptors and α2-adrenoceptors in the CeA muscimol-induced reduction of mechanical hypersensitivity is sexually dimorphic, unlike that of spinal α2-adrenoceptors in the reduction of ongoing neuropathic pain.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, PR China
| | - Jing Lei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
28
|
Sampaio-Cunha TJ, Martins I. Knowing the Enemy Is Halfway towards Victory: A Scoping Review on Opioid-Induced Hyperalgesia. J Clin Med 2022; 11:6161. [PMID: 36294488 PMCID: PMC9604911 DOI: 10.3390/jcm11206161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is a paradoxical effect of opioids that is not consensually recognized in clinical settings. We conducted a revision of clinical and preclinical studies and discuss them side by side to provide an updated and renewed view on OIH. We critically analyze data on the human manifestations of OIH in the context of chronic and post-operative pain. We also discuss how, in the context of cancer pain, though there are no direct evidence of OIH, several inherent conditions to the tumor and chemotherapy provide a substrate for the development of OIH. The review of the clinical data, namely in what concerns the strategies to counter OIH, emphasizes how much OIH rely mechanistically on the existence of µ-opioid receptor (MOR) signaling through opposite, inhibitory/antinociceptive and excitatory/pronociceptive, pathways. The rationale for the maladaptive excitatory signaling of opioids is provided by the emerging growing information on the functional role of alternative splicing and heteromerization of MOR. The crossroads between opioids and neuroinflammation also play a major role in OIH. The latest pre-clinical data in this field brings new insights to new and promising therapeutic targets to address OIH. In conclusion, although OIH remains insufficiently recognized in clinical practice, the appropriate diagnosis can turn it into a treatable pain disorder. Therefore, in times of scarce alternatives to opioids to treat pain, mainly unmanageable chronic pain, increased knowledge and recognition of OIH, likely represent the first steps towards safer and efficient use of opioids as analgesics.
Collapse
Affiliation(s)
- Tiago J. Sampaio-Cunha
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- i3S–Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- i3S–Institute for Research & Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
29
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
30
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
31
|
Shen CL, Wang R, Yakhnitsa V, Santos JM, Watson C, Kiritoshi T, Ji G, Hamood AN, Neugebauer V. Gingerol-Enriched Ginger Supplementation Mitigates Neuropathic Pain via Mitigating Intestinal Permeability and Neuroinflammation: Gut-Brain Connection. Front Pharmacol 2022; 13:912609. [PMID: 35873544 PMCID: PMC9305072 DOI: 10.3389/fphar.2022.912609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Emerging evidence suggests an important role of the gut-brain axis in the development of neuropathic pain (NP). We investigated the effects of gingerol-enriched ginger (GEG) on pain behaviors, as well as mRNA expressions of inflammation via tight junction proteins in GI tissues (colon) and brain tissues (amygdala, both left and right) in animals with NP. Methods: Seventeen male rats were randomly divided into three groups: Sham, spinal nerve ligation (SNL, pain model), and SNL+0.375% GEG (wt/wt in diet) for 4 weeks. Mechanosensitivity was assessed by von Frey filament tests and hindpaw compression tests. Emotional responsiveness was measured from evoked audible and ultrasonic vocalizations. Ongoing spontaneous pain was measured in rodent grimace tests. Intestinal permeability was assessed by the lactulose/D-mannitol ratio in urine. The mRNA expression levels of neuroinflammation (NF-κB, TNF-α) in the colon and amygdala (right and left) were determined by qRT-PCR. Data was analyzed statistically. Results: Compared to the sham group, the SNL group had significantly greater mechanosensitivity (von Frey and compression tests), emotional responsiveness (audible and ultrasonic vocalizations to innocuous and noxious mechanical stimuli), and spontaneous pain (rodent grimace tests). GEG supplementation significantly reduced mechanosensitivity, emotional responses, and spontaneous pain measures in SNL rats. GEG supplementation also tended to decrease SNL-induced intestinal permeability markers. The SNL group had increased mRNA expression of NF-κB and TNF-α in the right amygdala and colon; GEG supplementation mitigated these changes in SNL-treated rats. Conclusion: This study suggests GEG supplementation palliated a variety of pain spectrum behaviors in a preclinical NP animal model. GEG also decreased SNL-induced intestinal permeability and neuroinflammation, which may explain the behavioral effects of GEG.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Lubbock, TX, United States
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- *Correspondence: Chwan-Li Shen,
| | - Rui Wang
- Department of Pathology, Lubbock, TX, United States
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | | | - Carina Watson
- Department of Medical Education, Lubbock, TX, United States
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Abdul Naji Hamood
- Department of Microbiology and Infectious Disease, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
32
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
33
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
34
|
The Potential of Methocinnamox as a Future Treatment for Opioid Use Disorder: A Narrative Review. PHARMACY 2022; 10:pharmacy10030048. [PMID: 35645327 PMCID: PMC9149874 DOI: 10.3390/pharmacy10030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
The opioid epidemic is an ongoing public health crisis, and the United States health system is overwhelmed with increasing numbers of opioid-related overdoses. Methocinnamox (MCAM) is a novel mu opioid receptor antagonist with an extended duration of action. MCAM has potential to reduce the burden of the opioid epidemic by being used as an overdose rescue treatment and a long-term treatment for opioid use disorder (OUD). The currently available treatments for OUD include naloxone, naltrexone, and methadone. These treatments have certain limitations, which include short duration of action, patient non-compliance, and diversion. A narrative review was conducted using PubMed and Google Scholar databases covering the history of the opioid epidemic, pain receptors, current OUD treatments and the novel drug MCAM. MCAM could potentially be used as both a rescue and long-term treatment for opioid misuse. This is due to its pseudo-irreversible antagonism of the mu opioid receptor, abnormally long duration of action of nearly two weeks, and the possibility of using kappa or delta opioid receptor agonists for pain management during OUD treatment. MCAM’s novel pharmacokinetic and pharmacodynamic properties open a new avenue for treating opioid misuse.
Collapse
|
35
|
Shen CL, Wang R, Ji G, Elmassry MM, Zabet-Moghaddam M, Vellers H, Hamood AN, Gong X, Mirzaei P, Sang S, Neugebauer V. Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. J Nutr Biochem 2022; 100:108904. [PMID: 34748918 PMCID: PMC8794052 DOI: 10.1016/j.jnutbio.2021.108904] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Neuroinflammation is a central factor in neuropathic pain (NP). Ginger is a promising bioactive compound in NP management due to its anti-inflammatory property. Emerging evidence suggests that gut microbiome and gut-derived metabolites play a key role in NP. We evaluated the effects of two ginger root extracts rich in gingerols (GEG) and shogaols (SEG) on pain sensitivity, anxiety-like behaviors, circulating cell-free mitochondrial DNA (ccf-mtDNA), gut microbiome composition, and fecal metabolites in rats with NP. Sixteen male rats were divided into four groups: sham, spinal nerve ligation (SNL), SNL+0.75%GEG in diet, and SNL+0.75%SEG in diet groups for 30 days. Compared to SNL group, both SNL+GEG and SNL+SEG groups showed a significant reduction in pain- and anxiety-like behaviors, and ccf-mtDNA level. Relative to the SNL group, both SNL+GEG and SNL+SEG groups increased the relative abundance of Lactococcus, Sellimonas, Blautia, Erysipelatoclostridiaceae, and Anaerovoracaceae, but decreased that of Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, Mucispirillum and Desulfovibrio, Desulfovibrio, Anaerofilum, Eubacterium siraeum group, RF39, UCG-005, Lachnospiraceae NK4A136 group, Acetatifactor, Eubacterium ruminantium group, Clostridia UCG-014, and an uncultured Anaerovoracaceae. GEG and SEG had differential effects on gut-derived metabolites. Compared to SNL group, SNL+GEG group had higher level of 1'-acetoxychavicol acetate, (4E)-1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one, NP-000629, 7,8-Dimethoxy-3-(2-methyl-3-buten-2-yl)-2H-chromen-2-one, 3-{[4-(2-Pyrimidinyl)piperazino]carbonyl}-2-pyrazinecarboxylic acid, 920863, and (1R,3R,7R,13S)-13-Methyl-6-methylene-4,14,16-trioxatetracyclo[11.2.1.0∼1,10∼.0∼3,7∼]hexadec-9-en-5-one, while SNL+SEG group had higher level for (±)-5-[(tert-Butylamino)-2'-hydroxypropoxy]-1_2_3_4-tetrahydro-1-naphthol and dehydroepiandrosteronesulfate. In conclusion, ginger is a promising functional food in the management of NP, and further investigations are necessary to assess the role of ginger on gut-brain axis in pain management.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas.
| | - Rui Wang
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Technical University, Lubbock, Texas
| | | | - Heather Vellers
- Department of Kinesiology and Sport Management, Texas Technical University, Lubbock, Texas
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Surgery, Texas Technical University Health Sciences Center, Lubbock, Teaxs
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, North Carolina
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
36
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
37
|
Blockade of kappa opioid receptors reduces mechanical hyperalgesia and anxiety-like behavior in a rat model of trigeminal neuropathic pain. Behav Brain Res 2022; 417:113595. [PMID: 34592375 DOI: 10.1016/j.bbr.2021.113595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
It has been shown that kappa opioid receptor (KOR) antagonists, such as nor-binaltorphimine (nor-BNI), have antinociceptive effects in some pain models that affect the trigeminal system. Also, its anxiolytic-like effect has been extensively demonstrated in the literature. The present study aimed to investigate the systemic, local, and central effect of nor-BNI on trigeminal neuropathic pain using the infraorbital nerve constriction model (CCI-ION), as well as to evaluate its effect on anxiety-like behavior associated with this model. Animals received nor-BNI systemically; in the trigeminal ganglion (TG); in the subarachnoid space to target the spinal trigeminal nucleus caudalis (Sp5C) or in the central amygdala (CeA) 14 days after CCI-ION surgery. Systemic administration of nor-BNI caused a significant reduction of facial mechanical hyperalgesia and promoted an anxiolytic-like effect, which was detected in the elevated plus-maze and the light-dark transition tests. When administered in the TG or CeA, the KOR antagonist was able to reduce facial mechanical hyperalgesia induced by CCI-ION, but without changing the anxiety-like behavior. Moreover, no change was observed on nociception and anxiety-like behavior after nor-BNI injection into the Sp5C. The present study demonstrated antinociceptive and anxiolytic-like effects of nor-BNI in a model of trigeminal neuropathic pain. The antinociceptive effect seems to be dissociated from the anxiolytic-like effect, at both the sites involved and at the dose need to achieve the effect. In conclusion, the kappa opioid system may represent a promising target to be explored for the control of trigeminal pain and associated anxiety. However, further studies are necessary to better elucidate its functioning and modulatory role in chronic trigeminal pain states.
Collapse
|
38
|
Best KM, Mojena MM, Barr GA, Schmidt HD, Cohen AS. Endogenous Opioid Dynorphin Is a Potential Link between Traumatic Brain Injury, Chronic Pain, and Substance Use Disorder. J Neurotrauma 2022; 39:1-19. [PMID: 34751584 PMCID: PMC8978570 DOI: 10.1089/neu.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem associated with numerous physical and neuropsychiatric comorbidities. Chronic pain is prevalent and interferes with post-injury functioning and quality of life, whereas substance use disorder (SUD) is the third most common neuropsychiatric diagnosis after TBI. Neither of these conditions has a clear mechanistic explanation based on the known pathophysiology of TBI. Dynorphin is an endogenous opioid neuropeptide that is significantly dysregulated after TBI. Both dynorphin and its primary receptor, the ĸ-opioid receptor (KOR), are implicated in the neuropathology of chronic pain and SUD. Here, we review the known roles of dynorphin and KORs in chronic pain and SUDs. We synthesize this information with our current understanding of TBI and highlight potential mechanistic parallels between and across conditions that suggest a role for dynorphin in long-term sequelae after TBI. In pain studies, dynorphin/KOR activation has either antinociceptive or pro-nociceptive effects, and there are similarities between the signaling pathways influenced by dynorphin and those underlying development of chronic pain. Moreover, the dynorphin/KOR system is considered a key regulator of the negative affective state that characterizes drug withdrawal and protracted abstinence in SUD, and molecular and neurochemical changes observed during the development of SUD are mirrored by the pathophysiology of TBI. We conclude by proposing hypotheses and directions for future research aimed at elucidating the potential role of dynorphin/KOR in chronic pain and/or SUD after TBI.
Collapse
Affiliation(s)
- Kaitlin M. Best
- Department of Nursing and Clinical Care Services, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa M. Mojena
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Akiva S. Cohen, PhD, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Room 816-I, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Kimmey BA, McCall NM, Wooldridge LM, Satterthwaite T, Corder G. Engaging endogenous opioid circuits in pain affective processes. J Neurosci Res 2022; 100:66-98. [PMID: 33314372 PMCID: PMC8197770 DOI: 10.1002/jnr.24762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Abstract
The pervasive use of opioid compounds for pain relief is rooted in their utility as one of the most effective therapeutic strategies for providing analgesia. While the detrimental side effects of these compounds have significantly contributed to the current opioid epidemic, opioids still provide millions of patients with reprieve from the relentless and agonizing experience of pain. The human experience of pain has long recognized the perceived unpleasantness entangled with a unique sensation that is immediate and identifiable from the first-person subjective vantage point as "painful." From this phenomenological perspective, how is it that opioids interfere with pain perception? Evidence from human lesion, neuroimaging, and preclinical functional neuroanatomy approaches is sculpting the view that opioids predominately alleviate the affective or inferential appraisal of nociceptive neural information. Thus, opioids weaken pain-associated unpleasantness rather than modulate perceived sensory qualities. Here, we discuss the historical theories of pain to demonstrate how modern neuroscience is revisiting these ideas to deconstruct the brain mechanisms driving the emergence of aversive pain perceptions. We further detail how targeting opioidergic signaling within affective or emotional brain circuits remains a strong avenue for developing targeted pharmacological and gene-therapy analgesic treatments that might reduce the dependence on current clinical opioid options.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Nora M. McCall
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Equal contributions
| | - Lisa M. Wooldridge
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics and Neuroimaging Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Abstract
The opioid peptides and their receptors have been linked to multiple key biological processes in the nervous system. Here we review the functions of the kappa opioid receptor (KOR) and its endogenous agonists dynorphins (Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L, Proc Natl Acad Sci U S A 76:6666-6670, 1979) in modulating itch and pain (nociception). Specifically, we discuss their roles relative to recent findings that tell us more about the cells and circuits which are impacted by this opioid and its receptor and present reanalysis of single-cell sequencing data showing the expression profiles of these molecules. Since the KOR is relatively specifically activated by peptides derived from the prodynorphin gene and other opioid peptides that show lower affinities, this will be the only interactions we consider (Chavkin C, Goldstein A, Nature 291:591-593, 1981; Chavkin C, James IF, Goldstein A, Science 215:413-415, 1982), although it was noted that at higher doses peptides other than dynorphins might stimulate KOR (Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F, Nat Neurosci 9:1534-1540, 2006). This review has been organized based on anatomy with each section describing the effect of the kappa opioid system in a specific location but let us not forget that most of these circuits are interconnected and are therefore interdependent.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
41
|
Gandhi PJ, Gawande DY, Shelkar GP, Gakare SG, Kiritoshi T, Ji G, Misra B, Pavuluri R, Liu J, Neugebauer V, Dravid SM. Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain. Cells 2021; 10:2644. [PMID: 34685624 PMCID: PMC8534524 DOI: 10.3390/cells10102644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ+) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics.
Collapse
Affiliation(s)
- Pauravi J. Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Dinesh Y. Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.K.); (G.J.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Bishal Misra
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (P.J.G.); (D.Y.G.); (G.P.S.); (S.G.G.); (B.M.); (R.P.); (J.L.)
| |
Collapse
|
42
|
Sabuee S, Ahmadi-Soleimani SM, Azizi H. Prolonged morphine exposure during adolescence alters the responses of lateral paragigantocellularis neurons to naloxone in adult morphine dependent rats. J Physiol Sci 2021; 71:25. [PMID: 34429058 PMCID: PMC10716981 DOI: 10.1186/s12576-021-00810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Adolescence is a critical period in brain development, and it is characterized by persistent maturational alterations in the function of central nervous system. In this respect, many studies show the non-medical use of opioid drugs by adolescents. Although this issue has rather widely been addressed during the last decade, cellular mechanisms through which adolescent opioid exposure may induce long-lasting effects are not duly understood. The present study examined the effect of adolescent morphine exposure on neuronal responses of lateral paragigantocellularis nucleus to naloxone in adult morphine-dependent rats. METHODS Adolescent male Wistar rats (31 days old) received increasing doses of morphine (from 2.5 to 25 mg/kg, twice daily, s.c.) for 10 days. Control subjects were injected saline with the same protocol. After a drug-free interval (20 days), animals were rendered dependent on morphine during 10 days (10 mg/kg, s.c., twice daily). Then, extracellular single-unit recording was performed to investigate neural response of LPGi to naloxone in adult morphine-dependent rats. RESULTS Results indicated that adolescent morphine treatment increases the number of excitatory responses to naloxone, enhances the baseline activity and alters the pattern of firing in neurons with excitatory responses in adult morphine-dependent rats. Moreover, the intensity of excitatory responses is reduced following the early life drug intake. CONCLUSION It seems that prolonged opioid exposure during adolescence induces long-lasting neurobiological changes in LPGi responsiveness to future opioid withdrawal challenges.
Collapse
Affiliation(s)
- Sara Sabuee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
43
|
Cameron CM, Nieto S, Bosler L, Wong M, Bishop I, Mooney L, Cahill CM. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1. [PMID: 35265942 PMCID: PMC8903193 DOI: 10.3389/adar.2021.10009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012. Suicide is the 10th leading cause of death among Americans and more than 44 K people died by suicide in 2019 in the United States. Patients with chronic pain, including, but not limited to, those with substance use disorders, are particularly vulnerable. Chronic pain patients have twice the risk of death by suicide compared to those without pain, and 50% of chronic pain patients report that they have considered suicide at some point due to their pain. The kappa opioid system is implicated in negative mood states including dysphoria, depression, and anxiety, and recent evidence shows that chronic pain increases the function of this system in limbic brain regions important for affect and motivation. Additionally, dynorphin, the endogenous ligand that activates the kappa opioid receptor is increased in the caudate putamen of human suicide victims. A potential treatment for reducing suicidal ideation and suicidal attempts is buprenorphine. Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties, reduced suicidal ideation in chronic pain patients with and without an opioid use disorder. This review will highlight the clinical and preclinical evidence to support the use of buprenorphine in mitigating pain-induced negative affective states and suicidal thoughts, where these effects are at least partially mediated via its kappa antagonist properties.
Collapse
Affiliation(s)
- Courtney M. Cameron
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Nieto
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucienne Bosler
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan Wong
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabel Bishop
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larissa Mooney
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Catherine M. Cahill,
| |
Collapse
|
44
|
Rullo L, Posa L, Caputi FF, Stamatakos S, Formaggio F, Caprini M, Liguori R, Candeletti S, Romualdi P. Nociceptive behavior and central neuropeptidergic dysregulations in male and female mice of a Fabry disease animal model. Brain Res Bull 2021; 175:158-167. [PMID: 34339779 DOI: 10.1016/j.brainresbull.2021.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
Fabry disease (FD) is an X-linked inherited disorder characterized by glycosphingolipid accumulation due to deficiency of α-galactosidase A (α-Gal A) enzyme. Chronic pain and mood disorders frequently coexist in FD clinical setting, however underlying pathophysiologic mechanisms are still unclear. Here we investigated the mechanical and thermal sensitivity in α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. We also characterized the gene expression of dynorphinergic, nociceptinergic and CRFergic systems, known to be involved in pain control and mood disorders, in the prefrontal cortex, amygdala and thalamus of α-Gal A (-/0) hemizygous male and the α-Gal A (-/-) homozygous female mice. Moreover, KOP receptor protein levels were evaluated in the same areas. Fabry knock-out male, but not female, mice displayed a decreased pain threshold in both mechanical and thermal tests compared to their wild type littermates. In the amygdala and prefrontal cortex, we observed a decrease of pDYN mRNA levels in males, whereas an increase was assessed in females, thus suggesting sex-related dysregulation of stress coping and pain mechanisms. Elevated mRNA levels for pDYN/KOP and CRF/CRFR1 systems were observed in male and female thalamus, a critical crossroad for both painful signals and cognitive/emotional processes. KOP receptor protein level changes assessed in the investigated areas, appeared mostly in agreement with KOP gene expression alterations. Our data suggest that α-Gal A enzyme deficiency in male and female mice is associated with distinct neuropeptide gene and protein expression dysregulations of investigated systems, possibly related to the neuroplasticity underlying the neurological features of FD.
Collapse
Affiliation(s)
- Laura Rullo
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Luca Posa
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy; Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Francesca Felicia Caputi
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Serena Stamatakos
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Francesco Formaggio
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Marco Caprini
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences, Bologna, Italy; Dept. of Biomedical and Neuromotor Sciences (DiBiNeM), Alma Mater Studiorum - University of Bologna, Via Altura 3, Bologna, 40139, Italy
| | - Sanzio Candeletti
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy
| | - Patrizia Romualdi
- Dept. of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Irnerio 48, Bologna, 40126, Italy.
| |
Collapse
|
45
|
Tavares I, Costa-Pereira JT, Martins I. Monoaminergic and Opioidergic Modulation of Brainstem Circuits: New Insights Into the Clinical Challenges of Pain Treatment? FRONTIERS IN PAIN RESEARCH 2021; 2:696515. [PMID: 35295506 PMCID: PMC8915776 DOI: 10.3389/fpain.2021.696515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and antidepressants are frequently ineffective, and opioids may induce side effects, including hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated in animal models of neuropathic pain. Besides the well-established antinociception due to spinal effects, the NA system may induce pronociception by directly acting on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual action depending on the targeted spinal receptor, with an exacerbated activity of the excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids are involved in the modulation of descending modulatory circuits. During neuropathic pain, the opioidergic modulation of brainstem pain control areas is altered, with the release of enhanced local opioids along with reduced expression and desensitization of μ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids. On the whole, the data discussed in this review indicate the high plasticity of brainstem pain control circuits involving monoaminergic and opioidergic control. The data from studies of these neurochemical systems in neuropathic models indicate the importance of designing drugs that target multiple neurochemical systems, namely, maximizing the antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.
Collapse
Affiliation(s)
- Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- *Correspondence: Isaura Tavares
| | - José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
46
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
47
|
Central amygdala circuitry modulates nociceptive processing through differential hierarchical interaction with affective network dynamics. Commun Biol 2021; 4:732. [PMID: 34127787 PMCID: PMC8203648 DOI: 10.1038/s42003-021-02262-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
The central amygdala (CE) emerges as a critical node for affective processing. However, how CE local circuitry interacts with brain wide affective states is yet uncharted. Using basic nociception as proxy, we find that gene expression suggests diverging roles of the two major CE neuronal populations, protein kinase C δ-expressing (PKCδ+) and somatostatin-expressing (SST+) cells. Optogenetic (o)fMRI demonstrates that PKCδ+/SST+ circuits engage specific separable functional subnetworks to modulate global brain dynamics by a differential bottom-up vs. top-down hierarchical mesoscale mechanism. This diverging modulation impacts on nocifensive behavior and may underly CE control of affective processing. In order to examine how central amygdala (CE) local circuitry interacts with brain-wide affective states, Wank et al performed gene expression analysis and optogenetic fMRI in mice, using basic nociception as a proxy. They found evidence for diverging roles of two major CE neuronal populations in modulating global brain states, which impacts on aversive processing and nocifensive behaviour.
Collapse
|
48
|
Uncovering the analgesic effects of a pH-dependent mu-opioid receptor agonist using a model of nonevoked ongoing pain. Pain 2021; 161:2798-2804. [PMID: 32639370 DOI: 10.1097/j.pain.0000000000001968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Currently, opioids targeting mu-opioid receptors are the most potent drugs for acute and cancer pain. However, opioids produce adverse side effects such as constipation, respiratory depression, or addiction potential. We recently developed (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), a compound that does not evoke central or intestinal side effects due to its selective activation of mu-opioid receptors at low pH in peripheral injured tissues. Although we demonstrated that NFEPP effectively abolishes injury-induced pain, hyperalgesia, and allodynia in rodents, the efficacy of NFEPP in nonevoked ongoing pain remains to be established. Here, we examined reward, locomotor activity, and defecation in rats with complete Freund's adjuvant-induced paw inflammation to compare fentanyl's and NFEPP's potentials to induce side effects and to inhibit spontaneous pain. We demonstrate that low, but not higher, doses of NFEPP produce conditioned place preference but not constipation or motor disturbance, in contrast to fentanyl. Using a peripherally restricted antagonist, we provide evidence that NFEPP-induced place preference is mediated by peripheral opioid receptors. Our results indicate that a low dose of NFEPP produces reward by abolishing spontaneous inflammatory pain.
Collapse
|
49
|
Marchette RCN, Gregory-Flores A, Tunstall BJ, Carlson ER, Jackson SN, Sulima A, Rice KC, Koob GF, Vendruscolo LF. κ-Opioid receptor antagonism reverses heroin withdrawal-induced hyperalgesia in male and female rats. Neurobiol Stress 2021; 14:100325. [PMID: 33997152 PMCID: PMC8095052 DOI: 10.1016/j.ynstr.2021.100325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 10/29/2022] Open
Abstract
Although opioids are potent analgesics, a consequence of chronic opioid use is hyperalgesia during withdrawal, which may contribute to opioid misuse. Dynorphin, the endogenous ligand of κ-opioid receptors (KORs), is upregulated in opioid-dependent rats and in animal models of chronic pain. However, the role of KORs in opioid withdrawal-induced hyperalgesia remains to be determined. We hypothesized that KOR antagonism would reverse opioid withdrawal-induced hyperalgesia in opioid-dependent rats. Male and female Wistar rats received daily injections of heroin (2-6 mg/kg, SC) and were tested for mechanical sensitivity in the electronic von Frey test 4-6 h into withdrawal. Female rats required significantly more heroin than male rats to reach comparable levels of both heroin-induced analgesia and hyperalgesia (6 mg/kg vs. 2 mg/kg). Once hyperalgesia was established, we tested the effects of the KOR antagonists nor-binaltorphimine (norBNI; 30 mg/kg, SC) and 5'-guanidinonaltrindole (5'GNTI; 30 mg/kg, SC). When the animals continued to receive their daily heroin treatment (or saline treatment in the repeated saline group) five times per week throughout the experiment, both KOR antagonists reversed heroin withdrawal-induced hyperalgesia. The anti-hyperalgesia effect of norBNI was more prolonged in males than in females (14 days vs. 7 days), whereas 5'GNTI had more prolonged effects in females than in males (14 days vs. 4 days). The behavioral effects of 5'GNTI coincided with higher 5'GNTI levels in the brain than in plasma when measured at 24 h, whereas 5'GNTI did not reverse hyperalgesia at 30 min posttreatment when 5'GNTI levels were higher in plasma than in the brain. Finally, we tested the effects of 5'GNTI on naloxone-induced and spontaneous signs of opioid withdrawal and found no effect in either male or female rats. These findings indicate a functional role for KORs in heroin withdrawal-induced hyperalgesia that is observed in rats of both sexes.
Collapse
Affiliation(s)
- Renata C N Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Adriana Gregory-Flores
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erika R Carlson
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Shelley N Jackson
- Structural Biology Core, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, National Institute on Drug Abuse, Intramural Research Program, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse, Intramural Research Program, Bethesda, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
50
|
Su S, Li M, Wu D, Cao J, Ren X, Tao YX, Zang W. Gene Transcript Alterations in the Spinal Cord, Anterior Cingulate Cortex, and Amygdala in Mice Following Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:634810. [PMID: 33898422 PMCID: PMC8059771 DOI: 10.3389/fcell.2021.634810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Mengqi Li
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Bioinformatics, College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Weidong Zang
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|